
18-447-S23-L24-S1, James C. Hoe, CMU/ECE/CALCM, ©2023

18-447 Lecture 24:
Cache Coherence

James C. Hoe
Department of ECE

Carnegie Mellon University

18-447-S23-L24-S2, James C. Hoe, CMU/ECE/CALCM, ©2023

Housekeeping
• Your goal today

– understand ways to build scalable realizations of
shared memory abstraction

• Notices
– HW5, due Friday 4/28 midnight
– Lab 4, due this week
– Final Exam, May 4 Thu, 8:30am-11:30am

• Readings
– P&H Ch 5.10
– Synthesis Lecture: A Primer on Memory

Consistency and Cache Coherence, 2011 (optional)

18-447-S23-L24-S3, James C. Hoe, CMU/ECE/CALCM, ©2023

Shared Memory Abstraction

C0 C1 C2 Cn-1

Memory
location X

Memory Consistency: no longer simple to decide
who wrote X last when you read it

18-447-S23-L24-S4, James C. Hoe, CMU/ECE/CALCM, ©2023

Shared Memory Reality

Cache coherence (CC) maintains the abstraction processors are
working directly on location X, despite multiple copies

C0 C1 C2 Cn-1

$1
$2

Memory

$1
$2

$1
$2

$1
$2vX

vX

vx

vx

vX

vX’

location X

Not Bus

18-447-S23-L24-S5, James C. Hoe, CMU/ECE/CALCM, ©2023

Is this actually wrong . . .

What decides what is right and wrong?
Who can and how to see something is wrong?

C0 C1 C2 Cn-1

$1
$2

Memory

$1
$2

$1
$2

$1
$2vX

vX

vx

vx

vX

vX’

location X

Not Bus

18-447-S23-L24-S6, James C. Hoe, CMU/ECE/CALCM, ©2023

Mem Consistency vs Cache Coherence
• Consistency presented to

inner level need not be same
as presented by outer

Stricter to weaker is free
• Consistency has to consider

loads and stores sequences
on same and different
addresses

• Per mem location, cache
maintains coherence with
respect to this consistency
model (CC just one part in
machinery for consistency)

language

ISA/core

cache

“system”

memory

app

previous
SC vs WC intro

(ISA load/store)

pthread
gcc –O0
vs –O3

18-447-S23-L24-S7, James C. Hoe, CMU/ECE/CALCM, ©2023

Extreme Solutions to CC
• Problem

– different cores’ caches can hold separate copies of
same memory location

– update to 1 copy should propagate to all eventually(?)
• Extreme solutions to consider first

0. disallow caching of shared variables
1. allow only one copy of a memory location at a time(?)
2. allow multiple copies of a memory location, but they

must have the same value at the same time(?)
CC protocol is the “rule of conduct”
between caches to enforce a policy

18-447-S23-L24-S8, James C. Hoe, CMU/ECE/CALCM, ©2023

“Snoopy” Protocol for Bus-based Systems
• True bus is a broadcast medium
• Every cache can see (aka snoop) what everyone

else does on the bus (reads and writes)
• A cache can even intervene

e.g., one cache could ask another to “retry” a
transaction later or respond in place of memory

C0 C1 C2 Cn-1

Memory

$1
$2

$1
$2

$1
$2

$1
$2

18-447-S23-L24-S9, James C. Hoe, CMU/ECE/CALCM, ©2023

Extreme 1: Multiple Identical Copies
• Multiple write-through caches on a bus
• Processor-side protocol synopsis

– on read hit: respond directly
– on write hit: issue a memory write(through) txn
– on read/write miss: issue a mem read txn; do “hit”
– on eviction: remove cacheblock silently

• Bus-side protocol synopsis
– all caches “snoop” for write transactions
– if write address hits in own cache, update cached

copy with new write value
All cache & mem copies kept “current”, but writer sees

effect before restnot SC even if processors in-order

18-447-S23-L24-S10, James C. Hoe, CMU/ECE/CALCM, ©2023

Aside: Strictness of Memory Consistency
• Clock Synchronized RTL: most strict; no ambiguity
• Sequential Consistency (SC): strictest w/o clock; all

threads agree on order of all ld/st by all threads
• Weak Consistency (WC): weakest reasonable; each

thread enforce only own RAW/WAR/WAW order
• Processor Consistency (PC): imagine in-order cores,

snoopy write-through cacheSC>strictPC>strictWC

T1: store(X, 1); T2: store(Y, 1);
vy = load(Y); vx = load(X);

• Initially X = 0, Y = 0, can vx=vy=0?
hint: what if X and Y cached at start?

