18-643 Lecture 9:
Program-to-HW-Acceleration HLS

James C. Hoe
Department of ECE
Carnegie Mellon University

18-643-F23-19-S1, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Housekeeping

e Your goal today: understand Intel’s interpretation
of OpenCL for FPGAs

e Notices
— Handout #5: lab 2, due Monday, 10/9
— Project status report due each Friday
e Readings (see lecture schedule online)

— for concrete reference: Intel SDK for OpenCL:
Programming Guide and Best Practices Guide

— Reconfigurable Computing Architecture, Tessier, et
al., 2015

— SYCL/DPC++ and streaming in a future lecture

18-643-F23-19-S2, James C. Hoe, CMU/ECE/CALCM, ©2023

Khronos’ OpenCL

18-643-F23-19-S3, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Two Parts to OpenCL

1. Platform model
— host (processor & memory)
— 1 or more accelerator devices
+ device-side mem hierarchy: global/local/private
— APIs for host-thread to interact with devices
e [aunch compute kernels to devices
e prepare (load/unload) device memory
2. Kernel programming language
— perfect triply-nested loops
— no loop-carried dependence

OpenCL terms introduced in bold

18-643-F23-19-54, James C. Hoe, CMU/ECE/CALCM, ©2023

OpenCL Platform Model

lobal
host & compute
€ > mem [€—>)
CPU device
buf
lobal —>
host g C nmmniiton
—>1 Mmem [€ >
mem
buf . compute
deV|ce‘
'o

What are these “compute devices”???

18-643-F23-19-S5, James C. Hoe, CMU/ECE/CALCM, ©2023

Basic Host Program Example

main () {
... get device handle and queue.. ..
... allocate memory buf objects . ..
... get kernel object. ..
while () {
. initialize memory buf data . ..
. bind buf objects to kernel arguments. ..
. add kernel and buf objects to device queue. ..
.. wait for kernel to finish . . .
. retrieve memory buf object for result. ..

}

18-643-F23-19-S6, James C. Hoe, CMU/ECE/CALCM, ©2023

What are these “kernels”???

What are these kernels?

Specifically talking about OpenCL C

18-643-F23-19-S7, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

% Conceptually...

for (int 1=0; i < R;,; i++)
for (int j=0; j < R,; Jj++)
for (int k=0; k < R,; k++) {
<< local variable declarations >>
<< arbitrary C-code with access to

global memory >>

} "
\e! of
e Loop body must be data-parallel ,,poro\
— local variables limited to scope

— disallow loop-carried dependencies through global
memory

==> statements from different iterations can interleave in
any order (using disambiguated local variables)

18-643-F23-19-S8, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Concretely. ...

e Only specify loop body as a kernel function
__kernel foo (<< pointers to global mem buf>>) {
int i=get global id(2), j=get..(l), k=get..(0);
<< local variable declarations >>
<< arbitrary C-code with access to

global memory >>
}

e Triply-nested loops hardwired as NDRange

— specified as 3 integer constants, i.e., the loop
bounds (R,, Ry, R,)
— 1 execution of kernel function is a work-item
work-item has private memory for local var’s

— 1 kernel execution is R;xR; xR, work-items

18-643-F23-19-S9, James C. Hoe, CMU/ECE/CALCM, ©2023

Example: N-by-N MMM

kernel mmm(global float *A, .. *B, .. *C) {

int i=get global id(1);
int j=get global id(0);

for (int k=0; k<N; k++)
C[i*N+j]=C[i*N+j]+A[i*N+k] *B[k*N+7j] ;
}

e NDRange=(N, N, 1)

— kernel function executed by NxNx1 work-items

— each work-item sees a different combination of
dimension-0 and dimension-1 global id’s

— no assumption about work-items’ relative progress

18-643-F23-19-510, James C. Hoe, CMU/ECE/CALCM, ©2023

(For Your Reference: N-by-N MMM in C)

float A[N][N], B[N][N], C[N]I[N];

for(int i=0; i<N; i++)
for (int j=0; j<N; J++) {
for (int k=0; k<N; k++)
Cl[1][J]1=C[1][J]1+A[1][k]*B[k][]]

e Note:

