
18-447-S23-L25-S1, James C. Hoe, CMU/ECE/CALCM, ©2023

18-447 Lecture 25:
Synchronization

James C. Hoe
Department of ECE

Carnegie Mellon University

18-447-S23-L25-S2, James C. Hoe, CMU/ECE/CALCM, ©2023

Housekeeping
• Your goal today

– be introduced to synchronization concepts
– see hardware support for synchronization

• Notices
– HW5, due Friday 4/28 midnight
– Lab 4, due this week
– Final Exam, May 4 Thu, 8:30am-11:30am

• Readings
– P&H Ch2.11, Ch6
– Synthesis Lecture: Shared-Memory

Synchronization, 2013 (advanced optional)

18-447-S23-L25-S3, James C. Hoe, CMU/ECE/CALCM, ©2023

This is not 18-447

[Wikimedia Creative Commons]

18-447-S23-L25-S4, James C. Hoe, CMU/ECE/CALCM, ©2023

What is 18-447
• Lab 1~3: knowledge and skill

– anyone with a wrench can take apart a car
– Google Lens can tell you what each part is
– trained person can put back a working car

• Lab 4: analyze and optimize
– what design decisions make for a car that is

fast vs good mileage?
– how to decide how fast or efficient to make it?

• Think, Ask, Invent: what is the “right”
future for personal transport?

[Wikimedia Common]

R&

18-447-S23-L25-S5, James C. Hoe, CMU/ECE/CALCM, ©2023

Computer Architecture is Engineering

• An applied discipline of finding and optimizing
solutions under the joint constraints
of demand, technology, economics,
and ethics

• Thus, instances of what we practice
evolve continuously

• Need to learn the principles
that govern how to develop
solutions to meet constraints

• Don’t memorize instances;
understand why it is that way

18-447-S23-L25-S6, James C. Hoe, CMU/ECE/CALCM, ©2023

What exponential really looks like

today time

pe
rf

 a
nd

 c
ap

ac
ity

of

 p
ro

ce
ss

in
g,

 st
or

ag
e,

 I/
O

@
{a

bs
, p

er
-$

, p
er

-m
3 ,

pe
r-

kg
 .

. .
 }

You just have to stand far back enough to see it

18-447-S23-L25-S7, James C. Hoe, CMU/ECE/CALCM, ©2023

Returning to normally
scheduled programming

18-447-S23-L25-S8, James C. Hoe, CMU/ECE/CALCM, ©2023

A simple example: producer-consumer
• Consumer waiting for result from producer in

shared-memory variable Data
• Producer uses another shared-memory variable
Ready to indicate readiness (R=0 initially)

(upper-case for shared-mem Variables)

• Straightforward if SC; if WC, need memory fences
to order operations on R and D

producer:
……
compute into D

R=1
……

consumer:
……
while(R!=1);

consume D
……

18-447-S23-L25-S9, James C. Hoe, CMU/ECE/CALCM, ©2023

Data Races
• E.g., threads T1 and T2 increment a shared-

memory variable V initially 0 (assume SC)

Both threads both read and write V
• What happens depends on what T2 does in

between T1’s read and write to V (and vice versa)
• Correctness depends on T2 not reading or writing
V between T1’s read and write (“critical section”)

T1:
t=V
t=t+1
V=t

T2:
t=V
t=t+1
V=t

18-447-S23-L25-S10, James C. Hoe, CMU/ECE/CALCM, ©2023

Mutual Exclusion: General Strategy

• Goal: allow only either T1 or T2 to execute their
respective critical sections at one time

No overlapping of critical sections!
• Idea: use a shared-memory variable Lock to

indicate whether a thread is already in critical
section and the other thread should wait

• Conceptual Primitives:
– wait-on: to check and block if L is already set
– acquire: to set L before a thread enters critical sect
– release: to clear L when a thread leaves critical sect

18-447-S23-L25-S11, James C. Hoe, CMU/ECE/CALCM, ©2023

Mutual Exclusion: 1st Try
• Assume L=0 initially

But now have same problem with data race on L

T1:
while(L!=0);
L=1;
t=V
t=func1(t,…)
V=t
L=0;

T2:
while(L!=0);
L=1;
t=V
t=func2(t,…)
V=t
L=0;

cr
iti

ca
l

cr
iti

ca
l

wait
acquire

release

18-447-S23-L25-S12, James C. Hoe, CMU/ECE/CALCM, ©2023

Mutual Exclusion: Dekker’s
• Using 3 shared-memory variables: Clear1=1,
Clear2=1, Turn=1 or 2 initially (assumes SC)

• Can you decipher this? Extend to 3-way?

