18-447 Lecture 24: Cache Coherence

James C. Hoe
Department of ECE
Carnegie Mellon University
Housekeeping

• Your goal today
 – understand ways to build scalable realizations of shared memory abstraction

• Notices
 – HW5, due Friday 4/26 midnight
 – Lab 4, due this week
 – **Final Exam**, May 3 Fri, 1-3:30pm

• Readings
 – P&H Ch 5.10
 – *Synthesis Lecture: A Primer on Memory Consistency and Cache Coherence*, 2011 (optional)
Shared Memory Abstraction

C₀ C₁ C₂ ... Cₙ₋₁

Memory

Location X

Difficulty: not simple to decide most recent write to X when reading X (must consider reads to X and Y by all Cs)
Additional Difficulty: there can be multiple copies of X (no “point of serialization”)

Not Bus

Memory

location X
Opening Question:
Is this actually wrong?

What decides what is right and wrong?
Who can and how to see something is wrong?
Mem Consistency vs Cache Coherence

• Consistency presented to inner level need not be the same as presented by outer

 Stricter to weaker is free

• Consistency has to consider loads and stores sequences on same and different addresses

• Per mem location, cache maintains coherence with respect to ISA’s consistency model (CC is one part in machinery for consistency)

previous

SC vs WC intro
(ISA load/store)

pthread

gcc –O0 vs –O3
Extreme Solutions to CC

• Problem
 – different cores’ caches can hold separate copies of same memory location
 – update to 1 copy should propagate to all eventually(?)

• Extreme solutions to consider first
 0. disallow caching of shared variables
 1. allow only one copy of a memory location at a time(?)
 2. allow multiple copies of a memory location, but they must have the same value at the same time(?)

CC protocol is the “rule of conduct” between caches to enforce a policy
“Snoopy” Protocol for Bus-based Systems

- True bus is a broadcast medium
- Every cache can see (aka snoop) what everyone else does on the bus (reads and writes)
- A cache can even intervene

e.g., one cache could ask another to “retry” a transaction later or respond in place of memory
Extreme 1: Multiple Identical Copies

- Multiple write-through caches on a bus
- Processor-side protocol synopsis
 - on read hit: respond directly
 - on write hit: issue a memory write(through) txn
 - on read/write miss: issue a mem read txn; do “hit”
 - on eviction: remove cacheblock silently
- Bus-side protocol synopsis
 - all caches “snoop” for write transactions
 - if write address hits in own cache, update cached copy with new write value

All cache & mem copies kept “current”, but writer sees effect before rest—not SC even if processors in-order
Aside: Strictness of Memory Consistency

- **Clock Synchronized RTL**: most strict; no ambiguity
- **Sequential Consistency (SC)**: strictest w/o clock; all threads agree on order of all ld/st by all threads
- **Weak Consistency (WC)**: weakest reasonable; each thread enforce only own RAW/WAR/WAW order
- **Processor Consistency (PC)**: imagine in-order cores, snoopy write-through cache . . . $\text{SC} > \text{strict PC} > \text{strict WC}$

\[
\begin{array}{c|c}
\text{T1:} & \text{T2:} \\
\text{store}(X, 1); & \text{store}(Y, 1); \\
\text{vy} = \text{load}(Y); & \text{vx} = \text{load}(X); \\
\end{array}
\]

- Initially $X = 0$, $Y = 0$, can $vx = vy = 0$?

 hint: what if X and Y cached at start?
Protocol Diagram: Multiple Identical Copies

CPU-driven transitions of cacheblock address X following processor requests \{Rd, Wr\} on X

BUS-driven transitions of cacheblock address X following bus transactions \{BusRd, BusWr\} on X

“Invalid” means X miss in cache
Extreme 2: One Copy at a Time

- Multiple write-back caches on a bus
- Processor-side protocol synopsis
 - on read/write hit: respond directly
 - on read/write miss: issue a mem read txn; do “hit”
 - on eviction: issue a memory write(back) transaction
- Bus-side protocol synopsis
 - all caches “snoop” for read transactions
 - “intervene” if read address hits in cache, either
 1. respond with own cached value in place of memory and mark own copy invalid, OR
 2. ask requestor to retry later and, in the meantime, evict own cached copy to memory

If truly only 1 copy, effect of a write is “atomic” to all
CPU-driven transitions of cacheblock address \(X \) following processor requests \{Rd, Wr\} on \(X \)

BUS-driven transitions of cacheblock address \(X \) following bus transactions \{BusRd, BusWr\} on \(X \)

“Invalid” means \(X \) not in cache
MSI Cache Coherence

- An efficient middle ground for **single-writer, multi-reader**
 - multiple read-only copies, OR
 - single writable copy
- Instead of simply **Valid**, introduce **Modified** and **Shared** flavors of valid state for differentiation

