18-643 Lecture 3: FPGA on Moore’s Law

James C. Hoe
Department of ECE
Carnegie Mellon University
Housekeeping

• Your goal today: get caught up on 3 decades of progress (upto 2010’ish)

• Notices
 – Complete survey on Canvas, past due
 – Handout #2: lab 0, due noon, 9/13
 Be sure to watch Shashank’s very helpful video!!
 – Handout #3: Term Project Intro

• Readings (see lecture schedule online)
 – for next time: skim [Ahmed, et al., 2016] and [Chromczak, et al., 2020]
Where we stopped last time:
FPGA as Universal Fabric

I/O pins

programmable lookup tables (LUT) and flip-flops (FF)
aka “soft logic” or “fabric”

Interconnect

programmable routing
Fast-forward through Moore's Law

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Logic Capacity (gates)</th>
<th>Configurable Logic Blocks</th>
<th>User I/Os</th>
<th>Configuration Program (bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XC2064</td>
<td>1200</td>
<td>64</td>
<td>58</td>
<td>12038</td>
</tr>
<tr>
<td>XC2018</td>
<td>1800</td>
<td>100</td>
<td>74</td>
<td>17878</td>
</tr>
</tbody>
</table>

XC2064/XC2018 Logic Cell Arrays: Product Specification

[Table 1, UltraScale Architecture and Product Datasheet: Overview]

what happened is
more than Moore
30 Years of Becoming Hardwired
Why Hardwired Logic

• LUTs already can do everything (digital)
• Revisit: why hardwired flip-flop in CLB?
 – would take 4 LUTs to make 1 M-S flip-flop
 – LUT-built FF would have poor timing
 – almost all designs affected in cost and speed
• Makes sense to hardwire a functionality
 – needed by everyone (or by the big customers)
 – expected benefit outweigh displaced LUT area, i.e.,
 • much more expensive/slow in LUTs
 • easy/cheap to ignore when not in use

Hardwiring is a great thing if it is usable and is used
E.g., Special Support for Addition

- A full-adder fits perfectly in 1 CLB with 2x3LUTs
- But carry propagation slow---flow through several configurable connections and two switch blocks
- Addition is pretty important to most designs
Specialized Logic for Fast Carry

• Cost = 1 (real) wire and 1 mux
• Huge win in adder performance (32-bit@33MHz)

*If arithmetic is so important, why not put in real adders? How about multipliers?
Xilinx XC4000 (1990s)

A 16-bit adder requires nine CLBs and has a combinatorial carry delay of 20.5 ns. Compare that to the 30 CLBs and 50 ns, or 41 CLBs and 30 ns in the XC3000 family.
Hard Multipliers (2000s)

• Motivating forces
 – DSP became an important domain
 – very expensive and slow to multiply in LUTs
 – dies large enough to spare some area

• Virtex-II hardwired multiplier “macro” blocks
 – 18-bit inputs, full 36-bit product
 – explicit instantiation or inferable from RTL
 – relatively cheap (since native implementation)
 – but no hard adders, why?

Adders came later as a part of MAC in DSP slices
In the meanwhile, multiply faster/cheaper than add!!
An Early Multiplier Blocks
Xilinx Virtex-II, circa 2000

[Figure 54: Multiplier Block]

Where are these hard DSP slices?
How to get to them?
MACROs: a disturbance in the force . . .

Too much vs not enough?
Benefit of using macro outweigh cost of getting to one?

[Figure 48: Virtex-II Platform FPGAs: Complete Data Sheet]
Ultrascale DSP48E2

post-adder (accumulate)

optional pipeline stages inferable from RTL and retiming
Stratix/Arria-10 IEEE-754 DSPs

[Intel Stratix-10 FPGA Features]
Stratix-10 NX AI Tensor Block

Optimized for small datatypes INT4/8 and Block FP12/16 used in ML

[Intel Stratix-10 FPGA Features]
Memory

- Flip-flops relatively scarce (only 1-bit per CLB)
- Need more storage when applications moved beyond FSM controllers and glue logic
- Option A: LUTs repurposable as 16x1-bit SRAMs
- Option B: 4Kb (now 32Kb) 2-ported SRAM blocks
 - very compact, very fast because native in silicon
 - explicit instantiation or inferable from RTL
 (tool can even decide which SRAM option to use)
 - configurable and combinable to a wide range of sizes and aspect ratios

Where are they? How to connect up to them?
Processor Cores

• Not everything needs to be in hardware; not everything improves when made into hardware
• Augment fabric with simple embedded CPUs
 – provide universality of functionality
 – easy handling of irregular, sequential operations
 – easy handling anything that doesn’t need to be fast
• Interests developed in early 2000s when FPGA applications grew to whole systems with DRAM, video, and Ethernets, etc.

