18-447 Lecture 25:
Synchronization

James C. Hoe
Department of ECE
Carnegie Mellon University

18-447-523-125-S1, James C. Hoe, CMU/ECE/CALCM, ©2023

Housekeeping

e Your goal today
— be introduced to synchronization concepts
— see hardware support for synchronization

e Notices

— HWS5, due Friday 4/28 midnight

— Lab 4, due this week

— Final Exam, May 4 Thu, 8:30am-11:30am
e Readings

— P&H Ch2.11, Ch6

— Synthesis Lecture: Shared-Memory
Synchronization, 2013 (advanced optional)

18-447-523-125-S2, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

This is not 18-447

e
== |
B

; ————

C‘Q//

mes C. Hoe, CMU/ECE/CALCM, ©2023 [Wikimedia Creative Commons]

18-44

CarnegieMellon

What is 18-447

e Lab 1~3: knowledge and skill

c — anyone with a wrench can take apart a car

/,ﬁ{— Google Lens can tell you what each part is

(wikimediacommon] - — trgined person can put back a working car
e Lab 4: analyze and optimize

— what design decisions make for a car that is
fast vs good mileage?

R

— how to decide how fast or efficient to make it?
e Think, Ask, Invent: what is the “right”
future for personal transport?

18-447-523-125-S4, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Computer Architecture is Engineering

e An applied discipline of finding and optimizing
solutions under the joint constraints
of demand, technology, economics,
and ethics

e Thus, instances of what we practice
evolve continuously

e Need to learn the principles
that govern how to develop
solutions to meet constraints

e Don’t memorize instances;

understand why it is that way

mes C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

What exponential really looks like

1

perf and capacity

of processing, storage, 1/0O

@{abs, per-S, per-m3, per-kg . .

[

You just have to stand far back enough to see it

18-447-523-125-S6, James C. Hoe, CMU/ECE/CALCM, ©2023

Returning to normally
scheduled programming

18-447-523-125-S7, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

A simple example: producer-consumer
e Consumer waiting for result from producer in
shared-memory variable Data

e Producer uses another shared-memory variable
Ready to indicate readiness (R=0 initially)

(upper-case for shared-mem Variables)

producer: consumer:
compute into D while (R!=1) ;
=1 _cgr;s:ame D

e Straightforward if SC; if WC, need memory fences
to order operationson Rand D

18-447-523-125-S8, James C. Hoe, CMU/ECE/CALCM, ©2023

Data Races

e E.g., threads T1 and T2 increment a shared-
memory variable V initially O (assume SC)

T1: T2:
t=Vv t=Vv
t=t+1 t=t+1
V=t V=t

Both threads both read and write V

e What happens depends on what T2 does in
between T1’s read and write to V (and vice versa)

e Correctness depends on T2 not reading or writing
V between T1’s read and write (“critical section”)

18-447-523-125-S9, James C. Hoe, CMU/ECE/CALCM, ©2023

Mutual Exclusion: General Strategy

e Goal: allow only either T1 or T2 to execute their
respective critical sections at one time

No overlapping of critical sections!

e |dea: use a shared-memory variable Lock to
indicate whether a thread is already in critical
section and the other thread should wait

e Conceptual Primitives:

— wait-on: to check and block if L is already set
— acquire: to set L before a thread enters critical sect
— release: to clear L when a thread leaves critical sect

18-447-523-125-S10, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Mutual Exclusion: 15t Try

e Assume L=0 initially

T1: T2:
while (L'!'=0) ; while (L!'=0) ;<5 wait
~ L=1;) L=l;<«—_ =— acquire
E t=V E t=V
=4 t=func,(t,..) S4 t=func,(t,..)
5L v=t 5L v=t
L=0; L=0; <« =—— release

But now have same problem with data race on L

18-447-523-125-S11, James C. Hoe, CMU/ECE/CALCM, ©2023

Mutual Exclusion: Dekker’s

e Using 3 shared-memory variables: Clear1=1,
Clear2=1, Turn=1 or 2 initially (assumes SC)

