
18-643-F23-L9-S1, James C. Hoe, CMU/ECE/CALCM, ©2023

18-643 Lecture 9:
Program-to-HW-Acceleration HLS

James C. Hoe
Department of ECE

Carnegie Mellon University

18-643-F23-L9-S2, James C. Hoe, CMU/ECE/CALCM, ©2023

Housekeeping

• Your goal today: understand Intel’s interpretation
of OpenCL for FPGAs

• Notices
– Handout #5: lab 2, due Monday, 10/9
– Project status report due each Friday

• Readings (see lecture schedule online)
– for concrete reference: Intel SDK for OpenCL:

Programming Guide and Best Practices Guide
– Reconfigurable Computing Architecture, Tessier, et

al., 2015
– SYCL/DPC++ and streaming in a future lecture

18-643-F23-L9-S3, James C. Hoe, CMU/ECE/CALCM, ©2023

Khronos’ OpenCL

18-643-F23-L9-S4, James C. Hoe, CMU/ECE/CALCM, ©2023

Two Parts to OpenCL
1. Platform model

– host (processor & memory)
– 1 or more accelerator devices

+ device-side mem hierarchy: global/local/private
– APIs for host-thread to interact with devices

• launch compute kernels to devices
• prepare (load/unload) device memory

2. Kernel programming language
– perfect triply-nested loops
– no loop-carried dependence

OpenCL terms introduced in bold

18-643-F23-L9-S5, James C. Hoe, CMU/ECE/CALCM, ©2023

OpenCL Platform Model

host
CPU

host
mem

global
mem
buf

compute
device

global
mem
buf

compute
devicecompute

devicecompute
device

What are these “compute devices”???

18-643-F23-L9-S6, James C. Hoe, CMU/ECE/CALCM, ©2023

Basic Host Program Example
main () {

. . . get device handle and queue . . .

. . . allocate memory buf objects . . .

. . . get kernel object. . .
while () {

. . . initialize memory buf data . . .

. . . bind buf objects to kernel arguments . . .

. . . add kernel and buf objects to device queue . . .

. . . wait for kernel to finish . . .

. . . retrieve memory buf object for result . . .
}

What are these “kernels”???

18-643-F23-L9-S7, James C. Hoe, CMU/ECE/CALCM, ©2023

What are these kernels?

Specifically talking about OpenCL C

18-643-F23-L9-S8, James C. Hoe, CMU/ECE/CALCM, ©2023

Conceptually . . .
for (int i=0; i < R0; i++)

for (int j=0; j < R1; j++)

for (int k=0; k < R2; k++) {

<< local variable declarations >>

<< arbitrary C-code with access to

global memory >>

}

• Loop body must be data-parallel
– local variables limited to scope
– disallow loop-carried dependencies through global

memory
==> statements from different iterations can interleave in

any order (using disambiguated local variables)

18-643-F23-L9-S9, James C. Hoe, CMU/ECE/CALCM, ©2023

Concretely . . .
• Only specify loop body as a kernel function

__kernel foo(<< pointers to global mem buf>>) {

int i=get_global_id(2), j=get…(1), k=get…(0);

<< local variable declarations >>

<< arbitrary C-code with access to

global memory >>

}

• Triply-nested loops hardwired as NDRange
– specified as 3 integer constants, i.e., the loop

bounds (R0, R1, R2)
– 1 execution of kernel function is a work-item

work-item has private memory for local var’s
– 1 kernel execution is R0×R1×R2 work-items

18-643-F23-L9-S10, James C. Hoe, CMU/ECE/CALCM, ©2023

Example: N-by-N MMM
__kernel mmm(__global float *A, … *B, … *C) {

int i=get_global_id(1);

int j=get_global_id(0);

for(int k=0; k<N; k++)

C[i*N+j]=C[i*N+j]+A[i*N+k]*B[k*N+j];

}

• NDRange=(N, N, 1)
– kernel function executed by NxNx1 work-items
– each work-item sees a different combination of

dimension-0 and dimension-1 global id’s
– no assumption about work-items’ relative progress

