
18-643-F23-L06-S1, James C. Hoe, CMU/ECE/CALCM, ©2023

18-643 Lecture 6:
Good-for-HW Computation Models

James C. Hoe
Department of ECE

Carnegie Mellon University

18-643-F23-L06-S2, James C. Hoe, CMU/ECE/CALCM, ©2023

Housekeeping

• Your goal today: see the temporal and spatial
patterns of compute and data access in classic
good-for-HW compute models

• Notices
– Handout #4: lab 1, due noon, 9/25
– Project status report due each Friday

• Readings (see lecture schedule online)
– Wikipedia is a good starting point
– for a textbook treatment see Ch 5 (+ Ch 8, 9, 10) of

Reconfigurable Computing by Hauck and Dehon
– for lab2, C. Zhang, et al., ISFPGA, 2015.

18-643-F23-L06-S3, James C. Hoe, CMU/ECE/CALCM, ©2023

Structural RTL: Low Level/Full Detailed
• Designer in charge

– arbitrary control and datapath schemes
– precise controlwhen, what, whereat the bit

and cycle granularity
With great power comes great responsibility . . .

• RTL synthesis is quite literal
– little room for timing and structural optimizations
– faithful to both “necessary” and “artifacts”

e.g., if a and b mutually exclusive
how to simplify

always@(posedge c)
if (a)

o<=1;
else if (b)

o<=2;

18-643-F23-L06-S4, James C. Hoe, CMU/ECE/CALCM, ©2023

FSM-D “Design Pattern”

• datapath = “organized” combinational logic and
registers to carry out computation (puppet)

• FSM = “stylized” combinational logic and registers
for control and sequencing (puppeteer)

clock

inputs outputs

FSM datapath

32

32

32

+

5

18-643-F23-L06-S5, James C. Hoe, CMU/ECE/CALCM, ©2023

Cooperating FSM-Ds
• Partitioning large design into manageable chunks

– natural decomposition by functionalities
– inherent concurrency and replications

• Correct decomposition leads to simpler parts but
coordination of the parts becomes the challenge
– synchronization: having two

FSM-Ds in the right state at
the right time

– communication: exchange
information between FSM-D
(requires synchronization)

18-643-F23-L06-S6, James C. Hoe, CMU/ECE/CALCM, ©2023

Crux of RTL Design Difficulty
• We design concurrent FSM-Ds separately

– liable to forget what one machine does when
focused on another

• No language support for coordination
– no explicit way to say how state transitions of two

FSMs (i.e., control) must be related

• Coordination hardcoded into design implicitly
– leave little room for automatic optimization
– hard to localize design changes
– (unless decoupled using request/reply-style

handshakes)

Lacks standard interfacing of SoC IP composition

18-643-F23-L06-S7, James C. Hoe, CMU/ECE/CALCM, ©2023

IP-Based Design

• Complexity wall
– designer productivity grows slower than Moore’s Law

on logic capacity
– diminishing return on scaling design team size

must stop designing individual gates
• Decompose design as a connection of IPs

– each IP fits in a manageable design complexity
Bonus, IPs can be reused across projects

 abstraction boundary
– IP integration fits in a manageable design complexity

18-643-F23-L06-S8, James C. Hoe, CMU/ECE/CALCM, ©2023

Systematic Interconnect

• More IPs, more elaborate IPs  intractable to
design wires at bit- and cycle-granularity

• On-chip interconnect standards (e.g. AXI) with
address-mapped abstraction
– each target IPs assigned an address range
– initiator IPs issue read (or write) transactions to

pull (or push) data from (or to) addressed target IP
– physical realization abstracted from IPs

• Plug-and-play integration of interface-compatible
IPs

• Network-on-chip ("route data not wires")

18-643-F23-L06-S9, James C. Hoe, CMU/ECE/CALCM, ©2023

What is High-Level?
• Abstract away detail/control from designer

– pro: need not spell out every detail
– con: cannot spell out every detail

• Missing details must be filled by someone
– implied in the abstraction, and/or
– filled in by the synthesis tool