C1=0;
while(C2==0)

if (T==2) {
C1=1;
while(T==2);
C1=0;

}
{ . . . Critical Section . . . }
T=2;
C1=1;

C2=0;
while(C1==0)

if (T==1) {
C2=1;
while(T==1);
C2=0;

}
{ . . . Critical Section . . . }
T=1;
C2=1;

(h
in

t:
T

is
 th

e
tie

 b
re

ak
er

)

Need an easier, more general solution

18-447-S23-L25-S13, James C. Hoe, CMU/ECE/CALCM, ©2023

Aside: what happens in Dekker’s w/o T
• Using shared-memory variables: Clear1=1, Clear2=1

initially (assumes SC)

• Above is safeif one side in C.S., the other isn’t
• Either or both loop forever if pathological timing

C1=0;
while(C2==0) {

C1=1;
some delay;
C1=0;

}
{ . . . Critical Section . . . }
C1=1;

C2=0;
while(C1==0) {

C2=1;
some delay;
C2=0;

}
{ . . . Critical Section . . . }
C2=1;

Livelock possible

18-447-S23-L25-S14, James C. Hoe, CMU/ECE/CALCM, ©2023

Aside: Dumb it down more
• Using shared-memory variables: Clear1=1, Clear2=1

initially (assumes SC)

• Above is still safeif one side in C.S., the other isn’t
• Both loop forever if tried at same time

C1=0;
while(C2==0) {

some delay;
}

{ . . . Critical Section . . . }

C1=1;

C2=0;
while(C1==0) {

some delay;
}

{ . . . Critical Section . . . }

C2=1;

Deadlock possible

18-447-S23-L25-S15, James C. Hoe, CMU/ECE/CALCM, ©2023

Atomic Read-Modify-Write Instruction
• Special class of memory instructions to facilitate

implementations of lock synchronizations
• Effects executed “atomically” (i.e. not interleaved

by other reads and writes)
– reads a memory location
– performs some simple calculation
– writes something back to the same location

HW guarantees no intervening read/write by others
E.g.,

Expensive to implement and to execute

<swap>(addr,reg):
tempMEM[addr];
MEM[addr]reg;
regtemp;

<test&set>(addr,reg):
regMEM[addr];
if (reg==0)

MEM[addr]1;

18-447-S23-L25-S16, James C. Hoe, CMU/ECE/CALCM, ©2023

Acquire and Release
• Could rewrite earlier examples directly using
<swap> or <test&set> instead loads and stores

• Better to hide ISA-dependence behind portable
Acquire() and Release()routines

T1:
Acquire(L);

t=V
t=func1(t,V,…)
V=t

Release(L);

T2:
Acquire(L);

t=V
t=func2(t,V,…)
V=t

Release(L);

cr
iti

ca
l

cr
iti

ca
l

Note: implicit in Acquire(L)is to wait on L if not free

18-447-S23-L25-S17, James C. Hoe, CMU/ECE/CALCM, ©2023

• Using <swap>, L initially 0

• Using <test&set>, L initially 0

Many equally powerful variations of atomic
RMW insts can accomplish the same

Acquire and Release

void Acquire(L) {
do {

reg=1;
<swap>(L,reg);

} while (reg!=0);
}

void Release(L) {
L=0;

}

void Acquire(L) {
do {

<test&set>(L,reg);
} while (reg!=0);

}

void Release(L) {
L=0;

}

18-447-S23-L25-S18, James C. Hoe, CMU/ECE/CALCM, ©2023

High Cost of Atomic RMW Instructions
• Literal enforcement of atomicity very early on
• In CC shared-memory multiproc/multicores

– RMW requires a writeable M/E cache copy
– lock cacheblock from replacement during RMW
– expensive when lock contended by many

concurrent acquires—a lot of cache misses and
cacheblock transfers, just to swap “1” with “1”

