Housekeeping

- Your goal today: appreciate the many subtleties and dimensionalities of performance
 Digested from three 18-447 lectures
- Notices
 - Handout #3: lab 1, due noon, 9/22
 - ZedBoard ready for pick up (see Handout #3a)
 - Recitation starts this week, Wed 4:30~5:20
- Readings (skim for background)
The ZedBoard Kit

- ECE is loaning to you
 - 1x Avnet ZedBoard 7020 baseboard
 - 1x 12 V power supply
 - 1x 4-GB SD Card (don’t need it right away)
 - 2x Micro-USB cable

- You will treat it like your grade depended on it
- You will return all of it in perfect condition, or else

Looking Ahead

- Lab 1 (wk3/4): get cozy with Vivado
 - most important: learn logic analyzer and eclipse debugger
- Lab 2 (wk5/6): meet Vivado HLS
 - most important: decide if you would use it
- Lab 3 (wk7/8): hands-on with AFU
 - most important: have confidence it can work
- Project . . .
Performance is about time

- To the first order, performance $\propto 1 / \text{time}$

- Two very different kinds of performance!!
 - latency = time between start and finish of a task
 - throughput = number of tasks finished in a given unit of time (a rate measure)

- Either way, shorter the time, higher the performance, but . . .

Throughput $\neq 1$/Latency

- If it takes T sec to do N tasks, throughput=N/T; latency=T/N?
- If it takes t sec to do 1 task, latency=t; throughput=$1/t$?
- When there is concurrency, throughput$\neq 1$/latency

- Optimizations can tradeoff one for the other (think bus vs F1 race car)
Throughput ≠ Throughput

• Throughput becomes a function of N when there is a non-recurring start-up cost (aka overhead)
• E.g., DMA transfer on a bus
 – bus throughput$_{raw}$ = 1 Byte / (10^{-9} sec)
 – 10^{-6} sec to setup a DMA
 – throughput$_{effective}$ to send 1B, 1KB, 1MB, 1GB?
• For start-up-time = t_s and throughput$_{raw}$ = $1/t_1$
 – throughput$_{effective}$ = $N / (t_s + N \cdot t_1)$
 – if $t_s >> N \cdot t_1$, throughput$_{effective}$ ≈ N/t_s
 – if $t_s << N \cdot t_1$, throughput$_{effective}$ ≈ $1/t_1$

 we say t_s is “amortized” in the latter case

Latency ≠ Latency

• What are you doing during the latency period?
• Latency = hands-on time + hands-off time
• In the DMA example
 – CPU is busy for the t_s to setup the DMA
 – CPU has to wait $N \cdot t_1$ for DMA to complete
 – CPU could be doing something else during $N \cdot t_1$ to “hide” that latency
Relative Performance

• Pop Quiz: if \(X \) is 50% slower than \(Y \) and latency_{X}=1.0s, what is latency_{Y}?

 – Case 1: \(L_{Y} = 0.5s \) since \(L_{Y}/L_{X}=0.5 \)

 – Case 2: \(L_{Y} = 0.66666s \) since \(L_{X}/L_{Y}=1.5 \)

 English language is imprecise

Fixing the language, a la H&P

• “\(X \) is \(n \) times faster than \(Y \)” means

 \[n = \frac{\text{performance}_{X}}{\text{performance}_{Y}} = \frac{\text{throughput}_{X}}{\text{throughput}_{Y}} = \frac{\text{latency}_{Y}}{\text{latency}_{X}} = \text{“speedup” from } Y \text{ to } X \]

• “\(X \) is \(m\% \) faster than \(Y \)” means

 \[1+m/100 = \frac{\text{Performance}_{X}}{\text{Performance}_{Y}} \]

• Delete “slower” from your dictionary
 – for case 1 say, “\(Y \) is 100% faster than \(X \) in latency”
 – for case 2 say, “\(Y \) is 50% faster than \(X \) in latency”
Faster!=Faster

- Given two designs X and Y,
 - X may be m% faster than Y on input A
 - X may be n% (where m!=n) faster than Y on input B
 - Y may be k% faster than X on input C
- Which is faster and by how much?
 - depends on which input(s) you care about
 - if multiple, also depend on relative importance
- Many ways to summarize performance into a scalar metric to simplify comparison
 - more wrong ways than right
 - when in doubt, present the complete story
 - go read the H&P chapter on performance

Multi-Dimensional Optimizations

- HW design has many optimization dimensions
 - by area, by resource type utilization
 - performance and latency
 - power and energy
 - complexity, risk, social factors . . .
- Cannot optimize individual metrics without considering tradeoff between them, e.g.,
 - reasonable to spend more power for performance
 - converse also true (lower perf. for less power)
 - but never more power for lower performance
Pareto Optimality (2D example)

All points on front are optimal (can’t do better)

How to select between them?

