18-643 Lecture 6:
Good-for-HW Computation Models

James C. Hoe
Department of ECE
Carnegie Mellon University

18-643-F23-L06-S1, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Housekeeping

e Your goal today: see the temporal and spatial
patterns of compute and data access in classic
good-for-HW compute models

e Notices
— Handout #4: lab 1, due noon, 9/25
— Project status report due each Friday
e Readings (see lecture schedule online)
— Wikipedia is a good starting point

— for a textbook treatment see Ch 5 (+ Ch 8, 9, 10) of
Reconfigurable Computing by Hauck and Dehon

— for lab2, C. Zhang, et al., ISFPGA, 2015.

18-643-F23-L06-S2, James C. Hoe, CMU/ECE/CALCM, ©2023

wStructural RTL: Low Level/Full Detailed

e Designer in charge
— arbitrary control and datapath schemes

— precise control—when, what, where—at the bit
and cycle granularity

With great power comes great responsibility . . .
e RTL synthesis is quite literal
— little room for timing and structural optimizations

— faithful to both “necessary” and “artifacts”
always@ (posedge c)
if (a)
how to simplify o<=1;
else if (b)
o<=2;

e.g., if a and b mutually exclusive

18-643-F23-L06-S3, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

—>

FSM-D “Design Pattern” Ll BL]

—+>

. . . 5
e datapath = “organized” combinational logic and s

registers to carry out computation (puppet)

e FSM = “stylized” combinational logic and registers
for control and sequencing (puppeteer)

————————————————————————

clock

18-643-F23-L06-S4, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

ne Cooperating FSM-Ds

e Partitioning large design into manageable chunks
— natural decomposition by functionalities
— inherent concurrency and replications

e Correct decomposition leads to simpler parts but
coordination of the parts becomes the challenge

— synchronization: having two

FSM-Ds in the right state at % (@D
the right time

— communication: exchange

information between FSM-D
(requires synchronization)

18-643-F23-L06-S5, James C. Hoe, CMU/ECE/CALCM, ©2023

y Crux of RTL Design Difficulty

e \We design concurrent FSM-Ds separately

— liable to forget what one machine does when
focused on another

e No language support for coordination

— no explicit way to say how state transitions of two
FSMs (i.e., control) must be related

e Coordination hardcoded into design implicitly °
— leave little room for automatic optimization .
— hard to localize design changes Q °

— (unless decoupled using request/reply-style F
handshakes)

Lacks standard interfacing of SoC IP composition

18-643-F23-L06-S6, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

IP-Based Design

e Complexity wall

— designer productivity grows slower than Moore’s Law
on logic capacity

— diminishing return on scaling design team size
= must stop designing individual gates
e Decompose design as a connection of IPs
— each IP fits in a manageable design complexity
Bonus, IPs can be reused across projects

abstraction boundary

— |P integration fits in a manageable design complexity

18-643-F23-L06- ECE/CALCM, ©2023

Systematic Interconnect

e More IPs, more elaborate IPs = intractable to
design wires at bit- and cycle-granularity

e On-chip interconnect standards (e.g. AXI) with
address-mapped abstraction
— each target |Ps assigned an address range

— initiator |Ps issue read (or write) transactions to
pull (or push) data from (or to) addressed target IP

— physical realization abstracted from IPs
e Plug-and-play integration of interface-compatible

% What is High-Level?

e Abstract away detail/control from designer
— pro: need not spell out every detail
— con: cannot spell out every detail

e Missing details must be filled by someone
— implied in the abstraction, and/or
— filled in by the synthesis tool

e To be meaningful
— reduce work, and/or
— Improve outcome

In HW practice, low tolerance for
degraded outcome regardless of ease

18-643-F23-L06-S9, James C. Hoe, CMU/ECE/CALCM, ©2023

Good-for-HW Compute Model Examples

e Systolic Array

e Data Parallel

e Dataflow

e Stream Processing
e Commonalities

— reduce design complexity/effort

— supports scalable parallelism under simplified
global coordination (by imposing a “structure”)

— allows straightforward, efficient HW mapping
— BUT, doesn’t work for all problems

These models are not tied-to HW or SW

18-643-F23-L06-S10, James C. Hoe, CMU/ECE/CALCM, ©2023

Good compute models distilled
from good design patterns

e Both temporal and spatial patterns in
— computation
— synchronization
— data buffering
— data movement
What is allowed? uniformity? complexity?
hat makes it good fit with hardware?

nat makes it good fit with application?