• To be meaningful
– reduce work, and/or
– improve outcome

In HW practice, low tolerance for
degraded outcome regardless of ease

18-643-F23-L06-S10, James C. Hoe, CMU/ECE/CALCM, ©2023

Good-for-HW Compute Model Examples
• Systolic Array
• Data Parallel
• Dataflow
• Stream Processing
• Commonalities

– reduce design complexity/effort
– supports scalable parallelism under simplified

global coordination (by imposing a “structure”)
– allows straightforward, efficient HW mapping
– BUT, doesn’t work for all problems

These models are not tied-to HW or SW

18-643-F23-L06-S11, James C. Hoe, CMU/ECE/CALCM, ©2023

Good compute models distilled
from good design patterns

• Both temporal and spatial patterns in
– computation
– synchronization
– data buffering
– data movement

What is allowed? uniformity? complexity?

• What makes it good fit with hardware?
• What makes it good fit with application?
• What limits its generality?

18-643-F23-L06-S12, James C. Hoe, CMU/ECE/CALCM, ©2023

Systolic Array

• An array of PEs (imagine each an FSM or FSM-D)
– strictly, PEs are identical; cannot know the size of

the array or position in the array
– could generalize to other structured topologies

• Scope of design is a PE
– do same thing in every position
– localized neighbor-only interactions

(no global signals or wires)

• Each PE in each round
– exchange bounded data with direct neighbors
– perform bounded compute on fixed local storage

18-643-F23-L06-S13, James C. Hoe, CMU/ECE/CALCM, ©2023

• Works for any n
• Only stores 3 vals per PE
• If N>n, emulate at N2/n2

slowdown

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

a=nan;
b=nan;
accum=0;

For each pulse {
send-W(a); send-S(b);
a=rcv-E(); b=rcv-N();
if (a!=nan)

accum=a*b+accum;
}

A0

B0

NxNnxn

nan

nan

0,0

0,0 row

col

A1

B1

E.g. Matrix-Matrix Multiplication

18-643-F23-L06-S14, James C. Hoe, CMU/ECE/CALCM, ©2023

Does the last slide come to mind
when you see??

float A[N][N], B[N][N], C[N][N];

for(int i=0; i<N; i++) {

for(int j=0; j<N; j++) {

for(in k=0; k<N; k++) {

C[i][j]=C[i][j]+A[i][k]*B[k][j];

}

}

}

18-643-F23-L06-S15, James C. Hoe, CMU/ECE/CALCM, ©2023

Why systolic array good for HW?
• Parallel and scalable in nature

– can efficiently emulate key aspects of stream
processing and data-parallel

– easy to build corresponding HW on VLSI (especially
1D and 2D arrays)

• No global communication
• Scope of design/analysis/debug is 1 FSM-D
• Great when it works

– linear algebra, sorting, FFTs
– works more often than you think
– but clearly not a good fit for every problem

18-643-F23-L06-S16, James C. Hoe, CMU/ECE/CALCM, ©2023

Data Parallelism

• Same work on disjoint sets of dataabundant in
linear algebra behind scientific/numerical apps

• Example: AXPY (from Level 1 Basic Linear Algebra
Subroutine)

– Y and X are vectors
– same operations repeated on each Y[i] and X[i]
– iteration i does not touch Y[j] and X[j], ij

How to exploit data parallelism in HW?

for(i=0; i<N; i++) {
Y[i]=a*X[i]+Y[i]

}
Y = a*X+Y =

18-643-F23-L06-S17, James C. Hoe, CMU/ECE/CALCM, ©2023

Data Parallel Execution

• Instantiate k copies of the hardware unit foo to
process k iterations of the loop in parallel

b0 b1 b2 b3 b4 b5 b6 b7

a0 a1 a2 a3 a4 a5 a6 a7

foo foo foo foo foo foo foo foo

c0 c1 c2 c3 c4 c5 c6 c7

for(i=0; i<N; i++) {
C[i]=foo(A[i], B[i])

