18-643 Lecture 6:
Good-for-HW Computation Models

James C. Hoe
Department of ECE
Carnegie Mellon University
Housekeeping

• Your goal today: see the temporal and spatial patterns of compute and data access in classic good-for-HW compute models

• Notices
 – Handout #4: lab 1, due noon, 9/27
 – Project status report due each Friday

• Readings (see lecture schedule online)
 – Wikipedia is a good starting point
 – for a textbook treatment see Ch 5 (+ Ch 8, 9, 10) of Reconfigurable Computing by Hauck and Dehon
Structural RTL

• RTL synthesis is literal (except comb. logic)
 – little room for timing and structural optimizations
 – faithful to both “necessary” and “artifacts”
 e.g., a and b mutually exclusive?

• Designer in charge
 – arbitrary control and datapath schemes
 – precise control—when, what, where—at the bit and cycle granularity

 With great power comes great responsibility . . .
FSM-D “Design Pattern”

- datapath = “organized” combinational logic and registers to carry out computation (puppet)
- FSM = “stylized” combinational logic and registers for control and sequencing (puppeteer)
Cooperating FSM-Ds

- Partitioning large design into manageable chunks
 - natural decomposition by functionalities
 - inherent concurrency and replications
- Correct decomposition leads to simpler parts but coordination of the parts becomes the challenge
 - synchronization: having two FSM-Ds in the right state at the right time
 - communication: exchange information between FSM-D (requires synchronization)
Crux of RTL Design Difficulty

- We design concurrent FSM-Ds separately
 - liable to forget what one machine does when focused on another
- No language support for coordination
 - no explicit way to say how state transitions of two FSMs (i.e., control) must be related
- Coordination hardcoded into design implicitly
 - leave little room for automatic optimization
 - hard to localize design changes
 - (unless decoupled using request/reply-style handshakes)
What is High-Level?

• Abstract away detail/control from designer
 – pro: need not spell out every detail
 – con: cannot spell out every detail

• Missing details must be filled by someone
 – implied in the abstraction, and/or
 – filled in by the synthesis tool

• To be meaningful
 – reduce work, and/or
 – improve outcome

In HW practice, low tolerance for degraded outcome regardless of ease
Good-for-HW Compute Model Examples

- Systolic Array
- Data Parallel
- Dataflow
- Stream Processing
- Commonalities
 - reduce design complexity/effort
 - supports scalable parallelism under simplified global coordination (by imposing a “structure”)
 - allows straightforward, efficient HW mapping
 - BUT, doesn’t work for all problems

These models are not tied-to HW or SW
Good compute models distilled from good design patterns

• Both temporal and spatial patterns in
 – computation
 – synchronization
 – data buffering
 – data movement

 What is allowed? uniformity? complexity?

• What makes it good fit with hardware?
• What makes it good fit with application?
• What limits its generality?
Systolic Array

• An array of PEs (imagine each an FSM or FSM-D)
 – strictly, PEs are identical; cannot know the size of the array or position in the array
 – could generalize to other structured topologies
• Globally synchronized by “pulses”; on each pulse
 – exchange bounded data with direct neighbors
 – perform bounded compute on fixed local storage
• Scope of design capture is a PE
 – do same thing in every position/pulse
 – localized interactions with identical neighbor
E.g. Matrix-Matrix Multiplication

\[a = \text{nan}; \]
\[b = \text{nan}; \]
\[\text{accum} = 0; \]

For each pulse {
 \[\text{send-W}(a); \text{send-S}(b); \]
 \[a = \text{rcv-E}(); \ b = \text{rcv-N}(); \]
 if \(a \neq \text{nan} \)
 \[\text{accum} = a \times b + \text{accum}; \]
}

- Works for any \(n \)
- Only stores 3 vals per PE
- If \(N > n \), emulate at \(N^2/n^2 \) slowdown
Does the last slide come to mind when you see??

```cpp
float A[N][N], B[N][N], C[N][N];

for(int i=0; i<N; i++) {
    for(int j=0; j<N; j++) {
        for(int k=0; k<N; k++) {
            C[i][j]=C[i][j]+A[i][k]*B[k][j];
        }
    }
}
```
Why systolic array good for HW?