Cl=0; C2=0;
while (C2==0) while (C1==0) .
if (T==2) { if (T==1) { [
Cl=1; c2=1; O
while (T==2) ; while(T==1);-§
Cl=0; C2=0; =
} } <
{...Critical Section . ..} {...Critical Section . ..} 2
T=2; T=1; E
Cl=1; C2=1; E

e Can you decipher this? Extend to 3-way?
Need an easier, more general solution

18-447-523-125-S12, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Aside: what happens in Dekker’s w/o T

e Using shared-memory variables: Clearl=1, Clear2=1
initially (assumes SC)

Cl=0; C2=0;

while (C2==0) { while (C1==0) {
Cl=1l; CcC2=1;
some delay; some delay;
Cl=0; C2=0;

} }

{...Critical Section . ..} {...Critical Section . ..}

Cl=1l; CcC2=1;

e Above is safe—if one side in C.S., the other isn’t

e Either or both loop forever if pathological timing
18-447-523-125-513, James C. Hoe, CMU/ECE/CALCM, ©2023 Live,o Ck pOSSib le

Aside: Dumb it down more

e Using shared-memory variables: Clearl=1, Clear2=1
initially (assumes SC)

Cl=0; C2=0;

while (C2==0) { while (C1l==0) {
some delay; some delay;

} }

{...Critical Section . ..} {...Critical Section . ..}

Cl=1l; c2=1;

e Above is still safe—if one side in C.S., the other isn’t

e Both loop forever if tried at same time
Deadlock possible

18-447-523-125-S14, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Atomic Read-Modify-Write Instruction

e Special class of memory instructions to facilitate
implementations of lock synchronizations

e Effects executed “atomically” (i.e. not interleaved

by other reads and writes)

— reads a memory location

— performs some simple calculation

— writes something back to the same location

HW guarantees no intervening read/write by others

E.g., <swap> (addr,req) :
temp<MEM[addr] ;
MEM[addr] <«reg;
reg<—temp;

Expensive to imp

18-447-523-125-S15, James C. Hoe, CMU/ECE/CALCM, ©2023

<testé&set> (addr, req):
reg<MEM[addr] ;

if (reg==0)
MEM|[addr]<«1;

ement and to execute

Acquire and Release

e Could rewrite earlier examples directly using
<swap> or <testé&set> instead loads and stores

e Better to hide ISA-dependence behind portable
Acquire () and Release () routines

T1: T2:
Acquire (L) ; Acquire (L) ;
§ B t=V Tc) i t=V
=4 t=func, (t,V,.) =4 t=func,(t,V,..))
S V=t S V=t
Release (L) ; Release (L) ;

Note: implicit in Aequire (L) is to wait on L if not free

18-447-523-125-S16, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Acquire and Release
e Using <swap>, L initially O

void Acquire (L) { void Release (L) {
do { L=0;
reg=1; }
<swap>(L, reg);
} while (reg!=0);
}

e Using <testé&set>, Linitially O

void Acquire (L) { void Release (L) {
<testé&set>(L,regq); }
} while (reg!'=0);

}

Many equally powerful variations of atomic
Lpat7523-25517, ames . woe, ricrancn ezos . RIVIW INStS can accomplish the same

CarnegieMellon

High Cost of Atomic RMW Instructions

e Literal enforcement of atomicity very early on

e |In CC shared-memory multiproc/multicores
— RMW requires a writeable M/E cache copy

— lock cacheblock from replacement during RMW

— expensive when lock contended by many
concurrent acquires—a lot of cache misses and
cacheblock transfers, just to swap “1” with “1”

e Optimization
— check lock value using normal
load on read-only S copy
— attempt RMW only when
success is possible

18-447-523-125-518, James C. Hoe, CMU/ECE/CALCM, ©2023

do {
reg=1;
if ('L) {
<swap>(L, reg);
}

} while (reg!=0);