• Optimization
– check lock value using normal

load on read-only S copy
– attempt RMW only when

success is possible

do {
reg=1;
if (!L) {

<swap>(L,reg);
}

} while (reg!=0);

18-447-S23-L25-S19, James C. Hoe, CMU/ECE/CALCM, ©2023

RMW without Atomic Instructions
• Add per-thread architectural state: reserved,

address and status

• <ld-linked> requests S-copy (if not alrdy S or M)
• HW clears reserved if cached copy lost due to CC

(i.e., store or <st-cond> at another thread)
• If reserved stays valid until <st-cond>, request M-

copy (if not already M) and update; can be no other
intervening stores to address in between!!

<st-cond>(addr,reg):
if (reserved &&

address==addr)
M[addr]  reg;
status  1;

else
status  0;

<ld-linked>(reg,addr):
reg  MEM[addr];
reserved  1;
address  addr;

18-447-S23-L25-S20, James C. Hoe, CMU/ECE/CALCM, ©2023

void Acquire(L) {
do

regw=1;
do {

<ld-linked>(regr,L)
while (regr!=0);
<st-cond>(L,regw);

} while (status==0);
}

Acquire()by ld-linked and st-cond

if L is modified in
between by another
thread, <st-cond>
will fail and you know
to try again

18-447-S23-L25-S21, James C. Hoe, CMU/ECE/CALCM, ©2023

Resolving Data Race without Lock
• E.g., two threads T1 and T2 increment a shared-

memory variable V initially 0 (assume SC)

• Atomicity not guaranteed, but
• You know if you succeeded; no effect if you don’t

Just try and try again until you succeed

T1:
do {
<ld-linked>(t,V)
t=t+1
<st-cond>(V,t)

} while(status==0)

T2:
do {
<ld-linked>(t,V)
t=t+1
<st-cond>(V,t)

} while(status==0)

context
switch
okay?

18-447-S23-L25-S22, James C. Hoe, CMU/ECE/CALCM, ©2023

// at the end of L20 sumParallel()
remain=p;
do {

pthread_barrier_wait(&barrier);
half=(remain+1)/2;
if (id<(remain/2))

psum[id]=psum[id]+psum[id+half];
remain=half;

} while (remain>1);

Barrier Synchronization

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

T0 T1 T2 T3 T4 T5 T6 T7

T0 T1 T2 T3

T0

T0

T1

18-447-S23-L25-S23, James C. Hoe, CMU/ECE/CALCM, ©2023

(Blocking) Barriers
• Ensure a group of threads have all reached an

agreed upon point
– threads that arrive early have to wait
– all are released when the last thread enters

• Can build from shared memory on small systems
e.g., for a simple 1-time-use barrier (B=0 initially)

• Barrier on large systems are expensive, often
supported/assisted by dedicated HW

Acquire(LB)
B=B+1;
Release(LB)
while (B!=NUM_THREADS);

enter

wait

18-447-S23-L25-S24, James C. Hoe, CMU/ECE/CALCM, ©2023

Nonblocking Barriers
• Separate primitives for enter and exit

– enterBar() is non-blocking and only records
that a thread has reached the barrier

– exitBar() blocks until the barrier is complete

• A thread
– calls enterBar() then go on to independent work
– calls exitBar() only when no more work that

doesn’t depend on the barrier

Acquire(LB)
B=B+1;
Release(LB)

while (B!=NUM_THREADS);

18-447-S23-L25-S25, James C. Hoe, CMU/ECE/CALCM, ©2023

Pass this point not on exams

For more, go read “Synthesis Lecture: Transactional
Memory,” 2nd Ed., 2010

18-447-S23-L25-S26, James C. Hoe, CMU/ECE/CALCM, ©2023

Transactional Memory

• Acquire(L)/Release(L) say do one at a time
• TxnBegin()/TxnEnd()say “look like” done one at

a time
Implementation can allow transactions to

overlap and only fixes things if violations observable

T1:
TxnBegin();

t=V
t=func1(t,V,…)
V=t

TxnEnd();

T2:
TxnBegin();

t=V
t=func2(t,V,…)
V=t

TxnEnd();

