
18-643-F23-L10-S1, James C. Hoe, CMU/ECE/CALCM, ©2023

18-643 Lecture 10:
FPGA Memory Architecture

James C. Hoe
Department of ECE

Carnegie Mellon University

18-643-F23-L10-S2, James C. Hoe, CMU/ECE/CALCM, ©2023

Housekeeping

• Your goal today: think about memory from a
spatial (non-monolithic) computing perspective

(I assume you have taken a comp arch course)
• Notices

– Handout #5: lab 2, due noon, 10/9
– Project status report due each Friday

• Readings: (see lecture schedule online)
– Intel® FPGA SDK for OpenCL™ Pro Edition: Best

Practices Guide

– Compute Express Link™ 2.0 White Paper

18-643-F23-L10-S3, James C. Hoe, CMU/ECE/CALCM, ©2023

Stored Program Architecture
a.k.a. von Neumann

• Memory holds both program and data
– instructions and data in a linear memory array
– instructions can be modified as data

• Sequential instruction processing
1. program counter (PC) identifies current instruction
2. fetch instruction from memory
3. update some state (e.g. PC and memory) as a

function of current state according to instruction
4. repeat

…

program counter

0 1 2 3 4 5 . . .

Dominant paradigm since its invention

18-643-F23-L10-S4, James C. Hoe, CMU/ECE/CALCM, ©2023

Necessary Awareness #1:
Fast means Small and Expensive

• Bigger is slower
– SRAM 512 Bytes @ sub-nsec
– SRAM KByte~MByte @ nsec
– DRAM GByte @ ~50 nsec
– SSD TByte @ msec
– Hard Disk TByte @ ~10 msec

• Faster is more expensive (dollars and chip area)
– SRAM ~$10K per GByte
– DRAM ~$10 per GByte
– “Drives” ~$0.1 per GByte

Treat the values as ×/÷ 3x

18-643-F23-L10-S5, James C. Hoe, CMU/ECE/CALCM, ©2023

Necessary Awareness #2:
Locality is Good

• Temporal: after accessing A, how many other
distinct addresses before accessing A again

• Spatial: after accessing A, how many other distinct
addresses before accessing a near-by B

• Good locality implies
– easier to cover more of working-set with a small

(fast) memory
– lower BW and/or more efficient use of BW to large

(slow) memory

MMM::good; sparse MMM::bad; streaming::1 of 2

not what you
think it means

not how
many
times?

18-643-F23-L10-S6, James C. Hoe, CMU/ECE/CALCM, ©2023

Necessary Awareness #3:
Data Movement not Free

• Latency: transit time between source and dest
• Overhead: dead time spent in the act of sending

or receiving not overlapped with concurrent
compute

• Gap: wait time in between successive send’s or
receive’s due to limited transfer BW

see LogP [Culler, et al., PPoPP93]

CPU
(send) NI interconnect CPU

(rcv)NI
gaptx

latency overheadrx
overheadtx

gaprx

18-643-F23-L10-S7, James C. Hoe, CMU/ECE/CALCM, ©2023

Necessary Awareness #3.1:
Memory Perf Matters

• An algorithm has a cost in terms of operation count
– runtimecompute-bound = # operations / FLOPS

• An algorithm also has a cost in terms of number of
bytes communicated (ld/st or send/receive)
– runtimeBW-bound = # bytes / BW

• Which one dominates depends on
– ratio of FLOPS and BW of platform
– ratio of ops and bytes of algorithm

• Average Arithmetic Intensity (AI)
– how many ops performed per byte accessed
– # operations / # bytes

18-643-F23-L10-S8, James C. Hoe, CMU/ECE/CALCM, ©2023

DRAM, SRAM and all that

18-643-F23-L10-S9, James C. Hoe, CMU/ECE/CALCM, ©2023

On-Chip Fast/Small Memory

• LUT-RAM: 64x1b or 32x2b
– dual-port: [sync write/async read] + async read
– also good as one 32b or two 16b shift-regs

• BRAM: 18Kb, variable aspect ratio 1~36b wide
– true dual-port: 2x[sync read/write], separate clocks
– fast-enough to be double-pump’ed

