Carnegie Mellon

18-643 Lecture 7:
C-to-HW Synthesis:

James C. Hoe
Department of ECE
Carnegie Mellon University

18-643-F23-L07-S1, James C. Hoe, CMU/ECE/CALCM, ©2023

Carnegie Mellon

Housekeeping

e Your goal today: develop a mental model for how

to turn “proper” Cinto “proper” HW, whether by
a compiler or by hand

e Notices

— Handout #4: lab 1, due noon, 9/25

— Project status report due each Friday
e Readings (see lecture schedule online)

— for perspective: “The challenges of hardware
synthesis from C-like languages,” Edwards, 2005.

— for textbook treatment: Ch 7, Reconfigurable
Computing

18-643-F23-L07-S2, James C. Hoe, CMU/ECE/CALCM, ©2023

Carnegie Mellon

C as Model of Computation for HW?

e Common arguments for using C to design HW
— easy algorithm specification
— popularity, popularity, popularity
e A large semantic gap to bridge
— sequential thread of control
— abstract time
— abstract I/0 model
— missing structural notions: bit width, ports, modules
— reactive excution

e No problem getting HW from C, but good HW?

All sequential, imperative languages

18-643-F23-L07-S3, James C. Hoe, CMU/ECE/CALCM, ©2023

Carnegie Mellon

A Program is a Functional-Level Spec
int fibr(int n) {
if (n==0) return O;

if (n==1) return 1;

return fibr (n-1)+£fibr (n-2);
}

18-643-F23-L07-S4, James C. Hoe, CMU/ECE/CALCM, ©2023

Carnegie Mellon

A Program is a Functional-Level Spec

int fibm(int n) {
int *array, *ptr; int 1i;

if (n==0) return O;
if (n==1) return 1;

array=malloc (sizeof (int) * (n+l1)) ;
array[0]=0; array[l]=1;

for (i=2 ,ptr=array ; i<=n ; i++,ptr++)
* (ptr+2)=* (ptr+l) +*ptr;

i=array|[n];
free (array) ;
return 1i;

}

18-643-F23-L07-S5, James C. Hoe, CMU/ECE/CALCM, ©2023

Carnegie Mellon

A Program is a Functional-Level Spec

int fibi(int n) {
int last=1l; int lastlast=0; int temp;

if (n==0) return O;
if (n==1) return 1;

for(;n>1;n--) {
temp=last+lastlast;
lastlast=last;
last=temp;

}

return temp;

}

18-643-F23-L07-S6, James C. Hoe, CMU/ECE/CALCM, ©2023

Carnegie Mellon

Opening Questions

e Do they all compute the same “function”?
e Should they all lead to the same hardware?

e Should they all lead to “good” hardware?

— what does recursion look like in hardware?
— what doesmalloc look like in hardware?

18-643-F23-L07-S7, James C. Hoe, CMU/ECE/CALCM, ©2023

Carnegie Mellon

What is in a C Function?
e What it specifies?
— abstracted data types (e.g., int, floats, doubles)

— operators and step-by-step procedure to compute
the return value from input arguments

— a sequential execution
e What it doesn’t specify?
— encoding of the variables
— where the state variables are stored
— what types and how many functional units to use

— execution timing, neither in terms of wall-clock
time, clock cycles, or instruction count

— what is strictly necessary for correctness

18-643-F23-L07-S8, James C. Hoe, CMU/ECE/CALCM, ©2023

Carnegie Mellon

Mapping Program to Hardware

e For you to produce “good” structural RTL
— identify suitable “temporal and spatial pattern”
— flesh out concrete datapath (bit/cycle exact)
— develop correct and efficient control sequencing
e C-to-HW (i.e., C-to-RTL) compiler bridges the gap
between functionality and implementation
— extract parallelism from a sequential specification
— fill in the details below the functional abstraction
— make good decisions when filling in the details

Keep in mind: what you don’t need to
specify you also can’t control

18-643-F23-L07-S9, James C. Hoe, CMU/ECE/CALCM, ©2023

Carnegie Mellon

A Look at Scheduling and Allocation

18-643-F23-L07-S10, James C. Hoe, CMU/ECE/CALCM, ©2023

Carnegie Mellon

Procedural Block to Data Flow Graph
{

X = b;
if (y)
= + a; _ ..
X P14 x, = b;

