
18-643-F23-L07-S1, James C. Hoe, CMU/ECE/CALCM, ©2023

18-643 Lecture 7:
C-to-HW Synthesis:

James C. Hoe
Department of ECE

Carnegie Mellon University

18-643-F23-L07-S2, James C. Hoe, CMU/ECE/CALCM, ©2023

Housekeeping

• Your goal today: develop a mental model for how
to turn “proper” C into “proper” HW, whether by
a compiler or by hand

• Notices
– Handout #4: lab 1, due noon, 9/25
– Project status report due each Friday

• Readings (see lecture schedule online)
– for perspective: “The challenges of hardware

synthesis from C-like languages,” Edwards, 2005.
– for textbook treatment: Ch 7, Reconfigurable

Computing

18-643-F23-L07-S3, James C. Hoe, CMU/ECE/CALCM, ©2023

C as Model of Computation for HW?
• Common arguments for using C to design HW

– easy algorithm specification
– popularity, popularity, popularity

• A large semantic gap to bridge
– sequential thread of control
– abstract time
– abstract I/O model
– missing structural notions: bit width, ports, modules
– reactive excution

• No problem getting HW from C, but good HW?

All sequential, imperative languages

18-643-F23-L07-S4, James C. Hoe, CMU/ECE/CALCM, ©2023

A Program is a Functional-Level Spec
int fibr(int n) {
if (n==0) return 0;
if (n==1) return 1;

return fibr(n-1)+fibr(n-2);
}

fibn

fibn-1 fibn-2

fibn-2 fibn-3 fibn-3 fibn-4

18-643-F23-L07-S5, James C. Hoe, CMU/ECE/CALCM, ©2023

A Program is a Functional-Level Spec
int fibm(int n) {
int *array,*ptr; int i;

if (n==0) return 0;
if (n==1) return 1;

array=malloc(sizeof(int)*(n+1));
array[0]=0; array[1]=1;

for(i=2,ptr=array ; i<=n ; i++,ptr++)
(ptr+2)=(ptr+1)+*ptr;

i=array[n];
free(array);
return i;

}

18-643-F23-L07-S6, James C. Hoe, CMU/ECE/CALCM, ©2023

A Program is a Functional-Level Spec
int fibi(int n) {
int last=1; int lastlast=0; int temp;

if (n==0) return 0;
if (n==1) return 1;

for(;n>1;n--) {
temp=last+lastlast;
lastlast=last;
last=temp;

}

return temp;
}

18-643-F23-L07-S7, James C. Hoe, CMU/ECE/CALCM, ©2023

Opening Questions

• Do they all compute the same “function”?

• Should they all lead to the same hardware?

• Should they all lead to “good” hardware?
– what does recursion look like in hardware?
– what does malloc look like in hardware?

18-643-F23-L07-S8, James C. Hoe, CMU/ECE/CALCM, ©2023

What is in a C Function?
• What it specifies?

– abstracted data types (e.g., int, floats, doubles)
– operators and step-by-step procedure to compute

the return value from input arguments
– a sequential execution

• What it doesn’t specify?
– encoding of the variables
– where the state variables are stored
– what types and how many functional units to use
– execution timing, neither in terms of wall-clock

time, clock cycles, or instruction count
– what is strictly necessary for correctness

18-643-F23-L07-S9, James C. Hoe, CMU/ECE/CALCM, ©2023

Mapping Program to Hardware

• For you to produce “good” structural RTL
– identify suitable “temporal and spatial pattern”
– flesh out concrete datapath (bit/cycle exact)
– develop correct and efficient control sequencing

• C-to-HW (i.e., C-to-RTL) compiler bridges the gap
between functionality and implementation
– extract parallelism from a sequential specification
– fill in the details below the functional abstraction
– make good decisions when filling in the details

Keep in mind: what you don’t need to
specify you also can’t control

18-643-F23-L07-S10, James C. Hoe, CMU/ECE/CALCM, ©2023

A Look at Scheduling and Allocation

18-643-F23-L07-S11, James C. Hoe, CMU/ECE/CALCM, ©2023

Procedural Block to Data Flow Graph
{
x = b;
if (y)
x = x + a;