18-447-S23-L24-S11, James C. Hoe, CMU/ECE/CALCM, ©2023

Protocol Diagram:
Multiple Identical Copies

Invalid Valid
Rd/BusRd

Rd/--

Wr/BusWr

<evict>/--

start

Invalid Valid

CPU-driven transitions of
cacheblock address X
following processor
requests {Rd, Wr} on X

BUS-driven transitions
of cacheblock address X
following bus transactions
{BusRd, BusWr} on X

Wr/BusRd,BusWr

BusRd/--

BusRd/--
BusWr/--

BusWr/
update cache

“Invalid” means X miss in cache

18-447-S23-L24-S12, James C. Hoe, CMU/ECE/CALCM, ©2023

Extreme 2: One Copy at a Time
• Multiple write-back caches on a bus
• Processor-side protocol synopsis

– on read/write hit: respond directly
– on read/write miss: issue a mem read txn; do “hit”
– on eviction: issue a memory write(back) transaction

• Bus-side protocol synopsis
– all caches “snoop” for read transactions
– “intervene” if read address hits in cache, either

1. respond with own cached value in place of
memory and mark own copy invalid, OR

2. ask requestor to retry later and, in the
meantime, evict own cached copy to memory

If truly only 1 copy, effect of a write is “atomic” to all

18-447-S23-L24-S13, James C. Hoe, CMU/ECE/CALCM, ©2023

Protocol Diagram:
One Copy at a Time

Invalid Valid
Rd/BusRd

Rd/--,
Wr/--

<evict>/BusWr

start

Invalid Valid

BusRd/--,
BusWr/--Wr/BusRd

BusRd/
<retry>,BusWr

??

BusWr

CPU-driven transitions of
cacheblock address X
following processor
requests {Rd, Wr} on X

BUS-driven transitions
of cacheblock address X
following bus transactions
{BusRd, BusWr} on X

“Invalid” means X not in cache

18-447-S23-L24-S14, James C. Hoe, CMU/ECE/CALCM, ©2023

MSI Cache Coherence
• An efficient middle ground for single-writer,

multi-reader
– multiple read-only copies, OR
– single writable copy

• Instead of simply Valid, introduce Modified and
Shared flavors of valid state for differentiation

If addr is M in cache A If addr is S in cache A

cache A

M

other

memory

I

stale

infer

cache A

S

other

memory

S or I

current

infer

a
lit

tle
 b

it
lik

e
di

rt
y

no
t d

irt
y

18-447-S23-L24-S15, James C. Hoe, CMU/ECE/CALCM, ©2023

MSI State Transition Diagram

I S

M

Rd/BusRd

Rd/--

Wr/Invalidate

Rd/--,
Wr/--

<evict>/--

<e
vi

ct
>/

Bu
sW

r

W
r/

Bu
sR

dO
w

n

start

I S

M

BusRd/--

BusRd/
<retry>,
BusWr

BusRdOwn/--,
Invalidate/--

BusRdOwn/
<retry>,
BusWr

*

CPU-driven transitions

New bus txns BusRdOwn and Invalidate

Bus-driven transitions

18-447-S23-L24-S16, James C. Hoe, CMU/ECE/CALCM, ©2023

Cache-to-Cache Intervention

I S

M

Rd/BusRd

Rd/--

Wr/Invalidate

Rd/--,
Wr/--

<evict>/--

<e
vi

ct
>/

Bu
sW

r

W
r/

Bu
sR

dO
w

n

start

I S

M

BusRd/--

BusRd/
<intervene>,
BusWr

BusRdOwn/--,
Invalidate/--

BusRdOwn/
<intervene>

*

CPU-driven transitions

M-copy cache responds in place of DRAM

Bus-driven transitions

18-447-S23-L24-S17, James C. Hoe, CMU/ECE/CALCM, ©2023

Interplay w. Consistency: Write Atomicity

I S

M

Rd/BusRd

Rd/--

Wr/Invalidate

Rd/--,
Wr/--

<evict>/--

<e
vi

ct
>/

Bu
sW

r

W
r/

Bu
sR

dO
w

n

start

I S

M

BusRd/--

BusRd/
<retry>,
BusWr

BusRdOwn/--,
Invalidate/--

BusRdOwn/
<retry>,
BusWr

*
CPU-driven transitions

Q: when can writer’s cache promote SM after issuing invalidate?
A: if WC, go for it; if SC, strictly after all SI (how to know?).

