Housekeeping

- Your goal today: get caught up on 3 decades of progress (upto 2010’ish)
- Notices
 - Complete survey on Canvas, *past due*
 - Handout #2: lab 0, *due noon, 9/12*

 Use Piazza and watch TA step-by-step video!!
 - Handout #3: Term Project Intro
- Readings (see lecture schedule online)
 - skim [Boutros, et al., 2021]
 - for next time: skim [Ahmed, et al., 2016] and [Chromczak, et al., 2020]
Where we stopped last time: FPGA as Universal Fabric

- I/O pins
- Programmable lookup tables (LUT) and flip-flops (FF)
 - Aka “soft logic” or “fabric”
- Interconnect
- Programmable routing

18-643-F22-L03-S3, James C. Hoe, CMU/ECE/CALCM, ©2022
Fast-forward through Moore’s Law

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Logic Capacity (gates)</th>
<th>Configurable Logic Blocks</th>
<th>User I/Os</th>
<th>Configuration Program (bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XC2064</td>
<td>1200</td>
<td>64</td>
<td>58</td>
<td>12038</td>
</tr>
<tr>
<td>XC2018</td>
<td>1800</td>
<td>100</td>
<td>74</td>
<td>17878</td>
</tr>
</tbody>
</table>

what happened is more than Moore

XC2064/XC2018 Logic Cell Arrays: Product Specification

[Table 1, UltraScale Architecture and Product Datasheet: Overview]
30 Years of Becoming Hardwired
Why Hardwired Logic

• LUTs already can do everything (digital)
• Revisit: why hardwired flip-flop in CLB?
 – would take 4 LUTs to make 1 M-S flip-flop
 – LUT-built FF have atrocious setup/hold time
 – almost all designs affected in cost and speed
• Makes sense to hardwire a functionality
 – needed by everyone (or by the big customers)
 – expected benefit outweigh displaced LUT area, i.e.,
 • much more expensive/slow in LUTs
 • easy/cheap to ignore when not in use

Hardwiring is a great thing if it is usable and is used
E.g., Special Support for Addition

- A full-adder fits perfectly in 1 CLB with 2x3LUTs
- But carry propagation slow---flow through several configurable connections and two switch blocks
- Addition is pretty important to most designs
Specialized Logic for Fast Carry

- Cost = 1 (real) wire and 1 mux
- Huge win in adder performance (32-bit@33MHz)

* If arithmetic is so important, why not put in real adders? How about multipliers?*
Xilinx XC4000 (1990s)

A 16-bit adder requires nine CLBs and has a combinatorial carry delay of 20.5 ns. Compare that to the 30 CLBs and 50 ns, or 41 CLBs and 30 ns in the XC3000 family.
Hard Multipliers (2000s)

- Motivating forces
 - DSP became an important domain
 - very expensive and slow to multiply in LUTs
 - dies large enough to spare some area
- Virtex-II hardwired multiplier “macro” blocks
 - 18-bit inputs, full 36-bit product
 - explicit instantiation or inferable from RTL
 - relatively cheap (since native implementation)
 - but no hard adders, why?

Adders came later as a part of MAC in DSP slices
In the meanwhile, multiply faster/cheaper than add!!
An Early Multiplier Blocks
Xilinx Virtex-II, circa 2000

Figure 54: Multiplier Block

Where are these hard DSP slices?
How to get to them?
MACROs: a disturbance in the force . . .

Too much vs not enough?
Benefit of using macro outweigh cost of getting to one?

[Figure 48: Virtex-II Platform FPGAs: Complete Data Sheet]
Ultrascale DSP48E2

optional pipeline stages
inferable from RTL and retiming
Aside: Register Retiming

- Local transformations

- Preserves I/O relationships

- Tools use retiming
 - balance critical paths
 - absorb FFs into hard macros

```verilog
always@(posedge clk) begin
  a1<=a; b1<=b;
  a2<=a1; b2<=b1;
  c<=a2*b2;
end
```
Stratix/Arria-10 IEEE-754 DSPs

[Intel Stratix-10 FPGA Features]
Stratix-10 NX AI Tensor Block

Optimized for small datatypes INT4/8 and Block FP12/16 used in ML

[Intel Stratix-10 FPGA Features]
Memory

- Flip-flops relatively scarce (only 1-bit per CLB)
- Need more storage when applications moved beyond FSM controllers and glue logic
- Option A: LUTs repurposable as 16x1-bit SRAMs
- Option B: 4Kb (now 32Kb) 2-ported SRAM blocks
 - very compact, very fast because native in silicon
 - explicit instantiation or inferable from RTL
 (tool can even decide which SRAM option to use)
 - configurable and combinable to a wide range of sizes and aspect ratios

Where are they? How to connect up to them?
Processor Cores

- Not everything needs to be in hardware; not everything improves when made into hardware
- Augment fabric with simple embedded CPUs
 - provide universality of functionality
 - easy handling of irregular, sequential operations
 - easy handling anything that doesn’t need to be fast
- Interests developed in early 2000s when FPGA applications grew to whole systems with DRAM, video, and Ethernets, etc.