}

+

x1 a

{
x1 = b;

x2 = x1 + a;

x = y ? x2 : x1
}

b

x

static elaboration to
single-assignment

y

x2

{
x1 = b;

if (y)
x2 = x1 + a;

else
x2 = x1

x = x2
}

here x
is state

18-643-F23-L07-S12, James C. Hoe, CMU/ECE/CALCM, ©2023

Data Flow Graph
• Captures data dependence irrespective

of program order
– nodes=operator
– edge=data flow

• “Work” is total delay if done sequentially
– e.g., if delay(+)=1, delay(*)=2, work = 6

• “Critical path” is the longest path from
input to output
– e.g., critical path delay = 4
– no implementation can complete faster

than critical path delay

Combinational or sequential??

+ *

+ +

+

a b

z

v w

x y

v = a + b;
w = b * c;
x = v + c;
y = v + w;
z = x + y;

c

18-643-F23-L07-S13, James C. Hoe, CMU/ECE/CALCM, ©2023

Program-Order, Sequential Mapping

• Need only one of each functional unit
type: 1 adder, 1 multiplier

• Delay equal “work”: 6

In contrast, if combinational
– 4 adder, 1 multiplier
– delay=4

Is there a shorter schedule for
1 adder and 1 multiplier?

+

*

+

+

+

a b

z

c

18-643-F23-L07-S14, James C. Hoe, CMU/ECE/CALCM, ©2023

Optimized Sequential Mapping

• In general,
– given a set of functional units, what is

the shortest schedule
– given a schedule, what is the

minimum set of functional units
– given a target delay (>= critical path),

find a min-cost schedule

• Very efficient algorithms exist for
solving the above

• Harder part is setting the right goal
– minimum delay could be expensive
– minimum resource could be slow

+
*

+

+

+

a b

z

c

delay=4 using 1 adder
and 1 multiplier

18-643-F23-L07-S15, James C. Hoe, CMU/ECE/CALCM, ©2023

Generating Datapath

r1 r2 r3

+ *

sel7 sel8

`

sel5 sel6

sel3sel1 sel2

How do I know 3 registers are needed?

en1 en2 en3

18-643-F23-L07-S16, James C. Hoe, CMU/ECE/CALCM, ©2023

Control FSM

+
*

+

+

+

a b

z

c

r1 r2 r3 add mult

sel1 en1 sel2 en2 sel3 en3 sel5 sel6 sel7 sel8

add 1 - 0 - 0 r1 r2 r2 r3

- 0 add 1 mul 1 r1 r3 r2 r3

add 1 - 0 - - r1 r3 - -

add 1 - - - - r2 r1 - -

+ *

sel7 sel8

`

sel5 sel6

r1
sel1

en1 r2
sel2

en2 r3
sel3

en3

• Assume initially a in r1; b in r2; c in r3

18-643-F23-L07-S17, James C. Hoe, CMU/ECE/CALCM, ©2023

It should remind you of this

clock

inputs outputs

FSM datapath

18-643-F23-L07-S18, James C. Hoe, CMU/ECE/CALCM, ©2023

Good Hardware Needs Concurrency

18-643-F23-L07-S19, James C. Hoe, CMU/ECE/CALCM, ©2023

Where to Find Parallelism in C?

• C-program has a sequential reading
• Scheduling exploits operation-level parallelism in

a basic block ( work/critical-path-delay)
– “ILP” is dependent on scope
– techniques exist to enlarge basic blocks and to

increase operation-level parallelisms: loop-
unrolling, loop pipelining, superblock, trace
scheduling, etc.
Many ideas first developed for VLIW compilation

• Structured parallelism can be found across loop
iterations, e.g., data parallel loops

18-643-F23-L07-S20, James C. Hoe, CMU/ECE/CALCM, ©2023

Loop Unrolling
for(i=0;i<N;i++)
{
v = a[i]+b[i];
w = b[i]*c[i];

x = v+c[i];
y = v+w;

z[i] = x+y;
}

for(i=0;i<N;i+=2)
{
v = a[i]+b[i];
w = b[i]*c[i];

x = v+c[i];
y = v+w;

z[i] = x+y;

v_ = a[i+1]+b[i+1];
w_ = b[i+1]*c[i+1];

x_ = v’+c[i+1];
y_ = v_+w_;

z[i+1] = x_+y_;
}

+ *

+ +

+

z[i]

a[
i]

b[
i]

c[
i]

+ *

+ +

+

z[i+1]

v

b[
i+

1]
c[

i+
1]

a[
i+

1]

data-parallel
iterations

work=?? critical path=??