<table>
<thead>
<tr>
<th>If addr is M in cache A</th>
<th>If addr is S in cache A</th>
</tr>
</thead>
<tbody>
<tr>
<td>cache A</td>
<td>cache A</td>
</tr>
<tr>
<td>M</td>
<td>S</td>
</tr>
<tr>
<td>infer</td>
<td>infer</td>
</tr>
<tr>
<td>memory</td>
<td>memory</td>
</tr>
<tr>
<td>I</td>
<td>S or I</td>
</tr>
<tr>
<td>stale</td>
<td>current</td>
</tr>
</tbody>
</table>

a little bit like dirty not dirty
MSI State Transition Diagram

CPU-driven transitions

- **I** to **S**:
 - **Rd/BusRd**
 - **<evict>/--**

- **S** to **I**:
 - **Rd/--**

- **M** to **S**:
 - **Wr/Invalidate**
 - **BusRdOwn/--**

- **S** to **M**:
 - **BusRdOwn/--**

Bus-driven transitions

- **I** to **S**:
 - **BusRdOwn/--**
 - **Invalidate/--**

- **S** to **I**:
 - **BusRd/--**
 - **<retry>, BusWr**

- **M** to **S**:
 - **BusRd/--**
 - **<retry>, BusWr**

- **S** to **M**:
 - **BusRd/--**

New bus txns **BusRdOwn** and **Invalidate**
Cache-to-Cache Intervention

CPU-driven transitions

- Start
- \(\text{Rd/BusRd} \rightarrow \text{I} \)
- \(\text{Wr/BusRdOwn} \)
- \(\text{<evict>}/-- \)
- \(\text{BusRd} \) \(\text{<evict>} \)
- \(\text{BusWr} \)
- \(\text{Wr/Invalidate} \)
- \(\text{Rd/--} \)

Bus-driven transitions

- \(\text{BusRdOwn/--} \)
- \(\text{Invalidate/--} \)
- \(\text{*} \)
- \(\text{BusRdOwn/\text{<intervene>} } \)
- \(\text{BusRd/--} \)
- \(\text{BusRd/\text{<intervene>}, BusWr} \)

M-copy cache responds in place of DRAM
Interplay w. Consistency: Write Atomicity

CPU-driven transitions

Bus-driven transitions

Q: when can writer’s cache promote $S \rightarrow M$ after issuing invalidate?

A: if WC, go for it; if SC, strictly after all $S \rightarrow I$ (how to know?).
Nuanced CC States as Optimizations

- **Exclusive**, and **Owned** are read-only like **S**, but . . .

E: silent conversion to **M** or **S** or **I**

O: faster to serve sharers from cache than DRAM

no intelligence attached to DRAM
CC Managed at Block Granularity

• “Embarrassingly parallel” example in homework

```c
void *sumParallel(void *id) {
    long id=(long) id;
    psum[id]=0;
    for(long i=0;i<(ARRAY_SIZE/p);i++)
        psum[id]+=A[id*(ARRAY_SIZE/p) + i];
}
```

• Threads do not share memory locations in `psum[]`

• But, threads do share and contend for cacheblock containing nearby elements of `psum[]`
 – cacheblock “ping-pong” between cores hosting threads due to CC
 – pad `psum[]` to eliminate “false sharing”
Limitations of Snoopy Bus Protocols

• Broadcast bus is not scalable
 – physics dictates big busses expensive and slow
 – BW is divided by number of processors
• Every bus snoop requires a cache lookup
 If inclusive hierarchy, snoops only probe lower-level cache (does not compete with processor for L1)

• Snoopy protocols seem simple but “high-performance” implementations still complicated
 – CPU and bus transactions are not atomic; require intermediate transient states between MSI
 – CC issues intertwined with memory consistency
 E.g., in MSI, can S->M promote without waiting for invalidate acknowledgement?
Multicores and Manycores

- Private upper-level caches and shared Last-Level Cache
- Shared LLC may not be inclusive
 total capacity of private caches can add up
- Point-to-point interconnect (i.e., not a snoopy bus) connects private caches to shared LLC
Bookkeeping Instead of Snooping

E.g., Piranha [ISCA 2000]

- L2 controller maintains duplicate L1 tags and CC states
- on L1 miss, L2 controller lookup in directory to determine affected L1s and required transitions
- external CC probes consult L2 bookkeeping also
MIMD Shared Memory: Big Irons
Distributed Shared Memory

- UMA hard to scale due to concentration of BW
- Large scale SMPs have distributed memory with non-uniform memory accesses (NUMA)
 - “local” memory pages (faster to access)
 - “remote” memory pages (slower to access)
 - cache-coherence still possible but complicated
- E.g., SGI Origin 2000
 - upto 512 CPUs and 512GB DRAM ($40M)
 - 48 128-CPU system was collectively the 2nd fastest computer (3TFLOPS) in 1999
Modern DSM in the small

Global Address Layout

- Every memory location has a “home” node
- With respect to a particular processor, every location is either “local” or “remote”

- Interleaving 1:
 - fast for local node
 - better bandwidth (usually a configurable option)

<table>
<thead>
<tr>
<th>Global Physical Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>node#</td>
</tr>
</tbody>
</table>

- Interleaving 2:
 - offset\text{high} |
 - node# |
 - offset\text{low}

When accessing nearby memory locations, option (1) fast for local node; (2) better bandwidth
Cache-Coherent DSM

- How to coordinate CC state transitions for large number of far-apart nodes?