18-447-S23-L25-S27, James C. Hoe, CMU/ECE/CALCM, ©2023

Optimistic Execution Strategy
• Allow multiple transaction executions to overlap
• Detect atomicity violations between transactions
• On violation, one of the conflicting transactions is

aborted (i.e., restarted from the beginning)
– TM writes are speculative until reaching TxnEnd
– speculative TM writes not observable by others

• Effective when actual violation is unlikely, e.g.,
– multiple threads sharing a large structure/array
– cannot decide statically which part of

structure/array touched by different threads
– conservative locking adds a cost to every access
– TM incurs a cost only when data races occur

18-447-S23-L25-S28, James C. Hoe, CMU/ECE/CALCM, ©2023

Detecting Atomicity Violation

• A transaction tracks memory RdSet and WrSet
• Txna appears atomic with respect to Txnb if

– WrSet(Txna)  (WrSet(Txnb) RdSet(Txnb)) =
– RdSet(Txna) WrSet(Txnb) =

• Lazy Detection
– broadcast RdSet and WrSet to other txns at TxnEnd
– waste time on txns that failed early on

• Eager Detection
– check violations on-the-fly by monitoring other

txns’ reads and writes
– require frequent communications

18-447-S23-L25-S29, James C. Hoe, CMU/ECE/CALCM, ©2023

Oversimplified HW-based TM using CC
• Add RdSet and WrSet status bits to identify

cacheblocks accessed since TxnBegin
• Speculative TM writes

– issue BusRdOwn/Invalidate if starting in I or S
– issue BusWr(old value) on first write to M block
– on abort, silently invalidate WrSet cacheblocks
– on reaching TxnEnd, clear RdSet/WrSet bits
Assume RdSet/WrSet cacheblocks are never displaced

• Eager Detection
– snoop for BusRd, BusRdOwn, and Invalidation
– MS, MI or SI downgrades to RdSet/WrSet

indicative of atomicity violation
Which transaction to abort?

18-447-S23-L25-S30, James C. Hoe, CMU/ECE/CALCM, ©2023

Why not transaction’ize everything?
void *sumParallel

(void *_id) {
long id=(long) _id;
long i;
long N=ARRAY_SIZE/p;

TxnBegin();
for(i=0;i<N;i++) {

double v=A[id*N+i];
if (v>=0)

SumPos+=v;
else

SumNeg+=v;
}
TxnEnd();

}

void *sumParallel
(void *_id) {

long id=(long) _id;
long i;
long N=ARRAY_SIZE/p;

for(i=0;i<N;i++) {
TxnBegin();
double v=A[id*N+i];
if (v>=0)

SumPos+=v;
else

SumNeg+=v;
TxnEnd();

}
}

void *sumParallel
(void *_id) {

long id=(long) _id;
long i;
long N=ARRAY_SIZE/p;

for(i=0;i<N;i++) {
double v=A[id*N+i];
if (v>=0) {

TxnBegin();
SumPos+=v;
TxnEnd();

} else {
TxnBegin();
SumNeg+=v;
TxnEnd();

}
}

}

Compute separate sums of positive and negative
elements of A in SumPos and SumNeg

Better??

p=2

18-447-S23-L25-S31, James C. Hoe, CMU/ECE/CALCM, ©2023

Overhead vs Likelihood of Succeeding
void *sumParallel

(void *_id) {
long id=(long) _id;
long i;
long N=ARRAY_SIZE/P;
double psumPos=0;
double psumNeg=0;

for(i=0;i<N;i++) {
double v=A[id*N+i];
if (v>=0)

psumPos+=v;
else

psumNeg+=v;
}
TxnBegin();
if (psumPos) SumPos+=psumPos;
if (psumNeg) SumNeg+=psumNeg;
TxnEnd();

}

local non-shared

if (psumPos||psumNeg) {
Acquire(L);
SumPos+=psumPos;
SumNeg+=psumNeg;
Release(L);

}

versus

if (psumPos) {
Acquire(Lpos);
SumPos+=psumPos;
Release(Lpos);

}
if (psumNeg) {

Acquire(Lneg);
SumNeg+=psumNeg;
Release(Lneg);

}

