
18-643-F23-L05-S1, James C. Hoe, CMU/ECE/CALCM, ©2023

18-643 Lecture 5:
“Performance” Metrics:

Beyond Functional Correctness

James C. Hoe
Department of ECE

Carnegie Mellon University

18-643-F23-L05-S2, James C. Hoe, CMU/ECE/CALCM, ©2023

Housekeeping

• Your goal today: review basic concepts and avoid
common gotcha's

Digested from three 18-447 lectures
• Notices

– Handout #4: Lab 1, due noon, Mon, 9/25
– Ultra96 ready for pick up
– Recitation starts this week, W 6~7, HH 1307
– Prof. Hoe Office Hours, Thusdays 2:30am~4pm

• Readings (see lecture schedule online)
– 18-447 Spring 2023 Lectures 5, 12 and 23

18-643-F23-L05-S3, James C. Hoe, CMU/ECE/CALCM, ©2023

Performance (without “”)

18-643-F23-L05-S4, James C. Hoe, CMU/ECE/CALCM, ©2023

Performance is about time

• To the first order, performance  1 / time

• Two very different kinds of performance!!
– latency = time between start and finish of a task
– throughput = number of tasks finished in a given

unit of time (a rate measure)

• Either way, shorter the time, higher the
performance, but not to be mixed up

18-643-F23-L05-S5, James C. Hoe, CMU/ECE/CALCM, ©2023

Throughput  1/Latency
• If it takes T sec to do N tasks, throughput=N/T;

latency1=T/N?
• If it takes t sec to do 1 task, latency1=t;

throughput=1/t?
• When there is concurrency, throughput1/latency

• Optimizations can tradeoff one for the other
(think bus vs F1 race car)

 t 

T

 t 
 t 

 t 

lab1

18-643-F23-L05-S6, James C. Hoe, CMU/ECE/CALCM, ©2023

Little’s Law
• L=W

– L: number of customers

– : arrival rate
– W: wait time

• In steadystate, fix any two, the third is decided

• HW system examples
– in-order instruction pipeline: ILP and RAW hazard

distance determine instruction throughput
– AXI DRAM read: latency and # outstanding

requests determine achieved BW (until peak)

In 643 language:
overlapped tasks
throughput
latency

Fort Pitt Tunnel

lab1

18-643-F23-L05-S7, James C. Hoe, CMU/ECE/CALCM, ©2023

Overhead and Amortization
• Throughput becomes a function of N when there

is a non-recurring start-up cost (aka overhead)
• E.g., using DMA to transfer on a bus

– bus throughputraw = 1 Byte / (10-9 sec) steadystate
– 10-6 sec to setup a DMA
– throuhgputeffective to send 1B, 1KB, 1MB, 1GB?

• For start-up-time=ts and throughputraw=1/t1

– throughputeffective = N / (ts + Nt1)
– if ts >> Nt1, throughputeffective  N/ts

– if ts << Nt1, throughputeffective  1/t1

we say ts is “amortized” in the latter case

18-643-F23-L05-S8, James C. Hoe, CMU/ECE/CALCM, ©2023

Latency Hiding

• What are you doing during the latency period?
• Latency = hands-on time + hands-off time
• In the DMA example

– CPU is busy for the ts to setup the DMA
– CPU has to wait Nt1 for DMA to complete
– CPU could be doing something else during Nt1 to

“hide” that latency

CPU
bus

ts

Nt1

ts

Nt1

work ts workwork

18-643-F23-L05-S9, James C. Hoe, CMU/ECE/CALCM, ©2023

“Performance” is more than time

18-643-F23-L05-S10, James C. Hoe, CMU/ECE/CALCM, ©2023

0

1

10

100
logic density
VDD

>16x

2013 Intl. Technology Roadmap for Semiconductors

node “label” 14 10 7 5 3.5 2.5 1.8 ??

25%

Under fixed power ceiling, more ops/second
only achievable if less Joules/op?