18-643-F23-L07-S21, James C. Hoe, CMU/ECE/CALCM, ©2023

Loop Pipelining

for(i=0;i<N;i++)
{
v = a[i]+b[i];
w = b[i]*c[i];

x = v+c[i];
y = v+w;

z[i] = x+y;
}

+1
v = a[0]+b[0];
w = b[0]*c[0];

for(i=1;i<N;i++)
{
v’= v; w’= w;
v = a[i]+b[i];
w = b[i]*c[i];

x = v’+c[i-1];
y = v’+w’;

z[i-1] = x+y;
}

x = v+c[i-1];
y = v+w;
z[i-1] = x+y;

v = a[0]+b[0];
w = b[0]*c[0];
x = v+c[0];
y = v+w;

v = a[1]+b[1];
w = b[1]*c[1];

for(i=2;i<N;i++)
{
v’= v; w’= w;
x’= x; y’= y;

v = a[i]+b[i];
w = b[i]*c[i];

x = v’+c[i-1];
y = v’+w’;

z[i-2]= x’+y’;
}
z[i-2] = x+y;
x = v’+c[i-1];
y = v’+w’;
z[i-1] = x+y;

+1

18-643-F23-L07-S22, James C. Hoe, CMU/ECE/CALCM, ©2023

Pipelined Loop

• In SW, loop pipelining increases
producer-consumer distance

• In HW, work on parts of 3 different
iterations in same cycle

+ * + + +

a[i] b[i] c[i] v' c[i-1] w’

z[i-2]v w x y

x’ y’
for(i=2;i<N;i++) {
v’= v; w’= w;
x’= x; y’= y;

v = a[i]+b[i];
w = b[i]*c[i];

x = v’+c[i-1];
y = v’+w’;

z[i-2]= x’+y’;
}

work=?? critical path=??

18-643-F23-L07-S23, James C. Hoe, CMU/ECE/CALCM, ©2023

Pipelined Loop

+ *

+ +

+

a[i] b[i]

z[i-2]

c[i]
for(i=2;i<N;i++) {
v’= v; w’= w;
x’= x; y’= y;

v = a[i]+b[i];
w = b[i]*c[i];

x = v’+c[i-1];
y = v’+w’;

z[i-2]= x’+y’;
}

v' w'

x' y'

c[i-1]

• In SW, loop pipelining increases
producer-consumer distance

• In HW, work on parts of 3 different
iterations in same cycle This looks more familiar?

18-643-F23-L07-S24, James C. Hoe, CMU/ECE/CALCM, ©2023

How Hard is MMM?

float A[N][N], B[N][N], C[N][N];

for(int i=0; i<N; i++) {

for(int j=0; j<N; j++) {

for(in k=0; k<N; k++) {

C[i][j]=C[i][j]+A[i][k]*B[k][j];

}

}

}

- T1, T∞, Pavg=T1/T∞?
- # of memory access?
- T1 / # of memory access?

18-643-F23-L07-S25, James C. Hoe, CMU/ECE/CALCM, ©2023

What is all not said in the code?

