
18-643-F23-L02-S1, James C. Hoe, CMU/ECE/CALCM, ©2023

18-643 Lecture 2:
Basic FPGA Fabric

James C. Hoe
Department of ECE

Carnegie Mellon University

18-643-F23-L02-S2, James C. Hoe, CMU/ECE/CALCM, ©2023

Housekeeping

• Your goal today: know enough to build a basic
FPGA (even if not a very good one)

• Notices
– Complete survey on Canvas, due noon, 9/6
– Handout #2: lab 0, due noon, 9/11
– Make friends, make teams, due noon, 9/11

• Readings (see lecture schedule online)
– Altera 2006 white paper (see lecture schedule)
– skim databooks referenced for more details

18-643-F23-L02-S3, James C. Hoe, CMU/ECE/CALCM, ©2023

What it means:

“Field Programmable” “Gate Array”

18-643-F23-L02-S4, James C. Hoe, CMU/ECE/CALCM, ©2023

SSIMSI LSI VLSI

From Quora, “How did people design integrated circuits in early years?”

18-643-F23-L02-S5, James C. Hoe, CMU/ECE/CALCM, ©2023

How to democratize 100K gates

VCC

GND

A

(AB)’

B X Y

(X+Y)’

18-643-F23-L02-S6, James C. Hoe, CMU/ECE/CALCM, ©2023

Idea behind Gate Arrays

• Mass produce identical gate array wafers
• Finish into any design by custom metal layers (2)

– so called Mask-Programmable GA (MPGA)
– reduced design effort (more automation, no layout)
– reduced mask and fab cost
– faster fab turn-around

• Proliferation of ASIC design starts
– don’t need volume for economy of scale
– small design team could keep up with Moore’s law

Of course, not as efficient as full-custom
or standard-cell designs

18-643-F23-L02-S7, James C. Hoe, CMU/ECE/CALCM, ©2023

How about no mask, no fab?
i.e., “field programmable”

• Again, mass produce identical devices but this
time fully-finalized

• Then what can still be changed after fab?
– SRAM EPROM (anti)fuse

– pass gate mux diode

{1,0}
{1,0} {1,0}

{1,0}

A B

{1,0}

CA
B A B

bi
ts

co
nn

ec
tio

ns

programmable vs reprogrammable

18-643-F23-L02-S8, James C. Hoe, CMU/ECE/CALCM, ©2023

Configurable “Logic Gates”

18-643-F23-L02-S9, James C. Hoe, CMU/ECE/CALCM, ©2023

Reconfigurable Logic

• Arbitrary logic (combinational and sequential) can
be formed by wiring up enough NANDs or muxes

• Lookup table as universal logic primitive
– arbitrary n-input function

from 2n-entry table
– this is 8-by-1 bit “memory”

f(…,1,…)

f(…,0,…)
f(…,X,…)

X

0
1

Shannon expansion

f(A,B,C)

f(0,0,0)
f(0,0,1)

∙∙∙∙
f(1,1,0)
f(1,1,1)

A B C

18-643-F23-L02-S10, James C. Hoe, CMU/ECE/CALCM, ©2023

Size of Lookup Tables (aka LUTs)
• n-input function from 2n-entry LUT
• Count only the 6T SRAM cells, an n-LUT has 6∙2n T
• Some points of reference

– 2-input NAND = 4T
– 3-input NAND = 6T
– 3-input full-adder (a, b, cin)

• s = a  b  cin = 8T
• cout = bcin+acin+ab =18T

– 10-input 5-bit adder = 130T
– basic flip-flop=16T

(compare to 2 LUTs per latch)

T-countn-LUT

242

483

964

1925

3846

7687

15368

30729

614410

18-643-F23-L02-S11, James C. Hoe, CMU/ECE/CALCM, ©2023

Choosing LUT Granularity
• Small LUTs

+ shorter propagation delay (per LUT)
– a given fxn consumes many LUTs (comes with

wiring cost and delay)
– high “interpretation overhead” if too small

• Big LUTs
– longer propagation delay (per LUT)
+ a given fxn consumes fewer (but bigger) LUTs
– high “interpretation overhead” if too large (and

fxn has exploitable structure, e.g., 5-bit ripple add)
– wastage if not all input are used in a LUT