}
y b \ if (y)

X, = x; + a;
else

here x
is state

< X,
static elaboration to
single-assignment
X

18-643-F23-L07-S11, James C. Hoe, CMU/ECE/CALCM, ©2023

Carnegie Mellon

Data Flow Graph

v =a + b;

e Captures data dependence irrespective |W = b * c;
of program order X =v +c
wee 'y = v + w;

— nodes=operator © ootz = x + y;

— edge=data flow

e “Work” is total delay if done sequentially
— e.g., if delay(+)=1, delay(*)=2, work = 6

e “Critical path” is the longest path from
input to output
— e.g., critical path delay =4

— no implementation can complete faster
than critical path delay

Combinational or sequential??

18-643-F23-L07-S12, James C. Hoe, CMU/ECE/CALCM, ©2023

Carnegie Mellon

Program-Order, Sequential Mapping
b ¢

e Need only one of each functional unit
type: 1 adder, 1 multiplier

e Delay equal “work”: 6

In contrast, if combinational
— 4 adder, 1 multiplier
— delay=4

Is there a shorter schedule for
1 adder and 1 multiplier?

18-643-F23-L07-S13, James C. Hoe, CMU/ECE/CALCM, ©2023

d

CarnegieMellon

Optimized Sequential Mapping

e |n general,

— given a set of functional units, what is
the shortest schedule

— given a schedule, what is the
minimum set of functional units

— given a target delay (>= critical path),
find a min-cost schedule
e Very efficient algorithms exist for
solving the above

e Harder part is setting the right goal delay=4 using 1 adder
— minimum delay could be expensive and 1 multiplier
— minimum resource could be slow

18-643-F23-L07-S14, James C. Hoe, CMU/ECE/CALCM, ©2023

Carnegie Mellon

Generating Datapath

l v v ¥ v v
sell A\T/ sel2 A\T/ sel3 W

> rl |« en1 > r2 |« en? > r3 |« en3

\VV VY V Vv V Vv V
sel5 5\1/ \‘If sel6 sel?7 sel8
)

18-643-F23-L07-S15, James C. Hoe, CMU/ECE/CALCM, ©2023

How do | know 3 registers are needed?

CarnegieMellon

Control FSM
sell w sel2 w sel3 W

>rl - enl Pr2 |- en2 >r3 |- en3

sel5 A_r_/tslf sel6 sel7 _@f sel8

e Assume initiallyainrl;binr2;cinr3

B T T

ERE A E E e e

add 1 r2 r3
- 0 add 1 mul 1 rl r3 r2 r3
add 1 - 0 - - rl r3 - -

add 1 - - - - r2 rl - -

18-643-F23-L07-S16, James C. Hoe, CMU/ECE/CALCM, ©2023

Carnegie Mellon

It should remind you of this

————————————————————————

clock

18-643-F23-L07-S17, James C. Hoe, CMU/ECE/CALCM, ©2023

Carnegie Mellon

Good Hardware Needs Concurrency

18-643-F23-L07-518, James C. Hoe, CMU/ECE/CALCM, ©2023

Carnegie Mellon

» Where to Find Parallelism in C?

e C-program has a sequential reading

e Scheduling exploits operation-level parallelism in
a basic block (=~ work/critical-path-delay)
— “ILP” is dependent on scope

— techniques exist to enlarge basic blocks and to
increase operation-level parallelisms: loop-
unrolling, loop pipelining, superblock, trace
scheduling, etc.

Many ideas first developed for VLIW compilation

e Structured parallelism can be found across loop
iterations, e.q., data parallel loops

18-643-F23-L07-S19, James C. Hoe, CMU/ECE/CALCM, ©2023

Carnegie Mellon

Loop Unrolling

for (1=0;i<N;i++) for (1=0;i<N;i+=2)

{ { = 55g oo
v = a[i]+b[i]; v = a[i]+b[i]; m = © T x ‘;
w = b[i]*c[i]; w = b[i]l*c[i]; T =90
x = vitc[i]; x = vtc[i]; 4
y = viw; y = vtw; e °
z[i] = x+y; z[1] = x+y;
) ™

v_ = a[i+l]+b[i+1]; o o

data-parallel w_ = bli+ll*el[i+l];
iterations x = v/ +c[i+l];
y = V_}w_; ‘,
z[i]

z[i+l] = x +y ;
} z[i+1]

work=?? critical path=7??

