
18-447-S23-L23-S1, James C. Hoe, CMU/ECE/CALCM, ©2023

18-447 Lecture 23:
Illusiveness of Parallel Performance

James C. Hoe
Department of ECE

Carnegie Mellon University

18-447-S23-L23-S2, James C. Hoe, CMU/ECE/CALCM, ©2023

Housekeeping

• Your goal today
– peel back simplifying assumptions to understand

parallel performance (or the lack of)

• Notices
– HW5, due Friday 4/28 midnight
– get going on Lab 4, now less than 2 weeks left
– Final Exam, May 4 Thu, 8:30am-11:30am

• Readings
– P&H Ch 6
– LogP: a practical model of parallel computation,

Culler, et al. (advanced optional)

18-447-S23-L23-S3, James C. Hoe, CMU/ECE/CALCM, ©2023

Format of Final Exam
• Comprehensive in coverage, HW, labs, assigned

readings (from textbooks and papers)
• Types of questions

– freebies: remember the materials
– >> probing: understand the materials <<
– applied: apply the materials in original interpretation

• **150 minutes, 150 points**
– point values calibrated to time needed
– closed-book, three 8½x11-in2 hand-written cribsheets
– no electronics
– use pencil or black/blue ink only

18-447-S23-L23-S4, James C. Hoe, CMU/ECE/CALCM, ©2023

p = 1 2 3 4 5

“Ideal” Linear Parallel Speedup
• Ideally, parallel speedup is linear with p

time

p = 1 2 3 4 5

Speedup

1

timesequential
Speedup =

timeparallel

1/p p

18-447-S23-L23-S5, James C. Hoe, CMU/ECE/CALCM, ©2023

Non-Ideal Speed Up

S

2 4

1

2

3

4

1 p8

Never get to high speedup
regardless of p!!

18-447-S23-L23-S6, James C. Hoe, CMU/ECE/CALCM, ©2023

Parallelism Defined
• T1 (work measured in time):

– time to do work with 1 PE
• T (critical path):

– time to do work with infinite PEs
– T bounded by dataflow dependence

• Average parallelism:
Pavg = T1 / T

• For a system with p PEs
Tp max{ T1/p, T }

• When Pavg>>p
Tp T1/p, aka “linear speedup”

+

+-

*

*2

a b

x
y

x = a + b;
y = b * 2
z =(x-y) * (x+y)

[Shiloach&Vishkin]

18-447-S23-L23-S7, James C. Hoe, CMU/ECE/CALCM, ©2023

Amdahl’s Law: a lesson on speedup

• If only a fraction f (of time) is speedup by s

timeimproved = timeoriginal·((1-f) + f/s)
Seffective = 1 / ((1-f) + f/s)

– if f is small, s doesn’t matter
– even when f is large, diminishing return on s;

eventually “1-f” dominates

f(1 - f)

timeoriginal

timeimproved

(1 - f) f/s

18-447-S23-L23-S8, James C. Hoe, CMU/ECE/CALCM, ©2023

Non-Ideal Speed Up

S

p32 64

1

2

3

4

not efficient but
acceptable if it is
the only way to
reach required
performance

Cheapest algo may not be the most scalable, s.t.
timeparallel-algo@p=1 = Ktimesequential-algo where K>1

and
Speedup = p/K

slower@p=1

18-447-S23-L23-S9, James C. Hoe, CMU/ECE/CALCM, ©2023

Non-Ideal Speed Up

S

2 4

1

2

3

4

1 p8

Never get to high speedup
regardless of p!!

limited scalability, Pavg< p

??

18-447-S23-L23-S10, James C. Hoe, CMU/ECE/CALCM, ©2023

Communication not Free
• PE may spend extra time

– in the act of sending or receiving data
– waiting for data to be transferred from another

PE
• latency: data coming from far away
• bandwidth: data coming thru finite channel

– waiting for another PE to get to a particular point
of the computation (a.k.a. synchronization)

How does communication cost grow with T1?
How does communication cost grow with p?

18-447-S23-L23-S11, James C. Hoe, CMU/ECE/CALCM, ©2023

Aside: Strong vs. Weak Scaling
• Strong Scaling

– what is Sp as p increases for constant work, T1

run same workload faster on new larger system
– harder to speedup as (1) p grows toward Pavg and

(2) communication cost increases with p
• Weak Scaling

– what is Sp as p increases for larger work, T1’=pT1

run a larger workload faster on new larger system
– Sp=timesequential(pT1)/timeparallel(pT1)

• Which is easier depends on
– how Pavg scales with work size T1’
– relative scaling of bottlenecks (storage, BW, etc)

18-447-S23-L23-S12, James C. Hoe, CMU/ECE/CALCM, ©2023

Continuing from Last Lecture
• Parallel Thread Code (Last Lecture)

void *sumParallel(void *_id) {

long id=(long) _id;

psum[id]=0;

for(long i=0;i<(ARRAY_SIZE/p);i++)

psum[id]+=A[id*(ARRAY_SIZE/p) + i];

}

• Assumed “+” takes 1 unit-time; everything else free
T1=10,000
T∞=log210,000 = 14
Paverage=714

What would you predict is the real
speedup on a 28-core ECE server?

