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Housekeeping

• Your goal today: understand Intel’s interpretation 
of OpenCL for FPGAs

• Notices
– Handout #5: lab 2, due Monday, 10/9
– Project status report due each Friday

• Readings (see lecture schedule online)
– for concrete reference: Intel SDK for OpenCL: 

Programming Guide and Best Practices Guide
– Reconfigurable Computing Architecture, Tessier, et 

al., 2015
– SYCL/DPC++ and streaming in a future lecture
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Khronos’ OpenCL
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Two Parts to OpenCL
1. Platform model

– host (processor & memory) 
– 1 or more accelerator devices

+ device-side mem hierarchy: global/local/private
– APIs for host-thread to interact with devices

• launch compute kernels to devices 
• prepare (load/unload) device memory

2. Kernel programming language
– perfect triply-nested loops
– no loop-carried dependence 

OpenCL terms introduced in bold
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OpenCL Platform Model
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What are these “compute devices”???
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Basic Host Program Example
main ( ) {

. . . get device handle and queue . . .  

. . . allocate memory buf objects . . .

. . . get kernel object. . .
while ( ) {

. . . initialize memory buf data . . .

. . . bind buf objects to kernel arguments . . .

. . . add kernel and buf objects to device queue . . .

. . . wait for kernel to finish . . .

. . . retrieve memory buf object for result . . .
}

What are these “kernels”???
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What are these kernels?

Specifically talking about OpenCL C
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Conceptually . . .  
for (int i=0; i < R0; i++)

for (int j=0; j < R1; j++)

for (int k=0; k < R2; k++) {

<< local variable declarations >>

<< arbitrary C-code with access to 

global memory >>

}

• Loop body must be data-parallel
– local variables limited to scope
– disallow loop-carried dependencies through global 

memory
==> statements from different iterations can interleave in 

any order (using disambiguated local variables)
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Concretely . . . 
• Only specify loop body as a kernel function

__kernel foo(<< pointers to global mem buf>>) {

int i=get_global_id(2), j=get…(1), k=get…(0);

<< local variable declarations >>

<< arbitrary C-code with access to 

global memory >>

}

• Triply-nested loops hardwired as NDRange
– specified as 3 integer constants, i.e., the loop 

bounds (R0, R1, R2)
– 1 execution of kernel function is a work-item

work-item has private memory for local var’s
– 1 kernel execution is R0×R1×R2 work-items
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Example: N-by-N MMM
__kernel mmm(__global float *A, … *B, … *C) {

int i=get_global_id(1); 

int j=get_global_id(0);

for(int k=0; k<N; k++) 

C[i*N+j]=C[i*N+j]+A[i*N+k]*B[k*N+j]; 

} 

• NDRange=(N, N, 1)
– kernel function executed by NxNx1 work-items 
– each work-item sees a different combination of 

dimension-0 and dimension-1 global id’s
– no assumption about work-items’ relative progress
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(For Your Reference: N-by-N MMM in C)
float A[N][N], B[N][N], C[N][N];

for(int i=0; i<N; i++) 

for(int j=0; j<N; j++) { 

for(int k=0; k<N; k++)

C[i][j]=C[i][j]+A[i][k]*B[k][j]

} 

• Note:
– Loop body of the inner-most loop is not data-

parallel---dependency through C[i][j]
– Loop body of the second inner-most loop is



18-643-F23-L9-S12, James C. Hoe, CMU/ECE/CALCM, ©2023

To See a Not-Toy MMM in OpenCL

• Visit:

• Might want to wait until after memory lectures

https://www.intel.com/content/www/us/en/sup
port/programmable/support-resources/design-
examples/horizontal/matrix-multiplication.html
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• Partition NDRange of R0×R1×R2 work-items into 
3D work-groups of G0×G1×G2 work-items
– G0/1/2 must divide R0/1/2 evenly
– get_local_id(dim): id within group
– get_group_id(dim): id of group

• Work-group signifies “locality” btw work-items 
– execute together by a processing element
– can share per-group local memory
– can synchronize by barrier()

Why do we have this?

Work-Group

NDRange=(9, 3, 6)
Group Size=(3, 3, 3)

Group Range=(3,1,2)
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OpenCL Kernels on GPGPUs
• Work-item is a CUDA thread
• Work-group executes as a thread block---broken 

down into 32-work-item SIMD Warps
• Work-groups from same and different kernels are 

interleaved on a Streaming Processor
128-SIMD lanes, 1 INT+1 FMA per lane, 1.73GHz

• 1 kernel could fully consume all 20 StrmProc’s (as 
1 compute device), peak 8,873 GFLOPS

• Global=GDDR; local=shared memory 96KB SRAM; 
private=register file 256KB SRAM
Nvidia terms in italic-bold; numbers for GTX 1080
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To fully utilize the 8,873 GFLOPS . . . 