= £ =

nat limits its generality?

18-643-F23-L06-S11, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Systolic Array

e An array of PEs (imagine each an FSM or FSM-D)

— strictly, PEs are identical; cannot know the size of
the array or position in the array

— could generalize to other structured topologies
e Scope of design is a PE
— do same thing in every position
— localized neighbor-only interactions
(no global signals or wires)
e Each PE in each round
— exchange bounded data with direct neighbors
— perform bounded compute on fixed local storage

18-643-F23-L06-S12, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

E.g. Matrix-Matrix Multiplication

a=nan;
b=nan;
accum=0;

For each pulse {
send-W(a) ; send-S(b);
a=rcv-E () ; b=rcv-N();
if (a'=nan)

accum=a*b+accum;

e Works forany n
e Only stores 3 vals per PE

e |f N>n, emulate at N2/n?
slowdown

18-643-F23-L06-S13, James C. Hoe, CMU/ECE/CALCM, ©2023

B,

col

t B,

0,0

nan

PE| |PE| [PE| 0 @ @

PE| |PE| [PE| 0@ @

PE| |PE| |PE| @@ @

PE| |PE| [PE| 0 @ @

PE

nxn

Does the last slide come to mind

when you see??

float A[N] [N], B[N][N], C[N][N];

for(int i1=0; i<N; i++) {
for (int j=0; IJ<N; J++) {
for(in k=0; k<N; k++) {
C[il[3j1=C[i] [J1+A[i] [k]*B[k][3];

18-643-F23-L06-S14, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Why systolic array good for HW?

e Parallel and scalable in nature

— can efficiently emulate key aspects of stream
processing and data-parallel

— easy to build corresponding HW on VLSI (especially
1D and 2D arrays)

e No global communication
e Scope of design/analysis/debug is 1 FSM-D
e Great when it works

— linear algebra, sorting, FFTs

— works more often than you think

— but clearly not a good fit for every problem

18-643-F23-L06-S15, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Data Parallelism

e Same work on disjoint sets of data—abundant in
linear algebra behind scientific/numerical apps

e Example: AXPY (from Level 1 Basic Linear Algebra
Subroutine)

for (1i=0; i<N; i++) {
Y = a*X+Y = o Y[i]=a*X[i]+Y[i]
}

—

— Y and X are vectors
— same operations repeated oneach Y[1i] and X[1i]

— iteration i does nottouch Y[9] and X[3j], i#]

How to exploit data parallelism in HW?

18-643-F23-L06-S16, James C. Hoe, CMU/ECE/CALCM, ©2023

Data Parallel Execution

for (i=0; i<N; i++) {

Cl[i]=foo(A[1], B[1i])

}

e |nstantiate k copies of the hardware unit foo to
process k iterations of the loop in parallel

‘ao‘al‘az‘a3‘a4‘a5‘a6‘a7‘

‘ bOl‘ b1

‘bz

‘b3

‘b4

‘bS

Hb6

.‘b7‘

CarnegieMellon

Pipelined Execution

for (i=0; i<N; i++) {
Cl[i]=foo(A[i], B[i])

e Build a deeply pipelined (high-frequency) version

of foo ()
............ a4l a3| a2| al| aOp—>
< [c4|c3|c2|cl|cO
............ b4| b3| b2| b1| bO—> \ ' J
\ o , available after many
consumed 1 element Y
concurrency cycles later, 1/cyc

per cycle

Pipelining also works best when repeating
identical and independent compute

18-643-F23-L06-518, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

E.g. SIMD Matrix-Vector Mult

// Each of the P threads is responsible for
// M/P rows of A; self is thread id
for (i=self*M/P;i< ((self+l) *M/P) ;i++) {

y[i]1=0; 'waﬁe““ ©
for (§=0;3<N;j++) { see™ ° " oa
y[1]+=A[1] [j]*x[j]*;S— ’t““eadto

) M /P TE
)

i owme [l ‘ ‘]
M - — M-_A .