18-643-F23-L07-S20, James C. Hoe, CMU/ECE/CALCM, ©2023

Carnegie Mellon

v = a[0]+b[0];
° ° ° w = b[O]*C[O];
Loop Pipelining x = v+cror;
Yy = viw;
v = a[0]+b[0]; v = a[l]+b[1];
1 w = b[0]*c[O0]; +1 w = b[l]*c[l];
for (1i=0;i<N;i++) for(i=1;i<N;i++) for (i=2;i<N;i++)
{ { {
v = a[i]+b[i]; vi=v; w=w; vi=v; w=w;
w = b[i]*c[i]; v = a[i]+b[i]; x'=x; y'=vy;
- w = Db[i]*c[1];
x = v+c[i]; v = a[i]+b[i];
y = viw; L x = v/ +c[1-1]; w = b[i]*c[i];
y = vi+w’;
z[i] = x+y; X = v/ +c[i-1];
} = z[1i-1] = x+y; i[y = v+w’;
}
l' z[1-2]= x"+y’;
x = v+c[i-1]; }
y = viw; z[1-2] = x+y;
z[i-1] = x+y; x = v/ +c[i-1];

y = vi+w’;
z[i-1] = x+y;

18-643-F23-L07-S21, James C. Hoe, CMU/ECE/CALCM, ©2023

Carnegie Mellon

Pipelined Loop

for (i=2;i<N;i++) { // N// v TN/ Y\/
vi=v; w=w;, ai] bli] c[i], i
x'=x; y'=y; I
v = a[1]+b[1];
w = Db[i]*c[1];

v +c[1i-1];
v +w’ ;

X
y

z[i-2]= x'+y’;
}
* InSW, loop pipelining increases
producer-consumer distance
* In HW, work on parts of 3 different
iterations in same cycle

18-643-F23-L07-S22, James C. Hoe, CMU/ECE/CALCM, ©2023

work=?? critical path=7??

Carnegie Mellon

Pipelined Loop

ali] bli] c[i]

for (i=2;i<N;i++) {
vi=v; w= w;
X'=xX; Y=Y/

a[i]+b[1];
b[i]*c[1];]

0o
I
\'%4
\%
L
I
\'%4
I

v
W

v/ +c[i-1]; cli-1]
v +w’ ; + +

X
y

z[i-2]= x'"+y’;
} X' y
* InSW, loop pipelining increases +
producer-consumer distance
* In HW, work on parts of 3 different z[i-2]
iterations in same cycle

18-643-F23-L07-S23, James C. Hoe, CMU/ECE/CALCM, ©2023

This looks more familiar?

How Hard is MMM?

float A[N] [N], B[N][N], C[N][N];

for(int i1=0; i<N; i++) {
for (int j=0; J<N; J++) {
for(in k=0; k<N; k++) {
C[il[3j1=C[i] [J1+A[i] [k]*B[k][3];

- T1) Teor Paue=T1 Tea?
- # of memory access?
- T,/ # of memory access?

18-643-F23-L07-S24, James C. Hoe, CMU/ECE/CALCM, ©2023

Carnegie Mellon

What is all not said in the code?

18-643-F23-L07-S25, James C. Hoe, CMU/ECE/CALCM, ©2023

Carnegie Mellon

A Look at dependency & memory access

for (1=0; i<N; i++)
for (jJ=0; Jj<N; J++)
for (k=0; k<N; k++)
Cl[i][J] += A[1][k]*B[k][]]

S 8! iddle
¥ inner_ middle _ Pjnper T
N > G0
. g @ .
’”%A/\' 2§18 g C
o
v
5
O

(1) Assume row-major layout and large 2-power N
(2) 64-Byte DRAM interface and 8-KByte row buffer