}

18-643-F23-L06-S18, James C. Hoe, CMU/ECE/CALCM, ©2023

Pipelined Execution

• Build a deeply pipelined (high-frequency) version
of foo()

for(i=0; i<N; i++) {
C[i]=foo(A[i], B[i])

}

b0b1b2b3b4

a0a1a2a3a4…………
c0c1c2c3c4

available after many
cycles later, 1/cycconsumed 1 element

per cycle

…………
…………

Pipelining also works best when repeating
identical and independent compute

concurrency

18-643-F23-L06-S19, James C. Hoe, CMU/ECE/CALCM, ©2023

E.g. SIMD Matrix-Vector Mult
// Each of the P threads is responsible for
// M/P rows of A; self is thread id
for(i=self*M/P;i<((self+1)*M/P);i++) {
y[i]=0;
for(j=0;j<N;j++) {

y[i]+=A[i][j]*x[j];
}

}

M/P

N

M NM

How to
structure memory
and array layout?

j

j

ii

18-643-F23-L06-S20, James C. Hoe, CMU/ECE/CALCM, ©2023

E.g. Vectorized Matrix-Vector Mult

LV V1, Rx ; load vector x
LV V2, Ra ; load i’th row of A
MULV V3,V2,V1 ; element-wise mult
“reduce” F0, V3 ; sum elements to scalar
S.D Ry, F0 ; store scalar result

N

M NM

no such
instruction
allowed
(hint: is “reduce” data-parallel?
what is II of MULV vs “reduce”?)

Repeat for each row of A

18-643-F23-L06-S21, James C. Hoe, CMU/ECE/CALCM, ©2023

Aside: Vector Chaining

Visualize true (long) vectors “flowing” through the
datapath as stream of elements, not as bulk objects

b0b1b2

a0a1a2…………

RF read 1 elem/cyc

…………

pipeline

d0d1d2…………
pipeline

e0e1e2…………

c0c1c2…………

RF write 1 elem/cyc

RF write 1 elem/cyc

RF read 1 elem/cyc

18-643-F23-L06-S22, James C. Hoe, CMU/ECE/CALCM, ©2023

E.g. Vectorized Matrix-Vector Mult

LVWS V0,(Ra,Rs) ; load-strided i’th col of A
L.D F0,Rx ; load i’th element of x
MULVS.D V1,V0,F0 ; vector-scalar mult
ADDV.D Vy,Vy,V1 ; element-wise add

N

M NM

Repeat for each column of A

DAXPY

Above is analogous (when/what/where) to the SIMD code

18-643-F23-L06-S23, James C. Hoe, CMU/ECE/CALCM, ©2023

Why is data-parallel good-for-HW?

• Simplest but highly restricted parallelism
• Open to mixed implementation interpretations

– SIMD parallelism +
– (deep) pipeline parallelism

• Great when it works
– important form of parallelism for scientific and

numerical computing
– but clearly not a good fit for every problem

18-643-F23-L06-S24, James C. Hoe, CMU/ECE/CALCM, ©2023

Dataflow Graphs
• Consider a von Neumann program

– what is the significance of the program order?
– what is the significance of the storage locations?

• Dataflow operation ordering and timing
implied in data dependence
– instruction specifies who receives the result
– operation executes when all operands received
– “source” vs “intermediate” representation

v := a + b;
w := b * 2;
x := v - w
y := v + w
z := x * y

+ *2

- +

*

a b

z

[figure and
example

from Arvind]

(There is a lot more to this, e.g., loops, fxns)

18-643-F23-L06-S25, James C. Hoe, CMU/ECE/CALCM, ©2023

Token Passing Execution

fan-in fan-out
switch

(conditional)
merge

(conditional)

op op

“fire” output tokens when
all required input present

t f t ft t

t f t f

consider multi-, variable-cycle ops and links

18-643-F23-L06-S26, James C. Hoe, CMU/ECE/CALCM, ©2023

Synchronous Dataflow

• Operate on flows (sequence of data values)
– i.e., X={ x1, x2, x3, ….. } , “1”={1,1,1,1, ….}