— Loop body of the inner-most loop is not data-
parallel---dependency through cri1[9]

— Loop body of the second inner-most loop is

18-643-F23-19-S11, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

To See a Not-Toy MMM in OpenCL

e Visit:
https://www.intel.com/content/www/us/en/sup
port/programmable/support-resources/design-
examples/horizontal/matrix-multiplication.html

e Might want to wait until after memory lectures

18-643-F23-1L9-512, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

% Work-Group

e Partition NDRange of R;xR,xR, work-items into
3D work-groups of G, xG,xG, work-items £ 77

- get_local_id(dim): id within group NDRange=(9, 3, 6)

- get_group_id(dim): id of group Group Size=(3, 3, 3)
Group Range=(3,1,2)
e Work-group signifies “locality” btw work-items
— execute together by a processing element
— can share per-group local memory
— can synchronize by barrier ()

Why do we have this?

18-643-F23-19-513, James C. Hoe, CMU/ECE/CALCM, ©2023

OpenCL Kernels on GPGPUs

e Work-item is a CUDA thread

e \Work-group executes as a thread block---broken
down into 32-work-item SIMD Warps

e Work-groups from same and different kernels are
interleaved on a Streaming Processor

128-SIMD lanes, 1 INT+1 FMA per lane, 1.73GHz

e 1 kernel could fully consume all 20 StrmProc’s (as
1 compute device), peak 8,873 GFLOPS

e Global=GDDR; local=shared memory 96KB SRAM;
private=register file 256KB SRAM

Nvidia terms in italic-bold; numbers for GTX 1080

18-643-F23-19-514, James C. Hoe, CMU/ECE/CALCM, ©2023

r
* To fully utilize the 8,873 GFLOPS. ..

e # work-items > 128 x StrmProc pipeline depth x 20

e Computation entirely of Fused-Multiply-Add insts
Interleaved warps so no RAW stalls within a thread

e No if-then-else (branch divergence)

By the way:

e 320 GB/sec DRAM BW = Al > 108 SP FP / float

e |d’s and st’s take up inst. issue BW off-the-top

e only certain access pattern can sustain peak BW

— SIMD Id’s and st’s in a warp must go to the same
memory line (memory coalescing)

18-643-F23-19-515, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Intel OpenCL for FPGA

18-643-F23-1L9-516, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

OpenCL FPGA Platform Model

|
|
host global FPGA :
<—:——> mem [€&—> ~—————- I :
CPU | (DRAM) | custom | |
| | K' custom | :

| | y——-——-—--
] i R il/loebral I--d: EE custom i i
I (DRAM) I— 7} kernel I !
host | ' | device g |
mem | global | |\ .. I
Lol Mem |je—> |
| (DRAM) |
| |

Compute devices synthesized from kernel functions

18-643-F23-19-517, James C. Hoe, CMU/ECE/CALCM, ©2023

Example: N-by-N MM*“Add”

kernel mma(global float *A, .. *B, .. *C) {

int i=get global id(1);
int j=get global id(0);

C[i*N+j]=A[i*N+j]+B[i*N+j];

e NDRange=(N, N, 1)
e Note in this example:

— data-parallel kernel function
— no loop in kernel function

18-643-F23-19-518, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Fully-pipelined Kernel Datapath

NDRange = (N,N,1)
(gid0,gid1) stream =(0,1),...(0,N-1),(1,0)...(1,N-1)......(N-1,0)...(N-1,N-1)

A gid0 id1 B C
N | /’g

addr addr
w calc
3 &A[I*N+] { &B[i*N+j] & Cli*N+j]

I load I load

]
Ali*N+] | \/a Y B[i*N+j]

I
| store [

fully unrolled loop in kernel fxn also okay

18-643-F23-19-519, James C. Hoe, CMU/ECE/CALCM, ©2023

What about MMM?