• Become FF array if infeasible as hard macro

RAM

data_A
addr_A

ce_A
we_A
clk_A

data_B
addr_B
ce_B
we_B
clk_B

Xilinx universe

18-643-F23-L10-S10, James C. Hoe, CMU/ECE/CALCM, ©2023

FPGA Memory Peculiarities

• Quantized, disjoint memory options
– jumps between FF-based vs. LUT-RAM vs. BRAMs
– choose from fixed menu of sizes and aspect ratios
– subtle limitations (comb-read, multi-write)

• Large memory (BRAM) abnormally fast and “free”
until your run-out

• Must manage RAM usage
– don’t waste BRAM on small buffers
– tune buffer sizes to natural granularities, e.g., zero

incremental cost to go from 1KB to 2KB
– pack buffers to share same physical array

18-643-F23-L10-S11, James C. Hoe, CMU/ECE/CALCM, ©2023

Off-Chip Memory: DRAM

• Simple asynchronous request/reply queues
– in-order or out-of-order (need tags)
– multiple queues, separate read/write queues

• Need very wide data word for bandwidth
4B@200MHz is only 0.8GB/sec

• Long and variable but predictable latency

DRAM
ugliness
mostly
hidden

data_w
addr

tag
r/w/cmd

push

data_r

tag
pop
empty?

full?

18-643-F23-L10-S12, James C. Hoe, CMU/ECE/CALCM, ©2023

bank (row,column)

Kb row-buffer

per chip: 3.2G transfers/sec of 4b~16b
(per rank: 8B-widepeak 25.6GB/sec)

8~16

bank (row,column)

Kb row-buffer

bank (row,column)

Kb row-buffer

Access Pattern affects Latency and BW
• DRAM organization

– (multiple ranks per DIMM)
– (multiple chips per rank)
– multiple banks per chip

• Per bank
– long delay to new row
– very fast to same row

• Chip/package/board
add to total latency

• Rows refreshed every 64ms
– bank unavailable for

30~40ns at a time
– avg. ~1% unavailability

bank

16K~256K rows


1K columns

row-buffer

new row 30~40ns

same row ~1ns

D
D

R4
 n

um
be

rs

18-643-F23-L10-S13, James C. Hoe, CMU/ECE/CALCM, ©2023

FPGAs gaining more SRAM capacity
and DRAM bandwidth

• Interest in FPGA computing sets new “balance”
• 10 years ago

– single-digit GB/sec to DRAM
– single-digit Mbit SRAM

• New FPGAs (more than Moore increase)
– GPU-level memory bandwidth (HBM, HMC, …)
– 10s MByte SRAM
– also add GPU-level FP throughput

No free lunch in Watt/Perf though

• Will we see hardened memory hierarchy?

18-643-F23-L10-S14, James C. Hoe, CMU/ECE/CALCM, ©2023

E.g., Stratix-10 MX
2M “Logic Elements”
3960 “DSP”
17MB BRAM
12MB eSRAM

Stratix-10 DX has
cache-coherent UPI

18-643-F23-L10-S15, James C. Hoe, CMU/ECE/CALCM, ©2023

HBM2 on Stratix-10 MX

• Not a monolithic structure or abstraction
• 32 x “pseudo” channels (32B wide upto 500MHz)

– each channel to a separate DRAM array
– 16GB/sec/chnl if bursting consecutive addresses

• 512GB/sec if algorithm
– partition data 32 ways
– issue 32 concurrent,

burst accesses wo. conflict
– digest 32 x 32B per cyc
– run at 500MHz

No walk-in-the-park on GPUs either
[Intel Stratix 10 HBM2 Architecture]

18-643-F23-L10-S16, James C. Hoe, CMU/ECE/CALCM, ©2023

Hard NoC: making memory BW usable

• Hardened NoC to distribute
memory BW into fabric

• Area and energy prohibitive
as soft logic

Intel Agilex M

Xilinx Versal

18-643-F23-L10-S17, James C. Hoe, CMU/ECE/CALCM, ©2023

Compute Express Link (CXL)

In PCI, host cannot cache device space; device can read
host space coherently with host cache but cannot cache

[C
om

pu
te

 E
xp

re
ss

 L
in

k™
2.