Moore’s Law without Dennard Scaling

18-643-F23-L05-S11, James C. Hoe, CMU/ECE/CALCM, ©2023

Power = Energy / time

• Energy (Joule) dissipated as heat when “charge”
move from VDD to GND
– takes a certain amount of energy per operation,

e.g., addition, reg read/write, (dis)charge a node
– to the first order, energy  work

You care if on battery or pay the electric bill
• Power (Watt=Joule/s) is rate of energy dissipation

– more op/sec more Joules/sec
– to the first order, power  performance

Usually the problem is “thermal design power”

18-643-F23-L05-S12, James C. Hoe, CMU/ECE/CALCM, ©2023

Power and Performance not Separable
• Easy to minimize power if don’t care about performance
• Expect superlinear

increase in power to
increase performance
– slower design is simpler
– lower frequency needs

lower voltage
• Corollary: Lower perf also use

lower J/op (=slope from origin)
• Don’t forget leakage power

Perf (op/sec)

PowerPerf k>1

Po
w

er
 (J

ou
le

/s
ec

)

18-643-F23-L05-S13, James C. Hoe, CMU/ECE/CALCM, ©2023

Scale Makes a Difference

• Perf/Watt and J/op are normalized measures
– hides the scale of problem and platform
– recall, Watt  perfk for some k>1

• 10 GFLOPS/Watt at 1W is a very different design
challenge than at 1KW or 1MW or 1GW
– say 10 GFLOPS/Watt on a <GPGPU,problem>
– now take 1000 GPUGPUs to the same problem
– realized perf is < 1000x (less than perfect parallelism)
– required power > 1000x (energy to move data & heat)

• Scaling down not always easier with real constraints
Pay attention to denominator of normalized metrics

18-643-F23-L05-S14, James C. Hoe, CMU/ECE/CALCM, ©2023

Design Tradeoff

18-643-F23-L05-S15, James C. Hoe, CMU/ECE/CALCM, ©2023

Multi-Dimensional Optimizations

• HW design has many optimization dimensions
– throughput and latency
– area, resource utilization
– power and energy
– complexity, risk, social factors . . .

• Cannot optimize individual metrics without
considering tradeoff between them, e.g.,
– reasonable to spend more power for performance
– converse also true (lower perf. for less power)
– but never more power for lower performance

18-643-F23-L05-S16, James C. Hoe, CMU/ECE/CALCM, ©2023

1/perf

po
w

er

Pareto Front

Pareto Optimality (2D example)

All points on front are optimal (can’t do better)
How to select between them?

worse
better depends

depends

nothing
better!!

18-643-F23-L05-S17, James C. Hoe, CMU/ECE/CALCM, ©2023

Application-Defined Composite Metrics

• Define scalar function to reflect desiderata---
incorporate dimensions and their relationships

• E.g., energy-delay-(cost) product
– smaller the better
– can’t cheat by minimizing one ignoring others
– what does it mean? why not energy3delay2?

• Floors and ceilings
– real-life designs more often about good enough

than being optimal
– e.g., meet a perf. floor under a power(cost)-ceiling

(minimize design time, i.e., stop when you get there)

18-643-F23-L05-S18, James C. Hoe, CMU/ECE/CALCM, ©2023

Which is Design Point is Best?
(runtime, energy, power, EDP)

en
er

gy

runtime

E

C

A

B
D

Is B really lowest power?

18-643-F23-L05-S19, James C. Hoe, CMU/ECE/CALCM, ©2023

Parallelism, Speedup and Scalability

18-643-F23-L05-S20, James C. Hoe, CMU/ECE/CALCM, ©2023

Parallelization and Efficiency
• For a given functionality,

non-linear tradeoff
between power and
performance
– slower design is simpler
– lower frequency needs

lower voltage

For the same throughput,
replacing 1 module by 2
half-as-fast reduces total
power and energy Perf (op/sec)

Po
w

er
 (J

ou
le

/s
ec

)

PowerPerf k>1

Better to replace 1 of this
by 2 of these;

Good hardware designs derive performance from parallelism

or N of
these

18-643-F23-L05-S21, James C. Hoe, CMU/ECE/CALCM, ©2023

Parallelism Defined
• T1 (work measured in time):

– time to do work with 1 PE
• T (critical path):

– time to do work with infinite PEs
– T bounded by dataflow dependence

• Average parallelism:
Pavg = T1 / T

• For a system with p PEs
Tp max{ T1/p, T }

• When Pavg>>p
Tp  T1/p, aka “linear speedup”

+

+-

*

*2

a b

x
y

x = a + b;
y = b * 2
z =(x-y) * (x+y)