CarnegieMellon

RMW without Atomic Instructions

e Add per-thread architectural state: reserved,

address and status |<st-cond>(addr, req) :
if (reserved &&

: ddress==addr)
<1ld-linked> (reg,addr) : a ,

reg < MEM[addr]; 232?‘;115_]](__ teg;

reserved <« 1; ’

address < addr; else
status < 0;

« <1d-1linked> requests S-copy (if not alrdy S or M)

e HW clears reserved if cached copy lost due to CC
(i.e., store or <st-cond> at another thread)

e |f reserved stays valid until <st-cond>, request M-
copy (if not already M) and update; can be no other
intervening stores to address in between!!

18-447-523-125-S19, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Acquire () by ld-linked and st-cond

do

void Acquire (L) {

} while (status==0) ;

reqg, =1;
do {

<ld-linked>(reg,, L)
while (reg,!=0) ;
<st-cond> (L, reqg,)

2

18-447-523-125-S20, James C. Hoe, CMU/ECE/CALCM, ©2023

if L is modified in
between by another
thread, <st-cond>
will fail and you know
to try again

CarnegieMellon

Resolving Data Race without Lock

e E.g., two threads T1 and T2 increment a shared-
memory variable V initially O (assume SC)

context | T1: T2:
switch\, 4o 1 do {
Okay?Vxllva<ld—linked> (t,V) <ld-linked>(t,V)
t=t+1 t=t+1
<st-cond>(V, t) <st-cond>(V, t)
} while (status==0) } while (status==0)

e Atomicity not guaranteed, but. . ..
 You know if you succeeded; no effect if you don’t
Just try and try again until you succeed

18-447-523-125-S21, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Barrier Synchronization

Ty

Ts

Te

T

TolTo|T5| T5| TalTs|Te

T;

To

18-447-523-125-S22, James C. Hoe, CMU/ECE/CALCM, ©2023

T8 T9 TlO Tll T12 T13_T14 T15

// at the end of L20 sumParallel ()
remain=p;

do {

‘ pthread barrier wait (&barrier) ;

}

half=(remain+l)/2;

if (id<(remain/2))
psum[id]=psum[id] +psum[id+half];

remain=half;

while (remain>1l) ;

CarnegieMellon

(Blocking) Barriers

e Ensure a group of threads have all reached an
agreed upon point
— threads that arrive early have to wait
— all are released when the last thread enters

e Can build from shared memory on small systems

e.g., for a simple 1-time-use barrier (B=0 initially)

Acquire (L;) R
B=B+1; — enter
Release (L;) ~
while (B!=NUM THREADS) ; wait

e Barrier on large systems are expensive, often
supported/assisted by dedicated HW

18-447-523-125-S23, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Nonblocking Barriers

e Separate primitives for enter and exit
— enterBar () is hon-blocking and only records
that a thread has reached the barrier

Acquire (Ly)
B=B+1 ;
Release (L;)

— exitBar() blocks until the barrier is complete
while (B!=NUM THREADS) ;
e Athread
— calls enterBar() then go on to independent work

— calls exitBar() only when no more work that
doesn’t depend on the barrier

18-447-523-125-S24, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Pass this point not on exams

For more, go read “Synthesis Lecture: Transactional
Memory,” 2" Ed., 2010

18-447-523-125-S25, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Transactional Memory

T1: T2:
TxnBegin () ; TxnBegin () ;
t=V t=Vv
t=func, (t,V,..) t=func, (t,V,..)
V=t V=t
TxnEnd () ; TxnEnd () ;

« Acquire (L)/Release (L) say do one at a time

e TxnBegin () /TxnEnd () say “look like” done one at
a time

Implementation can allow transactions to
overlap and only fixes things if violations observable

18-447-523-125-S26, James C. Hoe, CMU/ECE/CALCM, ©2023

Optimistic Execution Strategy

e Allow multiple transaction executions to overlap
e Detect atomicity violations between transactions
e On violation, one of the conflicting transactions is
aborted (i.e., restarted from the beginning)
— TM writes are speculative until reaching TxnEnd