kernel mmm(global float *A, .. *B, .. *C) {

int i=get global id(1);
int j=get global id(0);

for (int k=0; k<N; k++)
C[i*N+j]=C[i*N+j]+A[i*N+k]*B[k*N+j] ;

}
e NDRange=(N, N, 1)
e Can’t easily pipeline work-items like before
e PE can unroll and pipelines the k iterations

— dependency on C[i*N+j]

— kernel function scope limits the tricks we can play

18-643-F23-19-520, James C. Hoe, CMU/ECE/CALCM, ©2023

« Single Work-Item Kernel:

clEnqueueTask()

__kernel mmm(global float *A, .. *B, .. *C) {
for(int i1=0; i<N; i++)
for (int 3j=0; j<N; J++)
for(in k=0; k<N; k++)
C[i*N+j]=C[i*N+j]+A[i*N+k] *B[k*N+7j]

e NDRange=(1, 1, 1) never do this on GPU!!
e Arbitrary control flow (loops, if’'s) and dependencies
e Becomes just “regular” C-to-HW synthesis

— pipeline and parallelize loops
— schedule for initiation-interval, resource, etc.

Only want OpenCL’s platform model and API;
“work-group” & “work-item” not too meaningful

18-643-F23-19-521, James C. Hoe, CMU/ECE/CALCM, ©2023

€
T Use of Kernel-Kernel Channels
e GPU multi-kernel OpenCL program
— kernel computes from global-mem to global-mem
— next kernel continues from last kernel’s output buf

— producer and consumer kernels fully serialized

e For streaming processing on FPGA, connect kernels
with streaming channels to bypass DRAM

— concurrent producer and consumer kernels
— reduce DRAM and PCle bandwidth requirements

global global
host PCle mem |load task, |chnl task; |[chnl task.|store mem |PCle host
(DRAM) (DRAM)

18-643-F23-19-S22, James C. Hoe, CMU/ECE/CALCM, ©2023 Di.fferent programming min dsetfrom GPU

CarnegieMellon

Program-to-HW, not Function-to-IP

|
: FPGA '
| Shell :
l User Space Local Memory '
| |
host P PCle 5| pe !
CPU : Controller © HLS :
@ |1
l 7 c kernel 5 :
| S 2 |
o o C |
: —1 2 5 & !
| - ~ 3 |
I - _§ HLS k= I
— B I
host : Device : : Memory G) kernel <}£ |
| Controller |
mem | DRAM ,
: Local Memory |
| |
| |
|

Object of design/optimization is the entire FPGA system

18-643-F23-19-523, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Performance-Geared Synthesis

e Automatic pipelining and unrolling

— no pipeline directive, but disable_loop_pipelining
so you still have control

— unroll factor controls extent of unrolling
e Local Memory (BRAM) Optimizations
— if you don’t say anything, AOC does it’s best
— banks, replicates, private copies and interconnect

local memory
bank O bank 1

replicate O replicate 1 replicate O replicate 1

height

\4

<

18-643-F23-19-524, James C. Hoe, CMU/ECE/CALCM, ©2023

byte/cycle = width x ports

Global Memory (DRAM) Optimizations

e Load-Store Units
— automatically chosen based on access pattern

Sequential Random Access

Area Efficient Prefetching Pipelined

Burst-Coalesced

Area E ' Burst-Coal
rea Expensive Burst-Coalesced Cached (loads only)

e Constant cache memory

e DDR banking automatically handled

18-643-F23-19-525, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Parting Thoughts

e OpenCL = platform model/API + SIMD language
— kernel language forces regular and explicit parallelism
— SIMD parallelism different on GPUs vs FPGAs
GPUs great at SIMD; FPGAs good for more than SIMD
e FPGA OpenCL = platform model/API + “smart”
memory system + “regular” kernel HLS
— single-work-item kernel unlocks parallelism style

— kernel-kernel channels alleviate DRAM and PCle
bottleneck for streaming use cases

— develop/debug/analysis tools integral to appeal
e Same tool for HPC and SDSoC, but used differently

18-643-F23-19-526, James C. Hoe, CMU/ECE/CALCM, ©2023

