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Housekeeping
• Your goal today

– see why you should care about accelerators
– know the basics to think about the topic

• Notices
– Lab4, due this week
– HW5, past due

• Readings
– Amdahl's Law in the Multicore Era, 2008 (optional)
– Single-Chip Heterogeneous Computing: Does the 

Future Include Custom Logic, FPGAs, and GPGPUs? 
2010 (optional)
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“HW Acceleration” is nothing new!

• What needed to be faster/smaller/cheaper/ 
lower-energy than SW has always been done in 
HW
– we go to HW when SW isn’t good enough because 

“good” HW can be more efficient
– we don’t go to HW when SW is good enough 

because “good” HW takes more work

• When we say “HW acceleration”, we always 
mean efficient and not just correct
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Computing’s Brave New World

Microsoft Catapult 
[MICRO 2016, 
Caulfield, et al.]

Google TPU 
[Hotchips, 2017,

Jeff Dean]
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How we got here . . . .
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Under fixed power ceiling, more ops/second 
only achievable if less Joules/op?

Moore’s Law without Dennard Scaling
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What will (or can) you 
do with all those 

transistors?
GPGPU

Future is about 
Performance/Watt and Ops/Joule
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This is a sign of desperation . . . .
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Why is Computing Directly in 
Hardware Efficient?
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Why is HW/FPGA better?
no overhead

• A processor spends a lot of transistors & energy
– to present von Neumann ISA abstraction
– to support a broad application base (e.g., caches, 

superscalar out-of-order, prefetching, . . .)

• In fact, processor is mostly overhead
– ~90% energy [Hameed, ISCA 2010, Tensilica core]

– ~95% energy [Balfour, CAL 2007, embedded RISC ]

– even worse on a high-perf superscalar-OoO proc

Computing directly in application-specific hardware
can be 10x to 100x more energy efficient
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Why is HW/FPGA better? 
efficiency of parallelism

• For a given functionality, 
non-linear tradeoff 
between power and 
performance
– slower design is simpler
– lower frequency needs 

lower voltage

For the same throughput, 
replacing 1 module by 2 
half-as-fast reduces total 
power and energy Perf (op/sec)
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PowerPerf k>1

Better to replace 1 of this
by 2 of these; 

Good hardware designs derive performance from parallelism

or N of
these
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Software

Hardware

Software to Hardware Spectrum

• CPU: highest-level abstraction /
most general-purpose support

• GPU: explicitly parallel programs /
best for SIMD, regular

• FPGA: ASIC-like abstraction /
overhead for reprogrammability

• ASIC: lowest-level abstraction /
fixed application and tuning
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ASIC isn’t always ultimate in performance
• Amdahl’s Law: Soverall = 1 / ( (1-f) + f/Sf )
• Sf-ASIC > Sf-FPGA but fASIC  fFPGA

• fFPGA > fASIC (when not perfectly app-specific)
– more flexible design to cover a greater fraction
– reprogram FPGA to cover different applications

[based on Joel Emer’s original comment 
about programmable accelerators in general]
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fASIC

Sf-ASIC

fFPGA (at break-even)

Sf-FPGA
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Tradeoff in Heterogeneity?
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BCE BCE

BCE BCE

Amdahl’s Law on Multicore

• A program is rarely 
completely parallelizable; 
let’s say a fraction f is 
perfectly parallelizable

• Speedup of n cores over 
“sequential”

• But, “sequential” above 
determined by how many 
cores to dice an area into

BCE BCE BCE BCE
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BCEBCE BCE

Base Core Equivalent (BCE) 
in [Hill and Marty, 2008]
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http://research.cs.wisc.edu/multifacet/amdahl/

F=0.999

F=0.99

F=0.9

F=0.5

more smaller cores  size of cores in BCE      fewer larger cores

16x 1-BCE 
cores

1x 16-BCE 
core

assume perf 
grows with 
sqrt of area
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BCE BCE

BCE BCE

Asymmetric Multicores
• Pwr/area-efficient “slow” BCEs vs 

pwr/area-hungry “fast” core
– fast core for sequential code
– slow cores for parallel sections

• [Hill and Marty, 2008]

– r = cost of fast core in BCE
– perfseq = speedup of fast core over 

BCE
– solve for optimal die allocation

Fast Core

BCE BCE BCE BCE
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Base Core Equivalent (BCE) 
in [Hill and Marty, 2008]
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F=0.999

F=0.99

F=0.9

F=0.5

http://research.cs.wisc.edu/multifacet/amdahl/

size of fast core in BCE

F=0.999

F=0.99

F=0.9

16x 1-BCE 
cores

1x 16-BCE 
core

8x 1-BCE 
cores +
1x 8-BCE 
fast core
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Heterogeneous Multicores 
[Chung, et al. MICRO 2010]
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For the sake of analysis, break the area for GPU/FPGA/etc. 
into units of U-cores that are the same size as BCEs. Each 
U-core type is characterized by a relative performance µ
and relative power  compared to a BCE

seqseq perfrn
f

perf
f

Speedup







)(
1

1

[Hill and Marty, 2008] simplified
f is fraction parallelizable
n is total die area in BCE units
r is fast core area in BCE units
perfseq(r) is fast core perf. relative to BCE