0
W

hi
te

 P
ap

er
]

Device can cache
host memory

coherently

Host can cache
device memory

Host/Device
symmetric and

coherent

18-643-F23-L10-S18, James C. Hoe, CMU/ECE/CALCM, ©2023

Memory Organization as
Design Optimization

18-643-F23-L10-S19, James C. Hoe, CMU/ECE/CALCM, ©2023

think this of as
“miss penalty”

Classic Memory Hierarchy 101
(pre-multicore)

• Memory hierarchy level i has access time of ti

• Perceived access time Ti is longer than ti

– a chance (hit-rate hi) you find what you want  ti

– a chance (miss-rate mi) you don’t find it  ti+Ti+1

– hi + mi=1.0

• In general

Ti = hi·ti + mi·(ti + Ti+1)
Ti = ti + mi ·Ti+1

Note: hi and mi are of the references missing at level i-1
hbottom-most=1.0

18-643-F23-L10-S20, James C. Hoe, CMU/ECE/CALCM, ©2023

FPGA hierarchy used differently
• 200MHz soft-logic cache

– a miss to DRAM is not
too many cycles away

– if 4-byte access, 100%
hit-rate only 0.8 GB/sec

• Remember to think SPATIAL
– distributed concurrent

¡bandwidth! for spatial
kernels

– reduce off-chip memory
bandwidth and ¡power!

DRAM

cache

proc

DRAM

krnl

s'pad

krnl

s'pad

krnl

s'pad

10s GB/sec per channel
100s core clock latency

10s GB/sec per core
1 cycle latency @ GHZ+

10s GB/sec per channel
~10 fabric clock latency

GB/sec per kernel
1 cycle latency

@200MHz

18-643-F23-L10-S21, James C. Hoe, CMU/ECE/CALCM, ©2023

Cache vs Scratchpad

• Manual scratchpad is easy for regular/structured
locality
– per-kernel scratchpad more opportunity and

benefit in specialization
– HW management does not lengthen code
– prefetching can hide memory latency completely
– 95% of the time: streaming or double-buffering

These easy cases actually against cache heuristics
• Cache is useful when locality is not predictable

ahead of time
Customized the cache if you use one!!!

18-643-F23-L10-S22, James C. Hoe, CMU/ECE/CALCM, ©2023

Banking
• Partition storage onto multiple structures
• More BW for parallel, non-conflicting accesses

BRAMwdata_0
addr_0

we_0
rdata_0

words
height

BRAMwdata_1
addr_1

we_1
rdata_1

BRAMwdata_*
addr_*

we_*
rdata_*

applicable to SRAM, DRAM or disk “storage”

18-643-F23-L10-S23, James C. Hoe, CMU/ECE/CALCM, ©2023

• An array of N words; index is lg2N bits

• N-word total storage
– divided into B banks; bank number is lg2B bits
– each bank is W-word wide; word-select is lg2W bits
– line index within bank is lg2(N/B/W) bits

• Assign bank #, word select and index to maximize
– spatial locality

in word select
– “entropy” in bank #

Control over Data Layout

bank # line

lg2N array index (sequential)

lg2N/B/Wlg2B

word sel

lg2W

word sel bank #line

In general interleaved & reordered

18-643-F23-L10-S24, James C. Hoe, CMU/ECE/CALCM, ©2023

Example: Image Frame

• N pixels in N-by- N frame

• Spatial locality in W-by- W tiles
• Parallelism across same-column tiles

N

0 . N0.5-1
N0.5 2N0.5-1
2N0.5 3N0.5-1

. N

bank #

line

lg2N pixel index

lg2N/B/Wlg2B

word sel

lg2W

w.s.w.s.

bank #

(lg2N)/2

(lg2W)/2(lg2W)/2

Can you tell the
compiler (through C)

this is what you want?lg2B



W

. . . . i N+j
(row-major)

vs.