[Shiloach&Vishkin]

18-643-F23-L05-S22, James C. Hoe, CMU/ECE/CALCM, ©2023

p = 1 2 3 4 5

“Ideal” Linear Parallel Speedup
• Ideally, parallel speedup is linear with p

time

p = 1 2 3 4 5

Speedup

1

timesequential
Speedup =

timeparallel

1/p  p

18-643-F23-L05-S23, James C. Hoe, CMU/ECE/CALCM, ©2023

Strong vs. Weak Scaling
• Strong Scaling (assumed on last slide)

– what is Sp as p increases for constant work, T1

run same workload faster on new larger system
– harder to speedup as (1) p grows toward Pavg and

(2) communication cost increases with p
• Weak Scaling

– what is Sp as p increases for larger work, T1’=pT1

run a larger workload faster on new larger system
– Sp=timesequential(pT1)/timeparallel(pT1)

• Which is easier depends on
– how Pavg scales with work size T1’
– relative scaling of bottlenecks (storage, BW, etc)

18-643-F23-L05-S24, James C. Hoe, CMU/ECE/CALCM, ©2023

Non-Ideal Speed Up

S

2 4

1

2

3

4

1 p8

Never get to high speedup
regardless of p!!

18-643-F23-L05-S25, James C. Hoe, CMU/ECE/CALCM, ©2023

Parallelism Defined
• T1 (work measured in time):

– time to do work with 1 PE
• T (critical path):

– time to do work with infinite PEs
– T bounded by dataflow dependence

• Average parallelism:
Pavg = T1 / T

• For a system with p PEs
Tp max{ T1/p, T }

• When Pavg>>p
Tp  T1/p, aka “linear speedup”

+

+-

*

*2

a b

x
y

x = a + b;
y = b * 2
z =(x-y) * (x+y)

18-643-F23-L05-S26, James C. Hoe, CMU/ECE/CALCM, ©2023

Amdahl’s Law: a lesson on speedup

• If only a fraction f (of time) is speedup by s

timeimproved = timeoriginal·((1-f) + f/s)
Seffective = 1 / ((1-f) + f/s)

– if f is small, s doesn’t matter
– even when f is large, diminishing return on s;

eventually “1-f” dominates

f(1 - f)

timeoriginal

timeimproved

(1 - f) f/s

18-643-F23-L05-S27, James C. Hoe, CMU/ECE/CALCM, ©2023

Non-Ideal Speed Up

S

p32 64

1

2

3

4

not efficient but
acceptable if it is
the only way to
reach required
performance

Cheapest algo may not be the most scalable, s.t.
timeparallel-algo@p=1 = Ktimesequential-algo and K>1

and
Speedup = p/K

18-643-F23-L05-S28, James C. Hoe, CMU/ECE/CALCM, ©2023

Non-Ideal Speed Up

S

2 4

1

2

3

4

1 p8

Never get to high speedup
regardless of p!!

limited scalability, Pavg< p

??

18-643-F23-L05-S29, James C. Hoe, CMU/ECE/CALCM, ©2023

Communication not free
• A processing element may spend extra time

– in the act of sending or receiving data
– waiting for data to be transferred from another

PE
• latency: data coming from far away
• bandwidth: data coming thru finite channel

– waiting for another PE to get to a particular point
of the computation (a.k.a. synchronization)

How does communication cost grow with T1?
How does communication cost grow with p?

18-643-F23-L05-S30, James C. Hoe, CMU/ECE/CALCM, ©2023

LogP Communication Cost Model
• Latency: transit time between sender and receiver

as if lengthening critical path (T)
• overhead: time used up to setup a send or a

receive (cycles not doing computation)
as if adding more work (T1)

• gap: wait time in between successive send’s or
receive’s due to limited transfer bandwidth

CPU
(send) NI interconnect CPU

(rcv)NI
gaptx

latency
overheadrxoverheadtx

gaprx

The LogP Model

18-643-F23-L05-S31, James C. Hoe, CMU/ECE/CALCM, ©2023

Parting Thoughts

• Need to understand performance to get
performance!

• Good HW/FPGA designs involve many dimensions
(each one nuanced)
– optimizations involve making tradeoff
– over simplifying is dangerous and misleading
– must understand application needs

Power and energy is first-class!!

• Real-life designs have non-technical requirements