• Flow operators, e.g., switch, merge, duplicate
• Temporal operators, e.g. pre(X)={nil,x1, x2, x3, …. }

2

Y

Z

1 W= X + 1

X= 2Y + Z

+

+

xFig 1, Halbwachs, et al., The
Synchronous Data Flow

Programming Language LUSTRE

Function vs Execution vs Implementation

18-643-F23-L06-S27, James C. Hoe, CMU/ECE/CALCM, ©2023

What do you make of this?
node ACCUM(init, incVal: int; reset: bool) returns

(n: int);
let

n = init -> if reset then init else pre(n) + incr
tel

->

pre
if

reset

ninit

else
then

+

incVal

pre({e1,e2,e3, ….}) is {nil, e1,e2,e3, ….}
{e1,e2,e3, ….}->{f1,f2,f3, ….} is {e1,f2,f3,f4 ….}

18-643-F23-L06-S28, James C. Hoe, CMU/ECE/CALCM, ©2023

Try Simulink in Vitis Model Composer

[Figure 8.1: “Reconfigurable Computing: The Theory
and Practice of FPGA-Based Computation”]

18-643-F23-L06-S29, James C. Hoe, CMU/ECE/CALCM, ©2023

Why is dataflow good-for-HW?
• Naturally express fine-grain, implicit parallelism

Many variations, asynchronous, dynamic, . . .
• Loose coupling between operators

– synchronize by order in flow, not cycle or time
– no imposed operation ordering
– no global synchronization/communications

• Declarative nature permits implementation
flexibilities

• Great when it works
– excellent match with signal processing
– but clearly not a good fit for every problem

18-643-F23-L06-S30, James C. Hoe, CMU/ECE/CALCM, ©2023

Stream Processing
• Related to dataflow

– operate on data in sequence (no random access)
– repeat same operation on data in a stream

• Emphasis on IPs and their composition
– design in terms of composing valid stream-to-

stream transformations
– simple, elastic, plug-and-play “interface”

• More flexible rules
– input and output flows need not be synchronized
– operator can have a fixed amount of memory

• buffer/compute over a window of values
• carry dependencies over values in a stream

18-643-F23-L06-S31, James C. Hoe, CMU/ECE/CALCM, ©2023

Regular and Data-Independent:
E.g., Vision Processing Pipeline

Color-based object tracking (linear pipeline, 4 stages)

2. Color
threshold

3. Color
threshold

4. Color
threshold DisplayCamera 1. Gaussian

blur

2. Gaussian
blur

3. Background
subtraction

Camera 1. Duplicate

5. Merge 6. Paint
4. Synchronizer

Display

Background subtraction (2-branch pipeline, 6 stages)

Camera 1.
Duplicate

8.
Merge

10.
Paint

7.
Synchronizer

3. Corner
detection

Display

2.
Duplicate

5. Edge
detection 9.

Merge

4.
Synchronizer

6.
Synchronizer

Corner + edge detection (3-branch pipeline, 10 stages)

18-643-F23-L06-S32, James C. Hoe, CMU/ECE/CALCM, ©2023

Irregular and Data-Dependent
E.g., Network Packet Processing

ethrnt TCP flow
reassembly

“fast
pattern”

matching

2nd

filtering
Offloading

to CPU
CPU full

matching

https://github.com/cmu-snap/pigasus

18-643-F23-L06-S33, James C. Hoe, CMU/ECE/CALCM, ©2023

Commonalities Revisited

• Parallelism under simplified global coordination
– enforced regularity
– asynchronous coupling

• Straightforward efficient mapping to hardware
– low performance overhead
– low resource overhead
– high resource utilization

• Simplify design without interfering with quality
• But only works on specific problem patterns

18-643-F23-L06-S34, James C. Hoe, CMU/ECE/CALCM, ©2023

Parting Thoughts:
Conflict between High-Level and Generality

place-and-route: works the same
no matter what design

RTL synthesis: general-purpose
but special handling of

structures like FSM, arith, etc.

high-level:
tools know

better than you

insist on quality