• Parallel and scalable in nature
 – can efficiently emulate key aspects of stream processing and data-parallel
 – easy to build corresponding HW on VLSI (especially 1D and 2D arrays)

• No global communication, except for pulse

• Scope of design/analysis/debug is 1 FSM-D

• Great when it works
 – linear algebra, sorting, FFTs
 – works more often than you think
 – but clearly not a good fit for every problem
Data Parallelism

• Abundant in matrix operations and scientific/numerical applications

• Example: DAXPY/LINPACK (inner loop of many linear algebra kernels)

\[Y = a \times X + Y = \begin{cases} \text{for}(i=0;\ i<N;\ i++)\ \{ \ Y[i]=a\times X[i]+Y[i] \} \end{cases} \]

- \(Y \) and \(X \) are vectors
- \(\sqrt{ } \) same operations repeated on each \(Y[i] \) and \(X[i] \)
- \(\sqrt{ } \) no data dependence across iterations

How to exploit data parallelism in hardware?
Data Parallel Execution

```c
for(i=0; i<N; i++) {
    C[i]=foo(A[i], B[i])
}
```

- Instantiate k copies of the hardware unit foo to process k iterations of the loop in parallel
Pipelined Execution

\[
\text{for}(i=0; i<N; i++) \{
 C[i] = \text{foo}(A[i], B[i])
\}
\]

- Build a deeply pipelined (high-frequency) version of \text{foo}()
E.g. SIMD Matrix-Vector Mult

// Each of the P threads is responsible for
// M/P rows of A; self is thread id
for (i = self*M/P; i < ((self+1)*M/P); i++) {
 y[i] = 0;
 for (j = 0; j < N; j++) {
 y[i] += A[i][j] * x[j];
 }
}

How to structure memory and array layout?
E.g. Vectorized Matrix-Vector Mult

Repeat for each row of A

```assembly
LV V1, Rx ; load vector x
LV V2, Ra ; load i’th row of A
MULV V3, V2, V1 ; element-wise mult
"reduce" F0, V3 ; sum elements to scalar
S.D Ry, F0 ; store scalar result
```

no such instruction allowed
(hint: is "reduce" data-parallel?
what is II of MULV vs "reduce"?)
E.g. Vectorized Matrix-Vector Mult

Repeat for each column of A

- `LVWS V0, (Ra, Rs)` ; load-strided i’th col of A
- `L.D F0, Rx` ; load i’th element of x
- `MULVS.D V1, V0, F0` ; vector-scalar mult
- `ADDV.D Vy, Vy, V1` ; element-wise add

Above is analogous (when/what/where) to the SIMD code

$Y = \underbrace{A}_{M \times N} \underbrace{x}_{N \times 1}$
Why is data-parallel good-for-HW?

• Simplest but highly restricted parallelism
• Open to mixed implementation interpretations
 – SIMD parallelism +
 – (deep) pipeline parallelism
• Great when it works
 – important form of parallelism for scientific and numerical computing
 – but clearly not a good fit for every problem
Dataflow Graphs

• Consider a von Neumann program
 – what is the significance of the program order?
 – what is the significance of the storage locations?

v := a + b;
w := b * 2;
x := v - w
y := v + w
z := x * y

• Dataflow operation ordering and timing implied in data dependence
 – instruction specifies who receives the result
 – operation executes when all operands received
 – “source” vs “intermediate” representation

(There is a lot more to this, e.g., loops, fxns)
Token Passing Execution

“fire” output tokens when all required input present

consider multi-, variable-cycle ops and links
Synchronous Dataflow

- Operate on flows (sequence of data values)
 - i.e., $X = \{x_1, x_2, x_3, \ldots\}$, “1” = \{1,1,1,1, \ldots\}
- Flow operators, e.g., switch, merge, duplicate
- Temporal operators, e.g. $\text{pre}(X) = \{\text{nil}, x_1, x_2, x_3, \ldots\}$

\[Y \rightarrow X \]
\[Z \rightarrow X \]
\[X \rightarrow X = 2Y + Z \]
\[X \rightarrow W = X + 1 \]

Fig 1, Halbwachs, et al., The Synchronous Data Flow Programming Language LUSTRE

Function vs Execution vs Implementation
What do you make of this?

```plaintext
node ACCUM(init, incVal: int; reset: bool) returns (n: int);
let
  n = init -> if reset then init else pre(n) + incr
tel
```

pre\(\{e_1,e_2,e_3, \ldots\}\) is \{\text{nil}, e_1,e_2,e_3, \ldots\}

\{e_1,e_2,e_3, \ldots\} \rightarrow \{f_1,f_2,f_3, \ldots\} is \{e_1,f_2,f_3,f_4 \ldots\}
Try Simulink in Vitis Model Composer

[Figure 8.1: “Reconfigurable Computing: The Theory and Practice of FPGA-Based Computation”]
Why is dataflow good-for-HW?