18-643-F23-L9-S11, James C. Hoe, CMU/ECE/CALCM, ©2023

(For Your Reference: N-by-N MMM in C)
float A[N][N], B[N][N], C[N][N];

for(int i=0; i<N; i++)

for(int j=0; j<N; j++) {

for(int k=0; k<N; k++)

C[i][j]=C[i][j]+A[i][k]*B[k][j]

}

• Note:
– Loop body of the inner-most loop is not data-

parallel---dependency through C[i][j]
– Loop body of the second inner-most loop is

18-643-F23-L9-S12, James C. Hoe, CMU/ECE/CALCM, ©2023

To See a Not-Toy MMM in OpenCL

• Visit:

• Might want to wait until after memory lectures

https://www.intel.com/content/www/us/en/sup
port/programmable/support-resources/design-
examples/horizontal/matrix-multiplication.html

18-643-F23-L9-S13, James C. Hoe, CMU/ECE/CALCM, ©2023

• Partition NDRange of R0×R1×R2 work-items into
3D work-groups of G0×G1×G2 work-items
– G0/1/2 must divide R0/1/2 evenly
– get_local_id(dim): id within group
– get_group_id(dim): id of group

• Work-group signifies “locality” btw work-items
– execute together by a processing element
– can share per-group local memory
– can synchronize by barrier()

Why do we have this?

Work-Group

NDRange=(9, 3, 6)
Group Size=(3, 3, 3)

Group Range=(3,1,2)

18-643-F23-L9-S14, James C. Hoe, CMU/ECE/CALCM, ©2023

OpenCL Kernels on GPGPUs
• Work-item is a CUDA thread
• Work-group executes as a thread block---broken

down into 32-work-item SIMD Warps
• Work-groups from same and different kernels are

interleaved on a Streaming Processor
128-SIMD lanes, 1 INT+1 FMA per lane, 1.73GHz

• 1 kernel could fully consume all 20 StrmProc’s (as
1 compute device), peak 8,873 GFLOPS

• Global=GDDR; local=shared memory 96KB SRAM;
private=register file 256KB SRAM
Nvidia terms in italic-bold; numbers for GTX 1080

18-643-F23-L9-S15, James C. Hoe, CMU/ECE/CALCM, ©2023

To fully utilize the 8,873 GFLOPS . . .

• # work-items ≥ 128 x StrmProc pipeline depth x 20
• Computation entirely of Fused-Multiply-Add insts

Interleaved warps so no RAW stalls within a thread
• No if-then-else (branch divergence)
By the way:
• 320 GB/sec DRAM BW  AI > 108 SP FP / float
• ld’s and st’s take up inst. issue BW off-the-top
• only certain access pattern can sustain peak BW

– SIMD ld’s and st’s in a warp must go to the same
memory line (memory coalescing)

18-643-F23-L9-S16, James C. Hoe, CMU/ECE/CALCM, ©2023

Intel OpenCL for FPGA

18-643-F23-L9-S17, James C. Hoe, CMU/ECE/CALCM, ©2023

OpenCL FPGA Platform Model

host
CPU

host
mem

global
mem

(DRAM)

Compute devices synthesized from kernel functions

global
Mem

(DRAM)

global
Mem

(DRAM)

FPGA

custom
Kernel
device

custom
kernel
device

custom
kernel
device

18-643-F23-L9-S18, James C. Hoe, CMU/ECE/CALCM, ©2023

Example: N-by-N MM“Add”
__kernel mma(__global float *A, … *B, … *C) {

int i=get_global_id(1);

int j=get_global_id(0);

C[i*N+j]=A[i*N+j]+B[i*N+j];

}

• NDRange=(N, N, 1)
• Note in this example:

– data-parallel kernel function
– no loop in kernel function

18-643-F23-L9-S19, James C. Hoe, CMU/ECE/CALCM, ©2023

Fully-pipelined Kernel Datapath

load

NDRange = (N,N,1)
(gid0,gid1) stream =(0,1),…(0,N-1),(1,0)…(1,N-1)……(N-1,0)…(N-1,N-1)

addr
calc

gid0

load

addr
calc

gid1

add

&B[i*N+j]&A[i*N+j]

A B

addr
calc

C

store

&C[i*N+j]