18-643-F23-L07-S26, James C. Hoe, CMU/ECE/CALCM, ©2023

A Look at dependency & memory access
for(i=0; i<N; i++)
for(j=0; j<N; j++)

for(k=0; k<N; k++)
C[i][j] += A[i][k]*B[k][j]

inner
in

ne
r

innermiddle
middle

ou
te

r

ou
te

r

A B C

(1) Assume row-major layout and large 2-power N
(2) 64-Byte DRAM interface and 8-KByte row buffer

18-643-F23-L07-S27, James C. Hoe, CMU/ECE/CALCM, ©2023

Loop Reordering
for(k=0; k<N; k++)
for(i=0; i<N; i++)

for(j=0; j<N; j++)
C[i][j] += A[i][k]*B[k][j]

inner

m
id

dl
e

inner

ou
te

r

B C
inner

outer

m
id

dl
e A

Data-parallel over the i and j loops

18-643-F23-L07-S28, James C. Hoe, CMU/ECE/CALCM, ©2023

Loop Reordering Affects Parallelism

for(i=…

for(j=…

for(k=…

C[i][j]+=f(i,j,k)

What about
strided b access?

for(i=…

for(j=…

C[i][j]+=f(i,j,0)+f(i,j,1)

... +f(i,j,k-1)

unrolled k and pipeline j

+

for(k=…

for(i=…

for(j=…

C[i][j]+=f(i,j,k)

pipelined j-loop

+ c[i][j]c[i][j]
b[k][j]
a[i][k]

b[0][j]
a[i][0]

+

b[1][j]
a[i][1]

+

b[k-1][j]
a[i][k-1]

O(N3) memory
access necessary?

18-643-F23-L07-S29, James C. Hoe, CMU/ECE/CALCM, ©2023

Memory not Monolithic Abstraction
• Control memory organization to match access

pattern

bank 0wdata_0
addr_0

we_0
rdata_0

width
height

bank 1wdata_1
addr_1

we_1
rdata_1

bank *wdata_*
addr_*

we_*
rdata_*

18-643-F23-L07-S30, James C. Hoe, CMU/ECE/CALCM, ©2023

• An array of N words; index is lg2N bits

• N-word total storage
– divided into B banks; bank number is lg2B bits
– each bank is W-word wide; word-select is lg2W bits
– line index within bank is lg2(N/B/W) bits

• Assign bank #, word select and index to maximize
– spatial locality

in word select
– “entropy” in bank #

Control over Data Layout

bank # line

lg2N array index (sequential)

lg2N/B/Wlg2B

word sel

lg2W

word sel bank #line

In general interleaved & reordered

18-643-F23-L07-S31, James C. Hoe, CMU/ECE/CALCM, ©2023

Example: Image Frame

• N pixels in N-by- N frame

• Spatial locality in W-by- W tiles
• Parallelism across different-row tiles

N

0 . N0.5-1
N0.5 2N0.5-1
2N0.5 3N0.5-1

. N

bank #

line

lg2N pixel index

lg2N/B/Wlg2B

word sel

lg2W

w.s.w.s.

bank #

(lg2N)/2

(lg2W)/2(lg2W)/2

Can you tell the
compiler (through C)

this is what you want?lg2B



W

. . . . i N+j
(row-major)

vs.

18-643-F23-L07-S32, James C. Hoe, CMU/ECE/CALCM, ©2023

A Small Concrete Example: N=16, W=4

p0000 p0001 p0010 p0011

p0100 p0101 p0110 p0111

p1000 p1001 p1010 p1011

p1100 p1101 p1110 p1111

T00

T11

T01

T10

bank 0
width=4 pixels

height=2

bank 1

x

y {p10y0,p10y1,
p11y0,p11y1}

{p00x0,p00x1,
p01x0,p01x1}

pixel idx = a3a2a1a0
col idx = a3a2a1a0

row idx = a3a2a1a0
tile idx = a3a2a1a0


word sel = a3a2a1a0

bank offset = a3a2a1a0
bank # = a3a2a1a0

whole frame
at a time

concurrent access
to different row
tiles

18-643-F23-L07-S33, James C. Hoe, CMU/ECE/CALCM, ©2023

Parting Thoughts
• C-to-HW compiler fills in details between algorithm

and implementation
• No magic—good HW only if it is in the program

– not every computation is right for HW so not
every C-program is right for HW

– even for right ones, how the C is written matters
• C-to-HW technology is very real today

– work very well on some domain or applications
– has blindspots; need human-in-the-loop pragmas

Useful in different ways to an expert HW designer vs.
a so-so HW designer vs. a SW programmer