• # work-items ≥ 128 x StrmProc pipeline depth x 20
• Computation entirely of Fused-Multiply-Add insts

Interleaved warps so no RAW stalls within a thread
• No if-then-else (branch divergence)
By the way:
• 320 GB/sec DRAM BW  AI > 108 SP FP / float
• ld’s and st’s take up inst. issue BW off-the-top
• only certain access pattern can sustain peak BW

– SIMD ld’s and st’s in a warp must go to the same 
memory line (memory coalescing)
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Intel OpenCL for FPGA
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OpenCL FPGA Platform Model
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Example: N-by-N MM“Add”
__kernel mma(__global float *A, … *B, … *C) {

int i=get_global_id(1); 

int j=get_global_id(0);

C[i*N+j]=A[i*N+j]+B[i*N+j]; 

} 

• NDRange=(N, N, 1)
• Note in this example:

– data-parallel kernel function
– no loop in kernel function
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Fully-pipelined Kernel Datapath

load

NDRange = (N,N,1)
(gid0,gid1) stream =(0,1),…(0,N-1),(1,0)…(1,N-1)……(N-1,0)…(N-1,N-1)

addr
calc

gid0

load

addr
calc

gid1

add

&B[i*N+j]&A[i*N+j]

A B

addr
calc

C

store

&C[i*N+j]

A[i*N+j] B[i*N+j]

fully unrolled loop in kernel fxn also okay
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What about MMM?
__kernel mmm(__global float *A, … *B, … *C) {

int i=get_global_id(1); 

int j=get_global_id(0);

for(int k=0; k<N; k++) 

C[i*N+j]=C[i*N+j]+A[i*N+k]*B[k*N+j]; 

} 

• NDRange=(N, N, 1)
• Can’t easily pipeline work-items like before
• PE can unroll and pipelines the k iterations

– dependency on C[i*N+j]
– kernel function scope limits the tricks we can play
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Single Work-Item Kernel: 
clEnqueueTask( )

__kernel mmm(__global float *A, … *B, … *C) {

for(int i=0; i<N; i++) 

for(int j=0; j<N; j++) 

for(in k=0; k<N; k++)

C[i*N+j]=C[i*N+j]+A[i*N+k]*B[k*N+j]

• NDRange=(1, 1, 1) never do this on GPU!!
• Arbitrary control flow (loops, if’s) and dependencies
• Becomes just “regular” C-to-HW synthesis

– pipeline and parallelize loops 
– schedule for initiation-interval, resource, etc.

Only want OpenCL’s platform model and API; 
“work-group” & “work-item” not too meaningful 
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global
mem

(DRAM)
taskCtaskB

Use of Kernel-Kernel Channels
• GPU multi-kernel OpenCL program

– kernel computes from global-mem to global-mem 
– next kernel continues from last kernel’s output buf
– producer and consumer kernels fully serialized

• For streaming processing on FPGA, connect kernels 
with streaming channels to bypass DRAM
– concurrent producer and consumer kernels
– reduce DRAM and PCIe bandwidth requirements

global
mem

(DRAM)
taskA hostchnl storeload chnl PCIehost PCIe

Different programming mindset from GPU
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Program-to-HW, not Function-to-IP
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Object of design/optimization is the entire FPGA system



18-643-F23-L9-S24, James C. Hoe, CMU/ECE/CALCM, ©2023

Performance-Geared Synthesis
• Automatic pipelining and unrolling

– no pipeline directive, but disable_loop_pipelining 
so you still have control

– unroll factor controls extent of unrolling

• Local Memory (BRAM) Optimizations
– if you don’t say anything, AOC does it’s best
– banks, replicates, private copies and interconnect

he
ig

ht

byte/cycle = width  ports

local memory 
bank 0
replicate 0 replicate 1

bank 1
replicate 0 replicate 1
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Global Memory (DRAM) Optimizations

• Load-Store Units
– automatically chosen based on access pattern

• Constant cache memory
• DDR banking automatically handled

Random AccessSequential

PipelinedPrefetchingArea Efficient

Burst-Coalesced 
Cached (loads only)Burst-CoalescedArea Expensive
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Parting Thoughts

• OpenCL = platform model/API + SIMD language
– kernel language forces regular and explicit parallelism
– SIMD parallelism different on GPUs vs FPGAs

GPUs great at SIMD; FPGAs good for more than SIMD
• FPGA OpenCL = platform model/API + “smart” 

memory system + “regular” kernel HLS
– single-work-item kernel unlocks parallelism style
– kernel-kernel channels alleviate DRAM and PCIe 

bottleneck for streaming use cases
– develop/debug/analysis tools integral to appeal

• Same tool for HPC and SDSoC, but used differently