— speculative TM writes not observable by others
e Effective when actual violation is unlikely, e.g.,
— multiple threads sharing a large structure/array

— cannot decide statically which part of
structure/array touched by different threads

— conservative locking adds a cost to every access
— TM incurs a cost only when data races occur

18-447-523-125-S27, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Detecting Atomicity Violation

e A transaction tracks memory RdSet and WrSet

e Txn, appears atomic with respect to Txn, if
— WrSet(Txn,) N (WrSet(Txn,) U RdSet(Txn,)) = &
— RdSet(Txn,) N WrSet(Txn,) = &
e |Lazy Detection
— broadcast RdSet and WrSet to other txns at TxnEnd
— waste time on txns that failed early on
e Eager Detection

— check violations on-the-fly by monitoring other
txns’ reads and writes

— require frequent communications

18-447-523-125-S28, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Oversimplified HW-based TM using CC

e Add RdSet and WrSet status bits to identify
cacheblocks accessed since TxnBegin

e Speculative TM writes
— issue BusRdOwn/Invalidate if startinginlor S
— issue BusWr(old value) on first write to M block
— on abort, silently invalidate WrSet cacheblocks
— on reaching TxnEnd, clear RdSet/WrSet bits
Assume RdSet/WrSet cacheblocks are never displaced
e Eager Detection
— snoop for BusRd, BusRdOwn, and Invalidation

— M-S, M-l or S—>I downgrades to RdSet/WrSet
indicative of atomicity violation
Which transaction to abort?

18-447-5S23-125-S29, oe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Why not transaction’ize everything?

void *sumParallel
(void *_id) {

long id=(long) id; void *sumParallel

(void *_id) {

long i;
long N=ARRAY SIZE/p; long id=(long) _id;
B long i;
TxnBegin () ; long N=ARRAY SIZE/p;
for (i=0;i<N;i++) {
double v=A[id*N+i]; for (i=0;i<N;i++) {
if (v>=0) TxnBegin () ;
SumPos+=v; double v=A[id*N+i];
else if (v>=0)
SumNeg+=v; SumPos+=v;
} else
TxnEnd () ; SumNeg+=v;
} TxnEnd () ;

}
}

Compute separate sums of positive and negative
elements of A in SumPos and SumNeg

18-447-523-125-S30, James C. Hoe, CMU/ECE/CALCM, ©2023

p=2

void *sumParallel
(void *_id) {
long id=(long) _id;
long 1i;
long N=ARRAY SIZE/p;

for (i=0;i<N;i++) {
double v=A[id*N+i];
if (v>=0) {
TxnBegin() ;
SumPos+=v;
TxnEnd () ;

} else {
TxnBegin() ;
SumNeg+=v;
TxnEnd () ;

} Better??

CarnegieMellon

Overhead vs Likelihood of Succeeding

void *sumParallel
(void *_id) {
long id=(long) _id;
long 1i;
long N=ARRAY_SIZE/P;
double psumPos=0;
double psumNeg=0;

for (i=0;i<N;i++) {
double v=A[id*N+i];
if (v>=0)
psumPos+=v;
else
psumNeg+=v;
}
TxnBegin() ;
if (psumPos) SumPos+=psumPos;
if (psumNeqg) SumNeg+=psumNeg;
TxnEnd () ;

18-447-523-125-S31, James C. Hoe, CMU/ECE/CALCM, ©2023

local non-shared }

if (psumPos) {
Acquire(L,,.);
SumPos+=psumPos;
Release(L,.);

if (psumNeg) {
Acquire(L,..);
SumNeg+=psumNegqg;

Release(Lneg);

versus

if (psumPos| | psumNeg) {
Acquire(L);
SumPos+=psumPos;
SumNeg+=psumNegqg;
Release(L);