\ - How to
: , structure memory
and array layout?

18-643-F23-L06-S19, James C. Hoe, CMU/ECE/CALCM, ©2023 N

CarnegieMellon

E.g. Vectorized Matrix-Vector Mult

Repeat for each row of A

LV V1, Rx ; load wvector x
no such LV V2, Ra ; load i’th row of A
. . MULV V3,V2,V1 ; element-wise mult
Instruction
—reduece”™TF0, V3 ; sum elements to scalar
allowed S.D Ry, FO ; store scalar result

(hint: is “reduce” data-parallel?
what is Il of MULV vs “reduce”?)

IVI" [M" A "N

18-643-F23-L06-S20, James C. Hoe, CMU/ECE/CALCM, ©2023 N

CarnegieMellon

Aside: Vector Chaining

............ c2|cl]cO
............ a2| al] a0~ ' Y /
RF write 1 elem/cyc
............ b2| bl| bOf—>
(|)
! \ J
RF read 1 elem/cyc i Ejine | > [e2[el e0
\)
|
............ d2| d1| do : . RF write 1 elem/cyc
. Vo
‘ ' pipeline

|
RF read 1 elem/cyc

Visualize true (long) vectors “flowing” through the
datapath as stream of elements, not as bulk objects

18-643-F23-L06-S21, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

E.g. Vectorized Matrix-Vector Mult

Repeat for each column of A

LVWS VO, (Ra,Rs) ;
L.D FO,Rx ;

MULVS.D V1,V0,FO0 ;
DAXPY ADDV.D Vy,Vy,Vl ;

load-strided i’th col of A
load i’th element of x
vector-scalar mult
element-wise add

Above is analogous (when/what/where) to the SIMD code

18-643-F23-L06-S22, James C. Hoe, CMU/ECE/CALCM, ©2023

Why is data-parallel good-for-HW?

e Simplest but highly restricted parallelism

e Open to mixed implementation interpretations
— SIMD parallelism +
— (deep) pipeline parallelism

e Great when it works

— important form of parallelism for scientific and
numerical computing

— but clearly not a good fit for every problem

18-643-F23-L06-S23, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Dataflow Graphs

e Consider a von Neumann program
— what is the significance of the program order?
— what is the significance of the storage locations?

d b

v :=a+b; |
w:=b*2; [figure and
X =v-Ww example @
y =viw from Arvind]
z i=x%*y

e Dataflow operation ordering and timing @

implied in data dependence

— instruction specifies who receives the result

— operation executes when all operands received

— “source” vs “intermediate” representation z

There is a lot more to this, e.q., loops, fxns)

18-643-F23-L06-S24, James C. Hoe, CMU/ECE/CALCV\(,©2023

fan-in

Token Passing Execution

switch merge
fan-out (conditional) (conditional)

B N S

“fire” output tokens when
all required input present

| ¢

t f

¢ ¢

consider multi-, variable-cycle ops and links

18-643-F23-L06-525, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Synchronous Dataflow

e Operate on flows (sequence of data values)
— i.e.,, X={x1, x2, X3, }, “1"={1,1,1,1, ...}
e Flow operators, e.g., switch, merge, duplicate
e Temporal operators, e.g. pre(X)={nil,x1, x2, x3, }

2 1 + >W=X+1
Fig 1, Halbwachs, et al., The Y
Sypchronous Data Flow N > X=2Y +Z
Programming Language LUSTRE

18-643-F23-L06-526, James C. Hoe, CMU/ECE/CALCM, ©2023 FunCtlon VS EXECUtlon VS Implementatlon

CarnegieMellon

What do you make of this?