Hard or soft core?
Hardcore vs Softcore

• First came PowerPC hardcores on Virtex-II
 – you got 2 whether you needed it or not
 – new tool promote IP-based system building
 – entirely soft-logic built surroundings: busses and IPs
 (DRAM controller, Ethernet, video,)

• Microblaze softcores took over in later rounds
 – Xilinx proprietary ISA (runs OS, gcc and all that)
 – configurable for cost-performance tradeoff
 – available in RTL to some folks
 – by this time, softcore footprint and performance
 was acceptable

 Several 3rd-party softcores existed in that era, e.g., LEON SPARC
Embedding PowerPC in Fabric

- everything else is soft
- two hierarchies of soft-logic busses
 (slow and slower)
- special on-chip memory (OCM) port allows ld/st directly into fabric
- CoreGen Library of IPs to hang off the busses

![Diagram showing the embedding of PowerPC in fabric with various buses and components such as DDR, DMA, and OCM.]
Hardcores Return in Virtex7 (~2010)

- This time in a complete, full-speed, fully-capable, two-core Cortex-A9 system
- Latest Ultrascale uses 64-bit ARMv8 Cortex-A53 + ARM R5 + Mali GPU
- Why ARMs?

[Figure 3-1, Zynq-7000 All Programmable SoC Technical Reference Manual]
Hardcore vs Softcore

- Table 4.2: The Zynq Book

<table>
<thead>
<tr>
<th>Processor</th>
<th>Configuration</th>
<th>DMIPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroBlaze 900LUT/700FF/2BRAM</td>
<td>area optimized (3-stage)</td>
<td>196</td>
</tr>
<tr>
<td>to 3800LUT/3200FF/6DSP/21BRAM</td>
<td>perf. optimized (5-stage) with branch optimizations</td>
<td>228</td>
</tr>
<tr>
<td>ARM Cortex-A9</td>
<td>perf. optimized (5-stage) without branch optimizations</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>1GHz; both cores combined</td>
<td>5000</td>
</tr>
</tbody>
</table>

- Table 4.3: The Zynq Book

<table>
<thead>
<tr>
<th>Processor</th>
<th>Configuration</th>
<th>CoreMark</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroBlaze</td>
<td>125MHz; 5-stage (Virtex-5)</td>
<td>238</td>
</tr>
<tr>
<td>ARM Cortex-A9</td>
<td>1GHz; both cores combined</td>
<td>5927</td>
</tr>
<tr>
<td>ARM Cortex-A9</td>
<td>800MHz; both cores combined</td>
<td>4737</td>
</tr>
</tbody>
</table>

PPC405 about 1/5 of ARM in Figure 4.3 of The Zynq Book
Die Area “Return on Investment”

Soft-logic logic dominates die area, but compute/storage concentrated in DSP and BRAM—consider what if 100% soft or 100% hard
Xilinx ASMBL Architecture
(Application Specific Modular Block Arch.)

• Xilinx fabric assembled from composable tall-and-thin strip types, CLB, BRAM, DSP, I/O, etc.

• Derivative products at the cost of just new masks
 – vary capacity by composing more or less strips
 – domain-specialization by varying ratios of strips e.g., \{DSP+IP\} vs logic for DSP vs ASIC replacement market
 – variations handled by parameterization in design tool algorithms
Stacked Silicon Interconnect (SSI)

- 2.5D stacking: multiple dies on passive interposer
 - lower latency, higher bandwidth, lower power than crossing package
 - much better yield than equivalent capacity monolithic device
 - mix dies for domain-specialization
 - possible to insert customer proprietary dies?

[Figure 1, Stacked & Loaded: Xilinx SSI, 28-Gbps I/O Yield Amazing FPGAs, Xcell, Q1 2011]
Intel’s take on 2.5D with EMIB

- monolithic fabric
- displace noisy, hot analog IPs
- connect same-package HBMs
- connect 3rd-party chiplets?

[Figure 8, Enabling Next-Generation Platforms Using Altera’s 3D System-in-Package Technology]
Reviewing Hard IPs Added Over Time

• 1990s
 – fast carry
 – LUT RAM
 – block RAM

• 2000s
 – programmable clock generator
 – PowerPC core
 – gigabit transceiver
 – multiplier and DSP splices
 – Ethernet and PCI-E

• 2010s
 – system monitor
 – ADC
 – power management
 – ARM cores and GPU
 – DRAM controller
 – floating point arithmetic
 – “UltraRAM” hierarchy (up to 500Mbits)
 – HBM controllers

• 2020s next lecture
Chicken or Egg First?