A[i*N+j] B[i*N+j]

fully unrolled loop in kernel fxn also okay

18-643-F23-L9-S20, James C. Hoe, CMU/ECE/CALCM, ©2023

What about MMM?
__kernel mmm(__global float *A, … *B, … *C) {

int i=get_global_id(1);

int j=get_global_id(0);

for(int k=0; k<N; k++)

C[i*N+j]=C[i*N+j]+A[i*N+k]*B[k*N+j];

}

• NDRange=(N, N, 1)
• Can’t easily pipeline work-items like before
• PE can unroll and pipelines the k iterations

– dependency on C[i*N+j]
– kernel function scope limits the tricks we can play

18-643-F23-L9-S21, James C. Hoe, CMU/ECE/CALCM, ©2023

Single Work-Item Kernel:
clEnqueueTask()

__kernel mmm(__global float *A, … *B, … *C) {

for(int i=0; i<N; i++)

for(int j=0; j<N; j++)

for(in k=0; k<N; k++)

C[i*N+j]=C[i*N+j]+A[i*N+k]*B[k*N+j]

• NDRange=(1, 1, 1) never do this on GPU!!
• Arbitrary control flow (loops, if’s) and dependencies
• Becomes just “regular” C-to-HW synthesis

– pipeline and parallelize loops
– schedule for initiation-interval, resource, etc.

Only want OpenCL’s platform model and API;
“work-group” & “work-item” not too meaningful

18-643-F23-L9-S22, James C. Hoe, CMU/ECE/CALCM, ©2023

global
mem

(DRAM)
taskCtaskB

Use of Kernel-Kernel Channels
• GPU multi-kernel OpenCL program

– kernel computes from global-mem to global-mem
– next kernel continues from last kernel’s output buf
– producer and consumer kernels fully serialized

• For streaming processing on FPGA, connect kernels
with streaming channels to bypass DRAM
– concurrent producer and consumer kernels
– reduce DRAM and PCIe bandwidth requirements

global
mem

(DRAM)
taskA hostchnl storeload chnl PCIehost PCIe

Different programming mindset from GPU

18-643-F23-L9-S23, James C. Hoe, CMU/ECE/CALCM, ©2023

Program-to-HW, not Function-to-IP

host
CPU

host
mem

Device
DRAM

FPGA

PCIe
Controller

Memory
Controller

G
lo

ba
l I

nt
er

co
nn

ec
t

Local Memory

Local Memory

Lo
ca

l
In

te
rc

on
ne

ct

PCIe

Shell User Space

HLS
kernel

HLS
kernel

Object of design/optimization is the entire FPGA system

18-643-F23-L9-S24, James C. Hoe, CMU/ECE/CALCM, ©2023

Performance-Geared Synthesis
• Automatic pipelining and unrolling

– no pipeline directive, but disable_loop_pipelining
so you still have control

– unroll factor controls extent of unrolling

• Local Memory (BRAM) Optimizations
– if you don’t say anything, AOC does it’s best
– banks, replicates, private copies and interconnect

he
ig

ht

byte/cycle = width  ports

local memory
bank 0
replicate 0 replicate 1

bank 1
replicate 0 replicate 1

18-643-F23-L9-S25, James C. Hoe, CMU/ECE/CALCM, ©2023

Global Memory (DRAM) Optimizations

• Load-Store Units
– automatically chosen based on access pattern

• Constant cache memory
• DDR banking automatically handled

Random AccessSequential

PipelinedPrefetchingArea Efficient

Burst-Coalesced
Cached (loads only)Burst-CoalescedArea Expensive

18-643-F23-L9-S26, James C. Hoe, CMU/ECE/CALCM, ©2023

Parting Thoughts

• OpenCL = platform model/API + SIMD language
– kernel language forces regular and explicit parallelism
– SIMD parallelism different on GPUs vs FPGAs

GPUs great at SIMD; FPGAs good for more than SIMD
• FPGA OpenCL = platform model/API + “smart”

memory system + “regular” kernel HLS
– single-work-item kernel unlocks parallelism style
– kernel-kernel channels alleviate DRAM and PCIe

bottleneck for streaming use cases
– develop/debug/analysis tools integral to appeal

• Same tool for HPC and SDSoC, but used differently

