18-447 Lecture 26: Interconnects

James C. Hoe Department of ECE Carnegie Mellon University

18-447-S20-L26-S1, James C. Hoe, CMU/ECE/CALCM, ©2020

Housekeeping

- Your goal today
 - get an overview of parallel processing interconnect topics—whether it is on-a-chip or around-the-world
- Notices
 - HW 5 past due, Lab 4 due Friday 5/1
 - Midterm 3, Thursday, 5/7, 5:30pm~6:25pm
- Readings
 - P&H Ch 6
 - The CONNECT Network-on-Chip Generator, 2015 (optional)

Connecting Things "Systematically"

Broadcast Bus 0 1 2 3 4 5 6 7

- Simple and cheap
- Everyone sees everyone else's transactions (good for ordering and cache coherence)
- But
 - bandwidth cannot scale with system size, N
 - latency suffer terribly under load
 - electrically challenging as speed and ${\sf N}$ grow

Physical extent by itself is not necessarily an issue, e.g., IEEE 802.3 CSMA/CD and ALOHAnet

Other Extreme: All-to-All Point-to-Point

- Concurrent sends to non-conflicting destinations
- Still expensive to scale, O(N) wires but O(N²) Xs

18-447-S20-L26-S6, James C. Hoe, CMU/ECE/CALCM, ©2020

Multistage Circuit Switched

- More restrictions on concurrent Tx-Rx pairs
- More scalable, e.g., O(N logN) cost for Butterfly

18-447-S20-L26-S7, James C. Hoe, CMU/ECE/CALCM, ©2020

Packet Switched

- Packetized send and forget operation
- Packets "hop" from router to router, pending availability of the next-required switch and buffer

18-447-S20-L26-S8, James C. Hoe, CMU/ECE/CALCM, ©2020

From a Distance: Performance Characteristics

Test Traffic Patterns

- Ideally, know the traffic and perf. requirement
- If not, resort to "test traffic patterns"
 - capture average, best, worst case scenarios
 - stress and highlight hotspots and weaknesses
 - like "benchmarks" for CPUs
- Random: non/uniform, {all-to-all, 1-to-all, all-to-1}
- Bit permutations
 - each source has 1 destination
 - dest ID is a bit permutation of source ID
 - e.g. transpose, shuffle, complement, reverse, …
- Other synthetic: tornado, nearest neighbor, ...
- Playback of real/synthestic workload traces

Load-Delay Curve

A Little Closer Now: Different Topologies to Meet Different Requirements

Unidirectional Ring

- Simplest topology and implementation
 - O(N) cost
 - O(1) worst-case bisection BW (left-right halves),
 but O(N) best-case bisection BW(odd-even halves)
 - N/2 average hops; latency depends on utilization
 Simplicity allows very high-freq router and link

- Bi-directional links; travel left or right to go from src to dest; N/3 average hops
- "Torus" wraps around nodes 0 and (N-1) for N/4 avg hops; physically interleaved to avoid long links

- 2D layout scales easily as system-area network or network-on-chip; O(N^{0.5}) bisection bandwidth
- Dimensional routing: first route to col in fewest hops then route in 2nd dimension
- Generalizable to higher dimensional mesh networks

Higher Dimensional Topologies: e.g., Butterfly & Hypercube

5D Hypercube

- Fewer hops; higher bisection bandwidth
- Hard to physically place wires in high dimensions
- Hypercube switch complexity grows as log(N)

- Like a tree, 2log(n) hops for a neighborhood of n nodes; 2log(N) worst-case hops across a system
- Unlike a simple tree, fat-tree adds an alternate uproute at each router at each level: O(N) bisection BW
- Random-up, deterministic-down routing

18-447-S20-L26-S20, James C. Hoe, CMU/ECE/CALCM, ©2020

Of all things, why a lowly ring?

[https://software.intel.com/en-us/articles/intel-xeon-processorscalable-family-technical-overview]

Traffic, Scale & Cost Dictates

Up Close and Personal: Packets and Routers

Network Packets

CM-5 Packets

Ethernet Packets

- Header
 - dest ID or route bits
 - src ID, priority, packet type, etc.
- Data payload
 - large vs. small
 - fixed vs. variable

- Checksum
 - redundancy coding (e.g., CRC)
 - most cases only for detection not correction

A Basic Router

- Packet enters on an Rx-link and choose a Tx-link to exit
 - route table maps dest-ID to Tx-link; OR
 - a fixed fxn of dest-ID or route-bits; OR
 - adaptive for congestion or fault
- Packets wait in buffer until
 - next router has buffer space; AND
 - Tx-link/crossbar is free

Packets vs. Flits

- A "packet" is made up of 1 or more fixed-size "flits"
 - route packets
 - flow-control flits
- Credit-based flow control
 - Tx logic hold credits for downstream Rx buffer
 - Tx logic deduct 1 credit
 when sending 1 flit; stop
 when out of credit
 - Rx logic return a credit token when a flit advances out of its buf

Virtual Networks

- Time-multiplex same physical links over multiple sets of packet buffers
- Effectively multiple independent networks
 - to provide different priority packet classes
 - to get around blockage
 - to avoid deadlocks

18-447-S20-L26-S27, James C. Hoe, CMU/ECE/CALCM, ©2020

Parameter	Value	Preview (hide endpoints)
Network Topology		
Topology 🕕	Double Ring	
Number of Endpoints	8 -	
Network and Router Options		
Router Type 🛈	Virtual Channel (VC)	R4 Z R6
Number of VCs 🛈	2 -	
Flow Control Type 🔔	Credit-Based Flow Control	
Flit Data Width 🕕	64 💌	44 74
Advanced Options (click to expand)		
Contact and Delivery Info		R2 R0
Name	First Last	
Affiliation		and and
Email 🛈	Valid email required	
I have read, understood	, and I agree to the license terms	click to enlarge
Generate Network	- click here to generate network	(