Hard or soft core?
Hardcore vs Softcore

• First came PowerPC hardcores on Virtex-II
 – you got 2 whether you needed it or not
 – new tool promote IP-based system building
 – entirely soft-logic built surroundings: busses and IPs
 (DRAM controller, Ethernet, video,)

• Microblaze softcores took over in later rounds
 – Xilinx proprietary ISA (runs OS, gcc and all that)
 – configurable for cost-performance tradeoff
 – available in RTL to some folks
 – by this time, softcore footprint and performance
 was acceptable

 Several 3rd-party softcores existed in
 that era, e.g., LEON SPARC
Embedding PowerPC in Fabric

- everything else is soft
- two hierarchies of soft-logic busses (slow and slower)
- special on-chip memory (OCM) port allows ld/st directly into fabric
- CoreGen Library of IPs to hang off the busses
Hardcores Return in Virtex7 (~2010)

- This time in a complete, full-speed, fully-capable, two-core Cortex-A9 system
- Latest Ultrascale uses 64-bit ARMv8 Cortex-A53 + ARM R5 + Mali GPU
- Why ARMs?

[Figure 3-1, Zynq-7000 All Programmable SoC Technical Reference Manual]
Hardcore vs Softcore

• Table 4.2: The Zynq Book

<table>
<thead>
<tr>
<th>Processor</th>
<th>Configuration</th>
<th>DMIPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroBlaze 900LUT/700FF/2BRAM to 3800LUT/3200FF/6DSP/21BRAM</td>
<td>area optimized (3-stage)</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>perf. optimized (5-stage) with branch optimizations</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td>perf. optimized (5-stage) without branch optimizations</td>
<td>259</td>
</tr>
<tr>
<td>ARM Cortex-A9</td>
<td>1GHz; both cores combined</td>
<td>5000</td>
</tr>
</tbody>
</table>

• Table 4.3: The Zynq Book

<table>
<thead>
<tr>
<th>Processor</th>
<th>Configuration</th>
<th>CoreMark</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroBlaze</td>
<td>125MHz; 5-stage (Virtex-5)</td>
<td>238</td>
</tr>
<tr>
<td>ARM Cortex-A9</td>
<td>1GHz; both cores combined</td>
<td>5927</td>
</tr>
<tr>
<td>ARM Cortex-A9</td>
<td>800MHz; both cores combined</td>
<td>4737</td>
</tr>
</tbody>
</table>

PPC405 about 1/5 of ARM in Figure 4.3 of The Zynq Book
Die Area “Return on Investment”

Soft-logic logic dominates die area, but compute/storage concentrated in DSP and BRAM—consider what if 100% soft or 100% hard
Xilinx ASMBL Architecture

(Application Specific Modular Block Arch.)

- Xilinx fabric assembled from composable tall-and-thin strip types, CLB, BRAM, DSP, I/O, etc.
- Derivative products at the cost of just new masks
 - vary capacity by composing more or less strips
 - domain-specialization by varying ratios of strips e.g., \{DSP+IP\} vs logic for DSP vs ASIC replacement market
 - variations handled by parameterization in design tool algorithms
Stacked Silicon Interconnect (SSI)

- 2.5D stacking: multiple dies on passive interposer
 - lower latency, higher bandwidth, lower power than crossing package
 - much better yield than equivalent capacity monolithic device
 - mix dies for domain-specialization
 - possible to insert customer proprietary dies?

[Figure 1, Stacked & Loaded: Xilinx SSI, 28-Gbps I/O Yield Amazing FPGAs, Xcell, Q1 2011]
Intel’s take on 2.5D with EMIB

- monolithic fabric
- displace noisy, hot analog IPs
- connect same-package HBMs
- connect 3rd-party chiplets?

[Figure 8, Enabling Next-Generation Platforms Using Altera’s 3D System-in-Package Technology]
Reviewing Hard IPs Added Over Time

- **1990s**
 - fast carry
 - LUT RAM
 - block RAM

- **2000s**
 - programmable clock generator
 - PowerPC core
 - gigabit transceiver
 - multiplier and DSP splices
 - Ethernet and PCI-E

- **2010s**
 - system monitor
 - ADC
 - power management
 - ARM cores and GPU
 - DRAM controller
 - floating point arithmetic
 - “UltraRAM” hierarchy (up to 500Mbits)
 - HBM controllers

- **2020s** next lecture
Chicken or Egg First?