node ACCUM(init, incVal: int; reset: bool) returns
(n: int);

let
n = init -> if reset then init else pre(n) + incr
tel
init i 1
: -> : >
: L—then
reset else pre
: > if
incVal :

pre({e, e, e;,}) is {nil, e e,,e,, ...}
18-643-F23-L06-527, James C. Hoe, CMU/ECE/CALCM, ©2023 {e1'e2'e3' “"}_>{f1'f2'f3' } IS {e1'f2'f3'f4 }

CarnegieMellon

Try Simulink in Vitis Model Composer

L>] sobe |_bee2 v2/sirgb_to_
File Edit View Simulation Format Tools Help

L zW& Qb omf Nomd | HEBS REE
(7 y———p{x02088>——pla
r_in i1 1 atbl——pa
= . £ o EERg cast—p{(_1)
ndi Convert y-out
add2
(2)——p{x05886
T >_
g_scale 2
xgg%—‘ Delay’
b_in z
b_scale
E » °
sync_in sync_out
Delay
[Figure 8.1: “Reconfigurable Computing: The Theory FixedstepDiscrete

and Practice of FPGA-Based Computation”]

Why is dataflow good-for-HW?

e Naturally express fine-grain, implicit parallelism
Many variations, asynchronous, dynamig, . . .

e Loose coupling between operators
— synchronize by order in flow, not cycle or time
— no imposed operation ordering
— no global synchronization/communications

e Declarative nature permits implementation
flexibilities

e Great when it works
— excellent match with signal processing
— but clearly not a good fit for every problem

18-643-F23-L06-S29, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Stream Processing

e Related to dataflow
— operate on data in sequence (no random access)
— repeat same operation on data in a stream

e Emphasis on IPs and their composition

— design in terms of composing valid stream-to-
stream transformations

— simple, elastic, plug-and-play “interface”
e More flexible rules
— input and output flows need not be synchronized
— operator can have a fixed amount of memory
e buffer/compute over a window of values
e carry dependencies over values in a stream

18-643-F23-L06-S30, James C. Hoe, CMU/ECE/CALCM, ©2023

Color-based object tracking (linear pipeline, 4 stages)

CarnegieMellon

Regular and Data-Independent:
E.g., Vision Processing Pipeline

Camera bl 1. Gaussian 2. Color) 3. Color) 4. Color Ll Displa
blur threshold threshold threshold piay
Background subtraction (2-branch pipeline, 6 stages)
Camera P 1. Duplicate | 2. Gaussian 3. Backgr?und
blur subtraction
5. Merge] 6. Paint | Display
4. Synchronizer
Corner + edge detection (3-branch pipeline, 10 stages)
Camera > 1. _ 2. .| 3.Corner - 4,
Duplicate |, | Duplicate o | detection | synchronizer _L "
Merge]
_|-> 5.Edge | . 6. |
detection | | Synchronizer > 9. 10.)
> Merge Paint [] Display
7.

v

Synchronizer

18-643-F23-L06-S31, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Irregular and Data-Dependent
E.g., Network Packet Processing

Reasse!

mbler

Multi-String Pattern Matliher

Flow
o
ata ule rou Block pge
over Gen.

arser
Ring
000
Linked List

DMA Engine

Buffer CPU

DMA Ring
e

Buf

Check
Packet

Buffer

L

ethrnt TCP flow “fast 2nd Offloading] CPU full

reassembly pattern” [filtering] to CPU matching
matching

https://github.com/cmu-snap/pigasus

18-643-F23-L06-S32, Ja

e Commonalities Revisited

e Parallelism under simplified global coordination
— enforced regularity
— asynchronous coupling
e Straightforward efficient mapping to hardware
— low performance overhead
— low resource overhead
— high resource utilization
e Simplify design without interfering with quality
e But only works on specific problem patterns

18-643-F23-L06-S33, James C. Hoe, CMU/ECE/CALCM, ©2023

% Parting Thoughts:
Conflict between High-Level and Generality
insist on quality

high-level:
tools know
better than you

RTL synthesis: general-purpose
but special handling of
structures like FSM, arith, etc.

place-and-route: works the same
no matter what design

18-643-F23-L06-S34, James C. Hoe, CMU/ECE/CALCM, ©2023