Application-Defined Composite Metrics

- Define scalar function to reflect desiderata---incorporate dimensions and their relationships
- E.g., energy-delay-(cost) product
 - smaller the better
 - can’t cheat by minimizing one ignoring others
 - does it have to have a physical meaning??
- Floors and ceilings
 - real-life designs more often about good enough than optimal
 - e.g., meet a perf. floor under a power(cost)-ceiling
 (minimize design time, i.e., stop when you get there)
Power \neq Energy
(do not confuse them)

Power = Energy / time

- Energy (Joule) dissipated as heat when “charge” flow from VDD to GND
 - takes a certain amount of energy per operation, e.g., addition, reg read/write, (dis)charge a node
 - to the first order, energy \propto work
- Power (Watt=Joule/s) is rate of energy dissipation
 - more op/sec then more Joules/sec
 - to the first order, power \propto performance

It is all very easy if performance \propto frequency
Power=$\frac{1}{2}CV^2f$
Power and Performance not Separable

- Easy to minimize power if don’t care about performance
- Expect superlinear increase in power to increase performance
 - slower design is simpler
 - lower frequency needs lower voltage
- Corollary: Lower perf also use lower J/op (=slope from origin)

All in all, slower is more energy/power efficient

Slower could use more energy (if done inefficiently)

- Devices leak charge even when doing no ops
 - so called leakage current (I_{leakage})
 - power_{total} = switching power + static power
 \[= (J/op)_{perf} \times (#op/runtime) + (VDD \times I_{leakage}) \]
 - energy_{total} = (J/op)_{perf} \times #op + (VDD \times I_{leakage} \times runtime)
- Slower reduces power but could increase energy
Perf/Watt \neq Perf/Watt

- Perf/Watt is a normalized measure
 - hides the scale of problem and platform
 - recall, $\text{Watt} \propto \text{perf}^k$ for some $k>1$

- 10 GFLOPS/Watt at 1W is a very different design problem than at 1KW or 1MW or 1GW
 - say 10 GFLOPS/Watt on a <GPGPU,problem>
 - now take 1000 GPGPUs to the same problem
 - realized perf is $< 1000x$ (less than perfect parallelism)
 - required power $> 1000x$ (energy to move data & heat)

In general be careful with normalized metrics
Parallelism Defined

- T_1 (work measured in time):
 - time to do work with 1 PE
- T_∞ (critical path):
 - time to do work with infinite PEs
 - T_∞ bounded by dataflow dependence
- Average parallelism:
 $$P_{\text{avg}} = \frac{T_1}{T_\infty}$$

- For a system with p PEs
 $$T_p \geq \max\{ \frac{T_1}{p}, \frac{T_\infty}{p} \}$$
- When $P_{\text{avg}} \gg p$
 $$T_p \approx \frac{T_1}{p}, \text{ aka "linear speedup"}$$

Linear Parallel Speedup

- Ideally, parallel speedup is linear with p
 $$\text{speedup} = \frac{\text{runtime}_{\text{sequential}}}{\text{runtime}_{\text{parallel}}}$$

- Lower runtime
 - $\propto 1/p$
- Higher speedup
Linear Speedup! = Linear Speedup

How could this be?

It could be worse

limited scalability, $P_{avg} < p$
Parallelization Overhead

- Best parallel and seq. algo. need not be the same
 - best parallel algo. often worse at $p=1$
 - if $\text{runtime}_{\text{parallel}}@p=1 = K\cdot\text{runtime}_{\text{sequential}}$ then best-case speedup = p/K

- Communication between PEs not instantaneous
 - extra time for the act of sending or receiving data as if adding more work (T_1)
 - extra time waiting for data to travel between PEs as if adding critical path (T_∞)

If overhead grows with P, speedup can even fall

Parallelization not just about speedup

- For a given functionality, non-linear tradeoff between power and performance
 - slower design is simpler
 - lower frequency needs lower voltage

\Rightarrow For the same throughput, replacing 1 module by 2 half-as-fast reduces total power and energy

Better to replace 1 of this by 2 of these; or N of these

Good hardware designs derive performance from parallelism
Arithmetic Intensity

- An algorithm has a cost in terms of operation count
 - \(\text{runtime}_{\text{compute-bound}} = \frac{\# \text{ operations}}{\text{FLOPS}} \)
- An algorithm also has a cost in terms of number of bytes communicated (ld/st or send/receive)
 - \(\text{runtime}_{\text{BW-bound}} = \frac{\# \text{ bytes}}{\text{BW}} \)
- Which one dominates depends on
 - ratio of FLOPS and BW of platform
 - ratio of ops and bytes of algorithm
- Average Arithmetic Intensity (AI)
 - how many ops performed per byte accessed
 - \(\frac{\# \text{ operations}}{\# \text{ bytes}} \)