• 1990s: glue logic, embedded cntrl, interface logic
 – reduce chip-count, increase reliability
 – rapid roll-out of “new” products

• 2000s: DSP and HPC
 – strong need for performance
 – abundant parallelism and regularity
 – low-volume, high-valued

• 2010s: communications and networking
 – throughput performance
 – fast-changing designs and standards
 – price insensitive
 – $value in field updates and upgrades
SoC with reconfigurable fabric (2010s)

Xilinx Ultrascale Offerings

<table>
<thead>
<tr>
<th></th>
<th>Kintex UltraScale</th>
<th>Kintex UltraScale+</th>
<th>Virtex UltraScale</th>
<th>Virtex UltraScale+</th>
<th>Zynq UltraScale+</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPSoC Processing System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Logic Cells (K)</td>
<td>318-1,451</td>
<td>356-1,143</td>
<td>783-5,541</td>
<td>862-3,780</td>
<td>103-1,143</td>
</tr>
<tr>
<td>Block Memory (Mb)</td>
<td>12.7-75.9</td>
<td>12.7-34.6</td>
<td>44.3-132.9</td>
<td>23.6-94.5</td>
<td>4.5-34.6</td>
</tr>
<tr>
<td>UltraRAM (Mb)</td>
<td>0-36</td>
<td></td>
<td>90-360</td>
<td>0-36</td>
<td></td>
</tr>
<tr>
<td>HBM DRAM (GB)</td>
<td>0-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSP (Slices)</td>
<td>768-5,520</td>
<td>1,368-3,528</td>
<td>600-2,880</td>
<td>2,280-12,288</td>
<td>240-3,528</td>
</tr>
<tr>
<td>DSP Performance (GMAC/s)</td>
<td>8,180</td>
<td>6,287</td>
<td>4,268</td>
<td>21,897</td>
<td>6,287</td>
</tr>
<tr>
<td>Transceivers</td>
<td>12-64</td>
<td>16-76</td>
<td>36-120</td>
<td>32-128</td>
<td>0-72</td>
</tr>
<tr>
<td>Max. Transceiver Speed (Gb/s)</td>
<td>16.3</td>
<td>32.75</td>
<td>30.5</td>
<td>32.75</td>
<td>32.75</td>
</tr>
<tr>
<td>Max. Serial Bandwidth (full duplex) (Gb/s)</td>
<td>2,086</td>
<td>3,268</td>
<td>5,616</td>
<td>8,384</td>
<td>3,268</td>
</tr>
<tr>
<td>Integrated Blocks for PCIe®</td>
<td>1-6</td>
<td>0-5</td>
<td>2-6</td>
<td>2-6</td>
<td>0-5</td>
</tr>
<tr>
<td>Memory Interface Performance (Mb/s)</td>
<td>2,400</td>
<td>2,666</td>
<td>2,400</td>
<td>2,666</td>
<td>2,666</td>
</tr>
<tr>
<td>I/O Pins</td>
<td>312-832</td>
<td>280-668</td>
<td>338-1,456</td>
<td>208-832</td>
<td>82-668</td>
</tr>
<tr>
<td>I/O Voltage (V)</td>
<td>1.0-3.3</td>
<td>1.0-3.3</td>
<td>1.0-3.3</td>
<td>1.0-1.8</td>
<td>1.0-3.3</td>
</tr>
</tbody>
</table>

[Table 1, UltraScale Architecture and Product Datasheet: Overview]
Intel Stratix-10 Offerings