Where is the sweetspot?

this kind

this kind

18-643-F23-L02-S12, James C. Hoe, CMU/ECE/CALCM, ©2023

A Quantitative Look at LUT Sizing
e.g., 2006 Altera White Paper on Stratix-II ALMs

Large-enough functions have shorter
total delay using bigger LUTs

But, bigger LUTs cost more and prone
to “internal fragmentation” No one LUT size optimal

 “adaptive” LUT approach

4-LUTs 50+% fully utilized
6-LUTs less than 40% fully utilized

18-643-F23-L02-S13, James C. Hoe, CMU/ECE/CALCM, ©2023

LUT-based Configurable Logic Block
(simplified sketch)

• 2 fxns (f & g) of 3 inputs OR 1 fxn (h) of 4 inputs
• hardwired FFs (too expensive/slow to fake)
• Just 10s of these in the earliest FPGAs

3-LUT

3-LUT

A
B
C

g(A,B,C)

h(A,B,C,D)

f(A,B,C)

D

FF

X

Y

{2,1,0}

{2,1,0}

{1,0} (also latch mode)

18-643-F23-L02-S14, James C. Hoe, CMU/ECE/CALCM, ©2023

Xilinx XC2000 CLB (1980s)

[XC2064, XC2018 Logic Cell Array]

18-643-F23-L02-S15, James C. Hoe, CMU/ECE/CALCM, ©2023

Contemporary Xilinx CLB Architecture

[Figure 2-3: 7 Series FPGAs CLB User Guide]

• each 6LUT is
two 5LUTs

• LUTs can also
be used as
small SRAMs

• special paths
for addition
and
multiplexer

2 slices per CLB

Largest devices
(many $K each)

have several
100K slices

Largest extreme
in 2022 has

over 1M slices

18-643-F23-L02-S16, James C. Hoe, CMU/ECE/CALCM, ©2023

Still Coarser Logic Blocks?

• So called Coarse-Grain Reconfigurable Arrays
(CGRAs) based on complete adders or ALUs
– native arithmetic units have low interpretation

overhead if you are doing arithmetic
– poor fit if you are working with narrow data or bit-

level manipulations
• Even coarser is to use many tiny processors

– still a spatial computing paradigm
– not programmed with RTLs
– converging with software multicores

More on this later on

18-643-F23-L02-S17, James C. Hoe, CMU/ECE/CALCM, ©2023

Brief Aside: Mapping Logic To LUTs

[Figure 13.1: “Reconfigurable Computing: The Theory
and Practice of FPGA-Based Computation”]

• Start from primary output and input to registers,
cover logic graph with cuts of less than K input edges

• K-cuts corresponding to K-LUT realizable functions

18-643-F23-L02-S18, James C. Hoe, CMU/ECE/CALCM, ©2023

Placement

[Vivado Implementation Screenshot]

18-643-F23-L02-S19, James C. Hoe, CMU/ECE/CALCM, ©2023

… and Route

[Vivado Implementation Screenshot]

18-643-F23-L02-S20, James C. Hoe, CMU/ECE/CALCM, ©2023

Configurable “Wires”

18-643-F23-L02-S21, James C. Hoe, CMU/ECE/CALCM, ©2023

PLA-style Configurable Routing

I0 I1 In-1 O0 O1 Om-1

AND OR

? ? ? ?

?

?

18-643-F23-L02-S22, James C. Hoe, CMU/ECE/CALCM, ©2023

Island Style Routing Architecture

• CLB islands in sea of interconnects
• Flexible routing to support ASIC style netlists
• Note regularity in structure

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C C C C C

18-643-F23-L02-S23, James C. Hoe, CMU/ECE/CALCM, ©2023

Configurable Routing
(1980s Xilinx simplified)

Switch Block

Connection Block

CLB CLB

A

B

C

D

X

Y

18-643-F23-L02-S24, James C. Hoe, CMU/ECE/CALCM, ©2023

Reconfigurable Routing is Expensive!