- **1990s:** glue logic, embedded cntrl, interface logic
 - reduce chip-count, increase reliability
 - rapid roll-out of “new” products
- **2000s:** DSP and HPC
 - strong need for performance
 - abundant parallelism and regularity
 - low-volume, high-valued
- **2010s:** communications and networking
 - throughput performance
 - fast-changing designs and standards
 - price insensitive
 - $value in field updates and upgrades
SoC with reconfigurable fabric (2010s)

Xilinx Vertex Ultrascale Offerings

<table>
<thead>
<tr>
<th>Logic Resources</th>
<th>XCVU065</th>
<th>XCVU080</th>
<th>XCVU095</th>
<th>XCVU125</th>
<th>XCVU160</th>
<th>XCVU190</th>
<th>XCVU440</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Logic Cells (K)</td>
<td>783</td>
<td>975</td>
<td>1,176</td>
<td>1,567</td>
<td>2,027</td>
<td>2,350</td>
<td>5,541</td>
</tr>
<tr>
<td>CLB Flip-Flops</td>
<td>716,160</td>
<td>891,424</td>
<td>1,075,200</td>
<td>1,432,320</td>
<td>1,852,800</td>
<td>2,148,480</td>
<td>5,065,920</td>
</tr>
<tr>
<td>CLB LUTs</td>
<td>358,080</td>
<td>445,712</td>
<td>537,600</td>
<td>716,160</td>
<td>926,400</td>
<td>1,074,240</td>
<td>2,532,960</td>
</tr>
<tr>
<td>Memory Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Distributed RAM (Kb)</td>
<td>4,830</td>
<td>3,980</td>
<td>4,800</td>
<td>9,660</td>
<td>12,690</td>
<td>14,490</td>
<td>28,710</td>
</tr>
<tr>
<td>Block RAM/FIFO w/ECC (36Kb each)</td>
<td>1,260</td>
<td>1,421</td>
<td>1,728</td>
<td>2,520</td>
<td>3,276</td>
<td>3,780</td>
<td>5,250</td>
</tr>
<tr>
<td>Block RAM/FIFO (18Kb each)</td>
<td>2,520</td>
<td>2,842</td>
<td>3,456</td>
<td>5,040</td>
<td>6,552</td>
<td>7,560</td>
<td>5,040</td>
</tr>
<tr>
<td>Total Block RAM (Mb)</td>
<td>44.3</td>
<td>50.0</td>
<td>60.8</td>
<td>88.6</td>
<td>115.2</td>
<td>132.9</td>
<td>88.6</td>
</tr>
<tr>
<td>Clock Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMT (1 MCMC, 2 PLLs)</td>
<td>10</td>
<td>16</td>
<td>16</td>
<td>20</td>
<td>28</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>I/O DLL</td>
<td>40</td>
<td>64</td>
<td>64</td>
<td>80</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Transceiver Fractional PLL</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>13</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>I/O Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Single-Ended HP I/Os</td>
<td>468</td>
<td>780</td>
<td>780</td>
<td>780</td>
<td>650</td>
<td>650</td>
<td>1,404</td>
</tr>
<tr>
<td>Maximum Differential HP I/O Pairs</td>
<td>216</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>300</td>
<td>300</td>
<td>648</td>
</tr>
<tr>
<td>Maximum Single-Ended HR I/Os</td>
<td>52</td>
<td>52</td>
<td>52</td>
<td>52</td>
<td>52</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>Maximum Differential HR I/O Pairs</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Integrated IP Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Monitor</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PCIe Gen1/2/3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Interlaken</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>100G Ethernet</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>GTH 16.3Gb/s Transceivers</td>
<td>20</td>
<td>32</td>
<td>32</td>
<td>40</td>
<td>52</td>
<td>60</td>
<td>48</td>
</tr>
<tr>
<td>GTY 30.5Gb/s Transceivers</td>
<td>20</td>
<td>32</td>
<td>32</td>
<td>40</td>
<td>52</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Speed Grades</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended</td>
<td>-1H -2 -3</td>
</tr>
<tr>
<td>Industrial</td>
<td>-1 -2</td>
</tr>
</tbody>
</table>

[UltraScale FPGA Product Tables and Product Selection Guide (XMP102)]
Intel Agilex-10 Offerings