• Naturally express fine-grain, implicit parallelism
 Many variations, asynchronous, dynamic, . . .

• Loose coupling between operators
 – synchronize by order in flow, not cycle or time
 – no imposed operation ordering
 – no global communications

• Declarative nature permits implementation flexibilities

• Great when it works
 – excellent match with signal processing
 – but clearly not a good fit for every problem
Stream Processing

• Related to dataflow
 – operate on data in sequence (no random access)
 – repeat same operation on data in a stream
• Emphasis on IPs and their composition
 – design in terms of composing valid stream-to-stream transformations
 – simple, elastic, plug-and-play “interface”
• More flexible rules
 – input and output flows need not be synchronized
 – operator can have a fixed amount of memory
 • buffer/compute over a window of values
 • carry dependencies over values in a stream
Regular and Data-Independent: E.g., Vision Processing Pipeline

Color-based object tracking (linear pipeline, 4 stages)

Background subtraction (2-branch pipeline, 6 stages)

Corner + edge detection (3-branch pipeline, 10 stages)

Irregular and Data-Dependent

E.g., Network Packet Processing

- Eth IP core
- Packet Buffer
- Parser
- Flow Table
- OOO Linked List
- Data Mover
- Reassembler
- Shift-OR
- Hash Tables
- Multi-String Pattern Matcher
 - Rule Reduction
 - Port Group
 - Block Gen.
- DMA Engine
 - FPGA Ring Buffer
 - Check Packet Buffer
 - DMA
 - PCIe IP core
 - CPU Ring Buff
 - Full Matcher

- Mux
- ethrnt
- TCP flow reassembly
- "fast pattern" matching
- 2nd filtering
- Offloading to CPU
- CPU full matching

https://github.com/cmu-snap/pigasus
Commonalities Revisited

• Parallelism under simplified global coordination
 – enforced regularity
 – asynchronous coupling
• Straightforward efficient mapping to hardware
 – low performance overhead
 – low resource overhead
 – high resource utilization
• Simplify design without interfering with quality
• But only works on specific problem patterns
Parting Thoughts:
Conflict between High-Level and Generality

insist on quality

high-level: tools know better than you

RTL synthesis: general-purpose but special handling of structures like FSM, arith, etc.

place-and-route: works the same no matter what design
What about C for HW?

• Common arguments for using C to design HW
 – popularity
 – algorithm specification

• A large semantic gap to bridge
 – sequential thread of control
 – abstract time
 – abstract I/O model
 – functions only have a cost when executing
 – missing structural notions: bit width, ports, modules

• Still, no problem getting HW from C

How to get “good” hardware from C?
A Program is a Functional-Level Spec

```c
int fibi(int n) {
    int last=1; int lastlast=0; int temp;

    if (n==0) return 0;
    if (n==1) return 1;

    for(;n>1;n--) {
        temp=last+lastlast;
        lastlast=last;
        last=temp;
    }

    return temp;
}
```
A Program is a Functional-Level Spec

```c
int fibm(int n) {
    int *array,*ptr; int i;
    if (n==0) return 0;
    if (n==1) return 1;
    array=malloc(sizeof(int)*(n+1));
    array[0]=0; array[1]=1;
    for(i=2,ptr=array ; i<=n ; i++,ptr++)
        *(ptr+2)=*(ptr+1)+*ptr;
    i=array[n];
    free(array);
    return i;
}
```
A Program is a Functional-Level Spec

```java
int fibr(int n) {
    if (n==0) return 0;
    if (n==1) return 1;
    return fibr(n-1)+fibr(n-2);
}
```
Questions for Next Time

• Do they all compute the same “function”?

• Should they all lead to the same hardware?

• Should they all lead to “good” hardware?
 – what does recursion look like in hardware?
 – what does malloc look like in hardware?