• Routing resource area is on par with logic
• Each configurable connection is

– area of configuration bit
– area of configurable connection

and don’t forget propagation delay

• Too much: cost for everyone who doesn’t need it
• Too little: congestion leaves unreachable CLBs

unused
– worse for larger arrays/designs (why?)
– buy a $10K FPGA and only get to use 70%?

18-643-F23-L02-S25, James C. Hoe, CMU/ECE/CALCM, ©2023

Rent’s Rule

• Tgp

– T = number of inputs and outputs
– g = number of internal components
– p typically between 0.5 (regular) and 0.8 (random)

• In a square, perimeter=4area0.5

– unless regular, I/O signals grow faster than
available routes exiting a design area

• Need hierarchy of progressively longer additional
routing resources

long routes also reduce delay when going far

18-643-F23-L02-S26, James C. Hoe, CMU/ECE/CALCM, ©2023

Virtex-II Routing Architecture

[Figure 48: Virtex-II Platform FPGAs: Complete Data Sheet]

18-643-F23-L02-S27, James C. Hoe, CMU/ECE/CALCM, ©2023

Virtex-II Routing Architecture

[Figure 49: Virtex-II Platform FPGAs: Complete Data Sheet]

La
te

r a
rc

hi
te

ct
ur

es
 e

xt
en

de
d

in
 re

ac
h

an
d

in
 d

ia
go

na
ls

Separate, dedicated clock trees

18-643-F23-L02-S28, James C. Hoe, CMU/ECE/CALCM, ©2023

Between-Die Routing in 2.5D IC
Virtex7 Stacked Silicon Interconnect (SSI), 2011

• Longest routes go across dies carried on interposer
• No change to design tool and abstraction

[Figure 1, Stacked & Loaded: Xilinx SSI, 28-
Gbps I/O Yield Amazing FPGAs, Xcell, Q1 2011]

18-643-F23-L02-S29, James C. Hoe, CMU/ECE/CALCM, ©2023

Intel Stratix-X HyperFlex

[Figure 2: Understanding How the New HyperFlex Architecture
Enables Next-Generation High-Performance Systems]

• Long routes need buffered repeaters; very long
routes need pipelining

• Add (bypassable) pipeline registers throughout
• RTL designs have to be

pipelined explicitly to
benefit; high-level
synthesized designs
leverage directly

• a high-freq strategy 
e.g., 0.5xlogic at 2xfreq
for perf. parity

18-643-F23-L02-S30, James C. Hoe, CMU/ECE/CALCM, ©2023

Don’t Forget Configurable I/O

FF

{1,0}

{1,0}
{1,0}In/Out

Dout

Din

{1,0}

{1,0}

PAD

I/O Block

{fast,slow}

- real devices more complicated
- modern devices support special signaling and protocols

18-643-F23-L02-S31, James C. Hoe, CMU/ECE/CALCM, ©2023

Putting it all together:
an Universal ASIC

I

I/O pins

programmable lookup tables
(LUT) and flip-flops (FF)

aka “soft logic” or “fabric”

In
te

rc
on

ne
ct

LUT FF

programmable routing

18-643-F23-L02-S32, James C. Hoe, CMU/ECE/CALCM, ©2023

Bitstream defines the chip

• After power up, SRAM FPGA loads bitstream from
somewhere before becoming the “chip”

a bonus “feature” for sensitive
devices that need to forget what it does

• Many built-in loading options
• Non-trivial amount of time; must control reset

timing and sequence with the rest of the system
• Reverse-engineering concerns ameliorated by

– encryption
– proprietary knowledge

Return to this later in term

18-643-F23-L02-S33, James C. Hoe, CMU/ECE/CALCM, ©2023

Parting Thoughts

• Birth of FPGAs rooted entirely in digital logic and
ASIC concerns; today, you can use an FPGA
without knowing any of this stuff

• You can find a lot of specific details on-line
(databooks and research papers)

• So far still just the basic fabric
. . . more next time

- saving “configuration” for later in term
- won’t say anything about low-level EDA