<table>
<thead>
<tr>
<th>PRODUCT LINE</th>
<th>AGF 006</th>
<th>AGF 008</th>
<th>AGF 012</th>
<th>AGF 014</th>
<th>AGF 019</th>
<th>AGF 022</th>
<th>AGF 023</th>
<th>AGF 027</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic elements (LEs)</td>
<td>573,480</td>
<td>764,640</td>
<td>1,178,525</td>
<td>1,437,240</td>
<td>1,918,975</td>
<td>2,208,075</td>
<td>2,308,080</td>
<td>2,692,760</td>
</tr>
<tr>
<td>Adaptive logic modules (ALMs)</td>
<td>194,400</td>
<td>259,200</td>
<td>399,500</td>
<td>487,200</td>
<td>650,500</td>
<td>748,500</td>
<td>782,400</td>
<td>912,800</td>
</tr>
<tr>
<td>ALM registers</td>
<td>777,600</td>
<td>1,036,800</td>
<td>1,598,000</td>
<td>1,948,800</td>
<td>2,602,000</td>
<td>2,994,000</td>
<td>3,129,600</td>
<td>3,651,200</td>
</tr>
<tr>
<td>High-performance crypto blocks</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>eSRAM memory blocks</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>eSRAM memory size (Mb)</td>
<td>0</td>
<td>0</td>
<td>36</td>
<td>36</td>
<td>18</td>
<td>0</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>M20K memory blocks</td>
<td>2,844</td>
<td>3,792</td>
<td>5,900</td>
<td>7,110</td>
<td>8,500</td>
<td>10,900</td>
<td>10,464</td>
<td>13,272</td>
</tr>
<tr>
<td>M20K memory size (Mb)</td>
<td>56</td>
<td>74</td>
<td>115</td>
<td>139</td>
<td>166</td>
<td>212</td>
<td>204</td>
<td>259</td>
</tr>
<tr>
<td>MLAB memory count</td>
<td>9,720</td>
<td>12,960</td>
<td>19,975</td>
<td>23,360</td>
<td>32,525</td>
<td>37,425</td>
<td>39,120</td>
<td>45,640</td>
</tr>
<tr>
<td>MLAB memory size (Mb)</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>23</td>
<td>24</td>
<td>28</td>
</tr>
<tr>
<td>I/O PLL</td>
<td>12</td>
<td>12</td>
<td>16</td>
<td>16</td>
<td>10</td>
<td>16</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>Variable-precision digital signal processing (DSP) blocks</td>
<td>1,640</td>
<td>2,296</td>
<td>3,743</td>
<td>4,510</td>
<td>1,354</td>
<td>6,250</td>
<td>1,640</td>
<td>8,528</td>
</tr>
<tr>
<td>18 x 19 multipliers</td>
<td>3,280</td>
<td>4,592</td>
<td>7,486</td>
<td>9,020</td>
<td>2,708</td>
<td>12,500</td>
<td>3,280</td>
<td>17,056</td>
</tr>
<tr>
<td>Single-precision or half-precision tera floating point operations per second (TFLOPS)</td>
<td>2.5 / 5.0</td>
<td>3.5 / 6.9</td>
<td>6.0 / 12.0</td>
<td>6.8 / 13.6</td>
<td>2.0 / 4.0</td>
<td>9.4 / 18.8</td>
<td>2.5 / 5.0</td>
<td>12.8 / 25.6</td>
</tr>
<tr>
<td>Maximum EMIF x72</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Resources

- **IEEE 1588 v2 support**
 - PMA direct
- **Transceiver channel count**
 - Up to 24 channels at 28.9 Gbps (NRZ) / 12 channels at 58 Gbps (PAM4)
 - RS & KP FEC
- **Networking support**
 - 400GBe (4 x 100Gbe hard IP blocks (10/25 Gbe FEC/PCS/MAC))
 - IEEE 1588 v2 support
 - PMA direct
- **PCle hard IP block (4.0 x16) or bifurcable PCIe 4.0 x8 (EP) or 4x 4.0 x4 (RP)**
 - SR-IOV 8PF / 2VF
 - VirtIO support
 - Scalable IOV

[Intel FPGA Product Catalog]
Today’s Diverging Architectures

Are they FPGAs?
• spatial data/compute
• highly concurrent
• finely controllable
• reprogrammable

[Xilinx Versal]

[Achronix Speedster]

[Intel Agilex]
Parting Thoughts

- FPGAs steadily moved away from universal fabric
 - efficiency of hardwired logic (driven by application demands) complements flexibility of reconfig. logic
 - architected deliberately to play up this advantage
- Retain a high degree of regularity to ease design and manufacturing
 - fastest way to use up transistors from Moore’s Law
 - power and performance advantage by just being first on new process
- Architectural evolution both push-and-pull with applications