Bus-driven transitions

18-447-S23-L24-S18, James C. Hoe, CMU/ECE/CALCM, ©2023

Nuanced CC States as Optimizations

• Exclusive, and Owned are read-only like S, but . . .

cache A

M

other

memory

I

stale

infer

cache A

S

other

memory

S or I

current

infer

cache A

I

other

memory

??

??

infer

cache A

E

other

memory

I

current

infer

cache A

O

other

memory

S or I

stale

infer

E: silent conversion
to M or S or I

O: faster to serve
sharers from
cache than DRAM

must be valid
somewhereread-write read-only

no intelligence attached to DRAM

18-447-S23-L24-S19, James C. Hoe, CMU/ECE/CALCM, ©2023

CC Managed at Block Granularity
• “Embarrassingly parallel” example in homework

void *sumParallel(void *_id) {
long id=(long) _id;
psum[id]=0;
for(long i=0;i<(ARRAY_SIZE/p);i++)

psum[id]+=A[id*(ARRAY_SIZE/p) + i];
}

• Threads do not share memory locations in psum[]
• But, threads do share and contend for cacheblock

containing nearby elements of psum[]
– cacheblock “ping-pong” between cores hosting

threads due to CC
– pad psum[] to eliminate “false sharing”

18-447-S23-L24-S20, James C. Hoe, CMU/ECE/CALCM, ©2023

Limitations of Snoopy Bus Protocols
• Broadcast bus is not scalable

– physics dictates big busses expensive and slow
– BW is divided by number of processors

• Every bus snoop requires a cache lookup
If inclusive hierarchy, snoops only probe lower-level

cache (does not compete with processor for L1)
• Snoopy protocols seem simple but “high-

performance” implementations still complicated
– CPU and bus transactions are not atomic; require

intermediate transient states between MSI
– CC issues intertwined with memory consistency

E.g., in MSI, can S->M promote without waiting
for invalidate acknowledgement?

18-447-S23-L24-S21, James C. Hoe, CMU/ECE/CALCM, ©2023

Multicores and Manycores

• Private upper-level caches and shared Last-Level Cache
• Shared LLC typically not inclusive

total capacity of private caches can add up
• Point-to-point interconnect (i.e., not a snoopy bus)

connects the private caches to shared LLC

core
L1/L2

core
L1/L2

core
L1/L2

point-to-point interconnect

big LLC

18-447-S23-L24-S22, James C. Hoe, CMU/ECE/CALCM, ©2023

core
L1

core
L1

core
L1

point-to-point Interconnect

big L2

Bookkeeping Instead of Snooping

E.g., Piranha [ISCA 2000]
• L2 controller maintains duplicate L1 tags and CC states
• on L1 miss, L2 controller lookup in directory to

determine affected L1s and required transitions
• external CC probes consult L2 bookkeeping also

18-447-S23-L24-S23, James C. Hoe, CMU/ECE/CALCM, ©2023

MIMD Shared Memory: Big Irons
Distributed Shared Memory

• UMA hard to scale due to concentration of BW
• Large scale SMPs have distributed memory with

non-uniform memory accesses (NUMA)
– “local” memory pages (faster to access)
– “remote” memory pages (slower to access)
– cache-coherence still possible but complicated

• E.g., SGI Origin 2000
– upto 512 CPUs and 512GB

DRAM ($40M)
– 48 128-CPU system was

collectively the 2nd fastest
computer (3TFLOPS) in 1999

mem PE

NIU

mem PE

NIU

network

dirdir dirdir

18-447-S23-L24-S24, James C. Hoe, CMU/ECE/CALCM, ©2023

Modern DSM in the small

[https://software.intel.com/en-us/articles/intel-xeon-processor-
scalable-family-technical-overview]

18-447-S23-L24-S25, James C. Hoe, CMU/ECE/CALCM, ©2023

Global Address Layout
• Every memory location has a “home” node
• With respect to a particular processor, every

location is either “local” or “remote”

• Interleaving 1:

• Interleaving 2:

When accessing nearby memory locations, option
(1) fast for local node; (2) better bandwidth