18-643-F23-L10-S25, James C. Hoe, CMU/ECE/CALCM, ©2023

A Small Concrete Example: N=16, W=4

p0011p0010p0001p0000

p0111p0110p0101p0100

p1011p1010p1001p1000

p1111p1110p1101p1100

T00

T11

T01

T10

bank 0
width=4 pixels

height=2

bank 1

x

y {p10y0,p10y1,
p11y0,p11y1}

{p00x0,p00x1,
p01x0,p01x1}

pixel idx = a3a2a1a0
col idx = a3a2a1a0

row idx = a3a2a1a0
tile idx = a3a2a1a0


word sel = a3a2a1a0

bank offset = a3a2a1a0
bank # = a3a2a1a0

whole frame
at a time

concurrent access
to different tile
rows

18-643-F23-L10-S26, James C. Hoe, CMU/ECE/CALCM, ©2023

Blocked CNN Kernel on Local Memory

• Assuming sequential
execution, what is the
access sequence on
BufW and BufI?

ignore BufO for now

18-643-F23-L10-S27, James C. Hoe, CMU/ECE/CALCM, ©2023

BufW is pretty clear

M

N

[Zhang, et al., 2015]

18-643-F23-L10-S28, James C. Hoe, CMU/ECE/CALCM, ©2023

BufI more challenging

[Zhang, et al., 2015]

by S

by S

18-643-F23-L10-S29, James C. Hoe, CMU/ECE/CALCM, ©2023

What should happen?

i and j loops
fully unrolled;
and pipelined

How many ‘*’/cycle possible?
What to read concurrently in 1 cycle?

HLS_PIPELINE

initiated sequentially
into pipelined body

18-643-F23-L10-S30, James C. Hoe, CMU/ECE/CALCM, ©2023

How to Layout BufW
• # of bank, width of bank (height is derived)
• bank number, line index, word select

BRAMwdata_0
addr_0

we_0
rdata_0

words
height

BRAMwdata_1
addr_1

we_1
rdata_1

BRAMwdata_*
addr_*

we_*
rdata_*

Assume K=4

18-643-F23-L10-S31, James C. Hoe, CMU/ECE/CALCM, ©2023

How to Layout BufI
• # of bank, width of bank (height is derived)
• bank number, line index, word select

BRAMwdata_0
addr_0

we_0
rdata_0

words
height

BRAMwdata_1
addr_1

we_1
rdata_1

BRAMwdata_*
addr_*

we_*
rdata_*

Assume S=2, K=4

18-643-F23-L10-S32, James C. Hoe, CMU/ECE/CALCM, ©2023

What should happen?

ti, i and j loops
unrolled and
pipelined

initiated sequentially
into pipelined body

How many ‘*’/cycle possible?

HLS_PIPELINE

18-643-F23-L10-S33, James C. Hoe, CMU/ECE/CALCM, ©2023

What about BufO?

[Zhang, et al., 2015]

18-643-F23-L10-S34, James C. Hoe, CMU/ECE/CALCM, ©2023

Some Hints on Lab 2
• Optimize tiled kernel throughput out-of-context

– maximize arithmetic op/cyc
– buffers need to match arithmetic concurrency
– stay within Ultra96 resources (don’t run out of LUT,

DSP, or BRAM)

Don’t worry about full layer size and data reuse
• Degrees of freedom

– tile size
– loop ordering (affects access pattern)
– loopnest level to pipeline (higher perf but also cost)

Buffer design and data layout tied to above choices

18-643-F23-L10-S35, James C. Hoe, CMU/ECE/CALCM, ©2023

Start from the Shallow End

#pragma HLS_PIPELINE

18-643-F23-L10-S36, James C. Hoe, CMU/ECE/CALCM, ©2023

Play with the Design Space

#pragma HLS_PIPELINE

18-643-F23-L10-S37, James C. Hoe, CMU/ECE/CALCM, ©2023

Parting Thoughts
• Memory architecture and memory performance

important to computing
• Spatial FPGA computing needs adjusted intuition

– wider, more concurrent access
– slow clock ticks
– amenable to extreme specialization

• Look forward to
– more SRAM, faster DRAM
– more data movement BW within fabric
– cache-coherence, better integration
– hardwired, native memory architecture?