Roofline Performance Model

[Williams&Patterson, 2006]

Attained Performance of a system (op/sec)

\[
\text{perf} = \min(\text{FLOPS}, \text{AI} \cdot \text{BW})
\]

\[
\text{runtime} > \max\left(\frac{\# \text{ op}}{\text{FLOPS}}, \frac{\# \text{ byte}}{\text{BW}} \right)
\]

\[
> \# \text{ op} \cdot \max(1/\text{FLOPS}, 1/(\text{AI} \cdot \text{BW}))
\]
Simple AI Example: MMM

```c
for(i=0; i<N; i++)
    for(j=0; j<N; j++)
        for(k=0; k<N; k++)
            C[i][j]+=A[i][k]*B[k][j];
```

- N^2 data-parallel dot-product's
- Assume N is large s.t. 1 row/col too large for on-chip
- Operation count: N^3 float-mult and N^3 float-add
- External memory access (assume 4-byte floats)
 - $2N^3$ 4-byte reads (of A and B) from DRAM
 - $\ldots N^2$ 4-byte writes (of C) to DRAM
- Arithmetic Intensity $\approx 2N^3/(4\cdot 2N^3)=1/4$

GTX1080: 8 TFLOPS vs 320GByte/sec

Less Simple AI Example: MMM

```c
for(i0=0; i0<N; i0+=Nb)
    for(j0=0; j0<N; j0+=Nb)
        for(k0=0; k0<N; k0+=Nb) {
            for(i=i0;i<i0+Nb;i++)
                for(j=j0;j<j0+Nb;j++)
                    for(k=k0;k<k0+Nb;k++)
                        C[i][j]+=A[i][k]*B[k][j];
        }
```

- Imagine a $\lfloor N/N_b \rfloor \times \lfloor N/N_b \rfloor$ MATRIX of $N_b \times N_b$ matrices
 - inner-triple is straightforward matrix-matrix mult
 - outer-triple is MATRIX-MATRIX mult
- To improve AI, hold $N_b \times N_b$ sub-matrices on-chip for data-reuse
 need to copy block (not shown)
AI of blocked MMM Kernel ($N_b \times N_b$)

```c
for(i=i0;i<i0+Nb;i++)
    for(j=j0;j<j0+Nb;j++) {
        t=C[i][j];
        for(k=k0;k<k0+Nb;k++)
            t+=A[i][k]*B[k][j];
        C[i][j]=t;
    }
```

- Operation count: N_b^3 float-mul and N_b^3 float-add
- When A, B fit in scratchpad ($2 \times N_b^2 \times 4$ bytes)
 - $2N_b^3$ 4-byte on-chip reads (A, B) (fast)
 - $3N_b^2$ 4-byte off-chip DRAM read A, B, C (slow)
 - N_b^2 4-byte off-chip DRAM writeback C (slow)
- Arithmetic Intensity = $2N_b^3/(4 \times 4N_b^2) = N_b/8$

AI and Scaling

- AI is a function of the algorithm and the problem size
- Higher AI means more work per communication and therefore easier to parallelize and to scale

[Figure 6.17, Computer Organization and Design]
Strong vs Weak Scaling

- **Strong Scaling**: T_1 (work) remains constant
 - i.e., improve same workload with more PEs
 - hard to maintain linearity as p grows toward p_{avg}
- **Weak Scaling**: $T_1' = p \cdot T_1$
 - i.e., improve larger workload with more PEs
 - $S_p = \frac{\text{runtime}_{\text{sequential}}(p \cdot T_1)}{\text{runtime}_{\text{parallel}}(p \cdot T_1)}$
 - is this harder or easier?
 - ans: depends on how T_∞' scales with T_1' and how AI scales with T_1'

Amdahl’s Law

- If only a fraction f is improved by a factor of s

 \[
 \begin{array}{c}
 \text{time}_{\text{parallelized}} \\
 (1 - f) \quad f/s
 \end{array}
 \]
 \[
 \begin{array}{c}
 \text{time}_{\text{sequential}} \\
 (1 - f) \quad f
 \end{array}
 \]

 \[
 \text{time}_{\text{parallel}} = \text{time}_{\text{sequential}} \cdot \left((1-f) + \frac{f}{s} \right)
 \]

 \[
 \text{speedup} = \frac{1}{(1-f) + \frac{f}{s}}
 \]

 - if f is small, s doesn’t matter
 - even when f is large, diminishing return on s;
 eventually “$1-f$” dominates
Parting Thoughts

• Need to understand performance to get performance!
• HW/FPGA design involve many dimensions (each one nuanced)
 – optimizations often involve tradeoff
 – over simplifying is dangerous and misleading
 – must understand application needs

 power and energy is first-class

• Real-life designs have non-technical requirements