 Option 1: mimic snooping by exchanging messages with all nodes—*explosion in CC traffic*

 Option 2: centrally maintain duplicates of all caches’ tags and CC states—*concentration of CC traffic*
Directory-Based Cache Coherence

- Distributed bookkeeping
 - keep track for each block in home memory which caches have copies and in what state

- Avoid unnecessary communication
 - on a cache miss, local CC-controller sends request to home node of address
 - based on directory information, home-node CC-controller communicates with only affected nodes
Pass this point not on exams

For more, go read “Synthesis Lecture: A Primer on Memory Consistency and Cache Coherence,” 2011
A Simple Directory Example

- Extend every cacheblock-sized memory block with a directory entry
- \(H=1 \) indicates “at home”; \(S=1 \) indicates shared
- If \(H=0 \), \(C_i \) bitmaps if node\(_i\) has a cached copy
 - uncached (\(H=1, S=* \)): no cached copy exists
 - shared (\(H=0, S=1 \)): for all \(C_i==1 \), node\(_i\) has copy
 - modified (\(H=0, S=0 \)): if \(C_i==1 \), node\(_i\) has only copy

\(C_i \) storage significant for large systems and upperbounds system size at design time
Directory-Based Cache Coherence

- Based on similar MSI states and transitions as snoopy but tracked through point-to-point messages

- E.g., BusRd request reaches home from A when
 - uncached \((H=1, S=*)\) \(\Rightarrow H=0; S=1; C_A=1\); return \(S\)-copy
 - shared \((H=0, S=1)\) \(\Rightarrow C_A=1\); return \(S\)-copy
 - modified \((H=0, S=0)\) \(\Rightarrow 1. \) ask current owner to
downgrade \((M\rightarrow S)\) and send data value back to home
 2. \(S=1; C_A=1\); return \(S\)-copy
Directory-Based Cache Coherence (continued)

- **BusRdOwn** request reaches home from A when
 - uncached ($H=1$, $S=*$) ⇒ $H=0$, $S=0$, $C_A=1$; return M-copy
 - shared ($H=0$, $S=1$) ⇒ 1. ask all current copy holders to invalidate *(and ack?)*
 2. $S=0$; $C_A=1$; $C_{i!=A}=0$
 return M-copy
 - modified ($H=0$, $S=0$): 1. ask current owner to invalidate and send data value to home
 2. $C_A=1$; $C_{i!=A}=0$; return M-copy
Multi-Hop MSI Protocol Example: Shared Read

- Initially S-copy at node B/C; read cache miss at node A

1. **BusRd** request
2. **S-copy** reply

![Diagram showing the process of a multi-hop MSI protocol example with nodes A, B, C, and Home, and the values X:H=0;S=1.]
Multi-Hop MSI Protocol Example: Invalidation

- Initially S-copy at node-B/C; write cache miss at node-A

Diagram:

1. Home requests X:M
2. Home requests invalidate
3. M-copy reply

Questions:
- Is invalidate ack needed?
- How early can C send ack?
- Does Home need to wait for invalidate ack before returning M-copy?
Multi-Hop MSI Protocol Example: Downgrade

- Initially \(M \)-copy at node-\(C \); read cache miss at node-\(A \)
Multi-Hop MSI Protocol Example: Forwarding

- Initially \(M \)-copy at node-\(C \); read cache miss at node-\(A \)

1. \(\text{BusRd request} \)
2. \(\text{Downgrade request} \)
3. \(\text{Downgrade reply (with data)} \)
3. \(S \)-copy “forward”

\(X:H=0;S=1 \)

Home

A
\(X:S \)

B

C
\(X:S \)
It is much, much harder than it looks

- CC state information not always current
 - home doesn’t know when a cache invalidates a block spontaneously (e.g. on replacement)
 - home could send requests when no-longer apply
- CC transitions not atomic
 - another bus request can arrive while an earlier one is still being serviced
 - if not careful, dependencies can lead to deadlocks
- CC transactions are distributed and concurrent
 - no single point of serialization for different addr
 - subtle interplay with memory consistency

Everything today is simplified “intro”