(usually a configurable option)

node# local offset

offsethigh node# offsetlow

Global Physical Address

18-447-S23-L24-S26, James C. Hoe, CMU/ECE/CALCM, ©2023

Cache-Coherent DSM

• How to coordinate CC state transitions for large number
of far-apart nodes?
Option 1: mimic snooping by exchanging messages
with all nodes—explosion in CC traffic
Option 2: centrally maintain duplicates of all caches’
tags and CC states—concentration of CC traffic

mem proc

CC

mem proc

CC

Interconnection Network

18-447-S23-L24-S27, James C. Hoe, CMU/ECE/CALCM, ©2023

Directory-Based Cache Coherence

• Distributed bookkeeping
– keep track for each block

in home memory which
caches have copies and
in what state

• Avoid unnecessary communication
– on a cache miss, local CC-controller sends request

to home node of address
– based on directory information, home-node CC-

controller communicates with only affected nodes

mem proc

CC

mem proc

CC

Interconnection Network

dirdir dirdir

18-447-S23-L24-S28, James C. Hoe, CMU/ECE/CALCM, ©2023

Pass this point not on exams

For more, go read “Synthesis Lecture: A Primer on
Memory Consistency and Cache Coherence,” 2011

18-447-S23-L24-S29, James C. Hoe, CMU/ECE/CALCM, ©2023

A Simple Directory Example
• Extend every cacheblock-sized memory block with

a directory entry

• H=1 indicates “at home”; S=1 indicates shared
• If H=0, Ci bitmaps if nodei has a cached copy

– uncached (H=1, S=*): no cached copy exists
– shared (H=0, S=1): for all Ci==1, nodei has copy
– modified (H=0, S=0): if Ci==1, nodei has only copy

Ci storage significant for large systems and
upperbounds system size at design time

H S bit-vector Ci memory block

directory entry

18-447-S23-L24-S30, James C. Hoe, CMU/ECE/CALCM, ©2023

Directory-Based Cache Coherence

• Based on similar MSI states and transitions as snoopy
but tracked through point-to-point messages

• E.g., BusRd request reaches home from A when
– uncached (H=1, S=*)  H=0; S=1; CA=1; return S-copy
– shared (H=0, S=1)  CA=1; return S-copy
– modified (H=0, S=0)  1. ask current owner to

downgrade (MS) and send
data value back to home

2. S=1; CA=1; return S-copy

18-447-S23-L24-S31, James C. Hoe, CMU/ECE/CALCM, ©2023

Directory-Based Cache Coherence
(continued)

• BusRdOwn request reaches home from A when
– uncached (H=1, S=*)  H=0, S=0, CA=1; return M-copy
– shared (H=0, S=1)  1. ask all current copy holders

to invalidate (and ack?)
2. S=0; CA=1; Ci!=A=0;

return M-copy
– modified (H=0, S=0): 1. ask current owner to

invalidate and send data
value to home

2. CA=1; Ci!=A =0; return M-copy

18-447-S23-L24-S32, James C. Hoe, CMU/ECE/CALCM, ©2023

Multi-Hop MSI Protocol Example:
Shared Read

• Initially S-copy at node-B/C; read cache miss at
node-A

A

Home

B C

X:H=0;S=1

X:S X:SX:S

18-447-S23-L24-S33, James C. Hoe, CMU/ECE/CALCM, ©2023

Home

X:H=0;S=0

Multi-Hop MSI Protocol Example:
Invalidation

• Initially S-copy at node-B/C; write cache miss at
node-A

A B C

Is invalidate
ack needed?

How early can C
send ack?

Does Home need
to wait for

invalidate ack
before

returning M-copy
X:H=0;S=1

X:S X:SX:M

18-447-S23-L24-S34, James C. Hoe, CMU/ECE/CALCM, ©2023

Multi-Hop MSI Protocol Example:
Downgrade

• Initially M-copy at node-C; read cache miss at
node-A

A

Home

CB

X:H=0;S=1

X:MX:S X:S

X:H=0;S=0

18-447-S23-L24-S35, James C. Hoe, CMU/ECE/CALCM, ©2023

Multi-Hop MSI Protocol Example:
Forwarding

• Initially M-copy at node-C; read cache miss at
node-A

A

Home

CB

3. S-copy “forward”

X:H=0;S=1

X:SX:S

18-447-S23-L24-S36, James C. Hoe, CMU/ECE/CALCM, ©2023

It is much, much harder than it looks

• CC state information not always current
– home doesn’t know when a cache invalidates a

block spontaneously (e.g. on replacement)
– home could send requests when no-longer apply

• CC transitions not atomic
– another bus request can arrive while an earlier

one is still being serviced
– if not careful, dependencies can lead to deadlocks

• CC transactions are distributed and concurrent
– no single point of serialization for different addr
– subtle interplay with memory consistency

Everything today is simplified “intro”