<table>
<thead>
<tr>
<th>PRODUCT LINE</th>
<th>GX 400 SX 400</th>
<th>GX 650 SX 650</th>
<th>GX 850 SX 850</th>
<th>GX 1100 SX 1100</th>
<th>GX 1650 SX 1650</th>
<th>GX 2100 SX 2100</th>
<th>GX 2500 SX 2500</th>
<th>GX 2800 SX 2800</th>
<th>GX 4500 SX 4500</th>
<th>GX 5500 SX 5500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic elements (LEs)</td>
<td>378,000</td>
<td>612,000</td>
<td>841,000</td>
<td>1,092,000</td>
<td>1,624,000</td>
<td>2,006,000</td>
<td>2,422,000</td>
<td>2,753,000</td>
<td>4,463,000</td>
<td>6,510,000</td>
</tr>
<tr>
<td>Adaptive logic modules (ALMs)</td>
<td>128,160</td>
<td>207,360</td>
<td>284,960</td>
<td>370,080</td>
<td>550,640</td>
<td>679,680</td>
<td>821,150</td>
<td>933,120</td>
<td>1,512,820</td>
<td>1,867,680</td>
</tr>
<tr>
<td>ALM registers</td>
<td>512,840</td>
<td>829,440</td>
<td>1,139,840</td>
<td>1,480,320</td>
<td>2,202,160</td>
<td>2,718,720</td>
<td>3,284,500</td>
<td>3,732,480</td>
<td>6,051,280</td>
<td>7,470,720</td>
</tr>
<tr>
<td>Million Hyper-Registers (distributed throughout the monolithic FPGA fabric)</td>
<td></td>
</tr>
<tr>
<td>Programmable clock trees synthesizable</td>
<td>Hundreds of synthesizable clock trees</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M20K memory blocks</td>
<td>1,537</td>
<td>2,489</td>
<td>3,477</td>
<td>4,401</td>
<td>5,851</td>
<td>6,501</td>
<td>9,963</td>
<td>11,721</td>
<td>11,721</td>
<td>7,033</td>
</tr>
<tr>
<td>M20K memory size (Mb)</td>
<td>30</td>
<td>49</td>
<td>68</td>
<td>86</td>
<td>114</td>
<td>127</td>
<td>195</td>
<td>229</td>
<td>137</td>
<td>137</td>
</tr>
<tr>
<td>MLAB memory size (Mb)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>15</td>
<td>15</td>
<td>23</td>
<td>29</td>
</tr>
<tr>
<td>Variable-precision digital signal processing (DSP) blocks</td>
<td>648</td>
<td>1,162</td>
<td>2,016</td>
<td>2,520</td>
<td>3,145</td>
<td>3,744</td>
<td>5,011</td>
<td>5,790</td>
<td>1,580</td>
<td>1,880</td>
</tr>
<tr>
<td>18 x 19 multipliers</td>
<td>1,296</td>
<td>2,304</td>
<td>4,032</td>
<td>5,040</td>
<td>6,290</td>
<td>7,488</td>
<td>10,022</td>
<td>11,520</td>
<td>3,900</td>
<td>3,000</td>
</tr>
<tr>
<td>Peak fixed-point performance (TMACS)2</td>
<td>2.6</td>
<td>4.6</td>
<td>8.1</td>
<td>10.1</td>
<td>12.6</td>
<td>15.0</td>
<td>20.0</td>
<td>23.0</td>
<td>7.9</td>
<td>7.9</td>
</tr>
<tr>
<td>Peak floating-point performance (TFLOPS)3</td>
<td>1.0</td>
<td>1.8</td>
<td>3.2</td>
<td>4.0</td>
<td>5.0</td>
<td>6.0</td>
<td>8.0</td>
<td>9.2</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Secure device manager</td>
<td>AES-256/SHA-256 bitstream encryption/authentication, physically unclonable function (PUF), ECDSA 256/384 boot code authentication, side channel attack protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hard processor system4</td>
<td>Quad-core 64-bit ARM®-Cortex®-A53 up to 1.5 GHz with 32 KB i/O cache, XeON® coprocessor, 1 MB L2 cache, direct memory access (DMA), system memory management unit, cache coherency unit, hard memory controllers, USB 2.0 x2, 1G EMAC x3, UART x2, SPI x4, 1C x5, general-purpose timers x7, watchdog timer x4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum user I/O pins</td>
<td>392</td>
<td>400</td>
<td>704</td>
<td>704</td>
<td>704</td>
<td>704</td>
<td>704</td>
<td>1640</td>
<td>1640</td>
<td>1640</td>
</tr>
<tr>
<td>Maximum LVDS pairs (1.6 Gbps only)</td>
<td>192</td>
<td>192</td>
<td>360</td>
<td>360</td>
<td>336</td>
<td>336</td>
<td>576</td>
<td>576</td>
<td>816</td>
<td>816</td>
</tr>
<tr>
<td>Total full duplex transceiver count</td>
<td>24</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>GXT full duplex transceiver count (up to 30 Gbps)</td>
<td>16</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>GX full duplex transceiver count (up to 17.4 Gbps)</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>PCI Express® (PCIe®) hard intellectual property (IP) blocks (Gen3 x16)</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Memory devices supported</td>
<td>DDR4, DDR3, DDR2, DDR, QDR II, QDR II+, RLDRAM II, RLDRAM 3, HMC, Micron</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Intel Stratix 10 Product Table]
Today’s Diverging Architectures

Are they FPGAs?
• spatial data/compute
• highly concurrent
• finely controllable
• reprogrammable

[Xilinx Versal]
[Achronix Speedster]
[Intel Agilex]
Parting Thoughts

- FPGAs steadily moved away from universal fabric
 - efficiency of hardwired logic (driven by application demands) complements flexibility of reconfig. logic
 - architected deliberately to play up this advantage
- Retain a high degree of regularity to ease design and manufacturing
 - fastest way to use up transistors from Moore’s Law
 - power and performance advantage by just being first on new process
- Architectural evolution both push-and-pull with applications