Base Core Equivalent
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Modeling Power and Bandwidth Budgets

• The above is based on area alone
• Power or bandwidth budget limits the usable die area

– if P is total power budget expressed as a multiple of a BCE’s 
power,

usable U-core area
– if B is total memory bandwidth expressed as a multiple of 

BCEs,
usable U-core area 
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 and μ example values

MMM Black-Scholes FFT-210

Nvidia
GTX285

Φ 0.74 0.57 0.63

μ 3.41 17.0 2.88

Xilinx
LX760

Φ 0.31 0.26 0.29

μ 0.75 5.68 2.02

Custom
Logic

Φ 0.79 4.75 4.96

μ 27.4 482 489

Nominal BCE based on an Intel Atom 
in-order processor,  26mm2 in a 45nm process

On equal area 
basis, 3.41x 
performance at 
0.74x power 
relative a BCE
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Case Study [Chung, MICRO 2010]
CPU GPUs FPGA ASIC

Intel
Core i7-960

Nvidia
GTX285

ATI
R5870

Xilinx
V6-LX760 Std. Cell

Year 2009 2008 2009 2009 2007

Node 45nm 55nm 40nm 40nm 65nm

Die area 263mm2 470mm2 334mm2 - -

Clock rate 3.2GHz 1.5GHz 1.5GHz 0.3GHz -

Single-prec.
floating-point

apps 

M-M-Mult MKL 10.2.3
Multithreaded

CUBLAS 2.3 CAL++ hand-coded

FFT Spiral.net
Multithreaded

CUFFT 2.3
3.0/3.1 - Spiral.net

Black-Scholes
PARSEC 

multithreaded
CUDA 2.3 - hand-coded
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“Best-Case” Performance and Energy

• CPU and GPU benchmarking is compute-bound; FPGA and Std 
Cell effectively compute-bound (no off-chip I/O)

• Power (switching+leakage) measurements isolated the core 
from the system

• For detail see [Chung, et al. MICRO 2010]

Device GFLOP/s
actual

(GFLOP/s)/mm2

normalized to 
40nm

GFLOP/J
normalized to 

40nm

MMM

Intel Core i7 (45nm) 96 0.50 1.14

Nvidia GTX285 (55nm) 425 2.40 6.78

ATI R5870 (40nm) 1491 5.95 9.87

Xilinx V6-LX760 (40nm) 204 0.53 3.62

same RTL std cell (65nm) --- 19.28 50.73
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Less Regular Applications

Mopt/s (Mopts/s)/mm2 Mopts/J

Bl
ac

k-
Sc

ho
le

s Intel Core i7 (45nm) 487 2.52 4.88

Nvidia GTX285 (55nm) 10756 60.72 189

ATI R5870 (40nm) - - -

Xilinx V6-LX760 (40nm) 7800 20.26 138

same RTL std cell (65nm) 25532 1719 642.5

GFLOP/s (GFLOP/s)/mm2 GFLOP/J

FF
T-

210

Intel Core i7 (45nm) 67 0.35 0.71

Nvidia GTX285 (55nm) 250 1.41 4.2

ATI R5870 (40nm) - - -

Xilinx V6-LX760 (40nm) 380 0.99 6.5

same RTL std cell (65nm) 952 239 90
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Combine Model with ITRS Trends

• 2011 parameters reflect high-end 
systems of the day; future parameters 
extrapolated from ITRS 2009

• 432mm2 populated by an optimally sized 
Fast Core and U-cores of choice  

Year 2011 2013 2016 2019 2022

Technology 40nm 32nm 22nm 16nm 11nm

Core die budget (mm2) 432 432 432 432 432

Normalized area (BCE) 19 37 75 149 298

Core power (W) 100 100 100 100 100

Bandwidth (GB/s) 180 198 234 234 252

Rel pwr per device 1X 0.75X 0.5X 0.36X 0.25X

Fast Core

U U U U

U

U

U

U

U

UU U

(16x)

(1.4x)
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Single-Prec. MMMult (f=99%)
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Single-Prec. MMMult (f=90%)
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Single-Prec. MMMult (f=50%)
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Single-Prec. FFT-1024 (f=99%)
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FFT-1024 (f=99%)
if 1TB/sec memory bandwidth
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You will be seeing more of this

• Performance scaling requires improved efficiency 
in Op/Joules and Perf/Watt

• Hardware acceleration is the most direct way to 
improve energy/power efficiency

• Need better hardware design methodology to 
enable application developers (without losing 
hardware’s advantages)

• Software is easy; hardware is hard?

Hardware isn’t hard; perf and efficiency is!!!