18-643-F23-L07-S26, James C. Hoe, CMU/ECE/CALCM, ©2023

Carnegie Mellon

Loop Reordering

for (k=0; k<N; k++)
for (1=0; i<N; i++)
for (jJj=0; Jj<N; J++)
C[1][J] += A[1i][k]*B[k][]]

outer : _ ,
inneE;:_\] inner . inner
w O =
et > S O
S A Middle 3 C
S
<
x2
N

Data-parallel over the i and j loops

18-643-F23-L07-S27, James C. Hoe, CMU/ECE/CALCM, ©2023

Carnegie Mellon

Loop Reordering Affects Parallelism

O(N3) memory e | pipelined j-loop
access necessary? for (i=.. Z [[E][E]] @
for (i=... * for (j=.. c[illi] ()~ clillj]
for (J=.. C[i]l[j]1+=£(i, T, k)
for (k=..
C[i][j1+=£(i,]F, k) unrolled k and pipeline j

ali][0]— ali][1]— ali][k-1]—
b[0][j] 7} bI1][jl7} blk-1]jl7

for (i=.. [{@E] [@E]” il

for (j=.. I_f‘@ _Q_.

What about C[i][j]1+=£(i,3,0)+£(i,]3,1)
strided b access? .. +£(i,5,k-1)

18-643-F23-L07-528, James C. Hoe, CMU/ECE/CALCI..,

Memory not Monolithic Abstraction

Carnegie Mellon

e Control memory organization to match access

pattern _
height

addr_O —— bank O

width

7“> rdata_O

addr_l —— bank 1

addr_* %] bank”

18-643-F23-L07-S29, James C. Hoe, CMU/ECE/CALCM, ©2023

Control over Data Layout

e An array of N words; index is Ig,N bits
Ig,N array igolex (sequential)

bank # line word sel

1g,N/ B7W TgZWJ
— divided into B banks; bank number is Ig,B bits

7 o

e N-word total storage lg,B~

— each bank is W-word wide; word-select is Ig, W bits
— line index within bank is Ig,(N/B/W) bits
e Assign bank #, word select and index to maximize

— spatial localit
P Y line word sel bank #

in word select

— “entropy” in bank #

In general interleaved & reordered

18-643-F23-L07-S30, James C. Hoe, CMU/ECE/CALCM, ©2023

Carnegie Mellon

VN
Example: Image Frame - o ~
AW

e N pixelsin \/N-by-\/ﬁ frame O ..o oo NO->-1
NOS b 2NO5-1
e Spatial locality in vVW-by-v/W tiles ONOS b 3NOS-1

e Parallelism across different-row tiles

Ig,N pixel index o WNH L
— —- ~ (row-major)
bank # line word sel
8,8~ Clg,N/B/W TlgW | N
VS.
(Ig,W)/2 (Ig,W)/2
—

bank # W.S. W.S. Can you tell the
— < — > compiler (through C)
52 (lg;N)/2 this is what you want?

18-643-F23-L07-S31, James C. Hoe, CMU/ECE/CALCM, ©2023

A Small Concrete Example: N=16, W=4

pixel idx = a;a,a,3, 700 01 N
col idx = a,a, p0000 | p0001 | p0010 | p0011
row idx = a5a,
tileidx=a; a, p0100 | p0101 | p0110 | p0111
word sel= a, a, %10 11 <
bank offset = a, p1000 | p1001 | p1010 | p1011
bank # = a;

heiahie? p1100 | p1101 | p1110 | p1111
eight= _ /|
2 width=4 pixels

x = bank0 [{p00xo,p00x1i§ whole frame

p01x0,pQ1x1 at a time

concurrent access
to different row
tiles

y = bank1l = {p10y0,pl0y1,
p1lly0,pllyl}

18-643-F23-L07-S32, James C. Hoe, CMU/ECE/CALCM, ©2023

Carnegie Mellon

Parting Thoughts

e C-to-HW compiler fills in details between algorithm
and implementation

e No magic—good HW only if it is in the program

— not every computation is right for HW so not
every C-program is right for HW

— even for right ones, how the C is written matters
e C-to-HW technology is very real today

— work very well on some domain or applications
— has blindspots; need human-in-the-loop pragmas
Useful in different ways to an expert HW designer vs.

a so-so HW designer vs. a SW programmer

18-643-F23-L07-S33, James C. Hoe, CMU/ECE/CALCM, ©2023