18-447-S23-L23-S13, James C. Hoe, CMU/ECE/CALCM, ©2023

Need for more detailed analysis
• What cost were left out in “everything else”?

– explicit cost: need to charge for all operations
(branches, LW/SW, pointer calculations)

– implicit cost: **communication and synchronization**

• PRAM-like models (Parallel Random Access Machine)
capture cost/rate of parallel processing but assume
– zero latency and infinite bandwidth to share data

between processors
– zero overhead cycles

to send and receive
Useful when analyzing

complexity but not for
performance finetuning

P0 P1 P2 Pn-1

Memory

18-447-S23-L23-S14, James C. Hoe, CMU/ECE/CALCM, ©2023

Arithmetic Intensity:
Modeling Communication as “Lump” Cost

18-447-S23-L23-S15, James C. Hoe, CMU/ECE/CALCM, ©2023

Arithmetic Intensity
• An algorithm has a cost in terms of operation count

– runtimecompute-bound = # operations / FLOPS

• An algorithm also has a cost in terms of number of
bytes communicated (ld/st or send/receive)
– runtimeBW-bound = # bytes / BW

• Which one dominates depends on
– ratio of FLOPS and BW of platform
– ratio of ops and bytes of algorithm

• Average Arithmetic Intensity (AI)
– how many ops performed per byte accessed
– # operations / # bytes

FLOPS=floating-point operations per second

18-447-S23-L23-S16, James C. Hoe, CMU/ECE/CALCM, ©2023

Roofline Performance Model
[Williams&Patterson, 2006]

At
ta

in
ab

le
 P

er
fo

rm
an

ce

of
 a

 sy
st

em
 (o

p/
se

c)

AI of application

perfcompute-bound=FLOPS

runtime > max (# op/FLOPS, # byte/BW}
> #opmax(1/FLOPS, 1/(AIBW)}

perfbound = min(FLOPS, AIBW)

18-447-S23-L23-S17, James C. Hoe, CMU/ECE/CALCM, ©2023

Parallel Sum Revisited with AI
• Last lecture we said

– 100 threads perform 100 +’s each in parallel, and
– between 1~7 (plus a few) +’s each in the parallel

reduction
– T100= 100 + 7
– S100= 93.5

• Now we see (assume 1 op per cycle per thread)
– AI is a constant, 1 op / 8 bytes (for doubles)
– Let BWcyc be total bandwidth (byte/cycle) shared by

threads on a multicore
PerfP < min{ p ops/cycle, AI*BWcyc }

– useless to parallelize beyond p > BWcyc/8
What about a multi-socket system?

18-447-S23-L23-S18, James C. Hoe, CMU/ECE/CALCM, ©2023

Interesting AI Example: MMM

• N2 data-parallel dot-product’s
• Assume N is large s.t. 1 row/col too large for on-chip
• Operation count: N3 float-mult and N3 float-add
• External memory access (assume 4-byte floats)

– 2N3 4-byte reads (of A and B) from DRAM
– . . . N2 4-byte writes (of C) to DRAM . . .

• Arithmetic Intensity 2N3/(42N3)=1/4
GTX1080: 8 TFLOPS vs 320GByte/sec

for(i=0; i<N; i++)
for(j=0; j<N; j++)

for(k=0; k<N; k++)
C[i][j]+=A[i][k]*B[k][j];

18-447-S23-L23-S19, James C. Hoe, CMU/ECE/CALCM, ©2023

for(i0=0; i0<N; i0+=Nb)
for(j0=0; j0<N; j0+=Nb)

for(k0=0; k0<N; k0+=Nb) {
for(i=i0;i<i0+Nb;i++)
for(j=j0;j<j0+Nb;j++)
for(k=k0;k<k0+Nb;k++)

C[i][j]+=A[i][k]*B[k][j];
}

More Interesting AI Example: MMM

• Imagine a ‘N/Nb’x’‘N/Nb’ MATRIX of NbxNb matrices
– inner-triple is straightforward matrix-matrix mult
– outer-triple is MATRIX-MATRIX mult

• To improve AI, hold NbxNb sub-matrices on-chip for
data-reuse need to copy block (not shown)

18-447-S23-L23-S20, James C. Hoe, CMU/ECE/CALCM, ©2023

AI of blocked MMM Kernel (NbxNb)
for(i=i0;i<i0+Nb;i++)
for(j=j0;j<j0+Nb;j++) {
t=C[i][j];
for(k=k0;k<k0+Nb;k++)

t+=A[i][k]*B[k][j];
C[i][j]=t;

}

• Operation count: Nb3 float-mult and Nb3 float-add
• When A, B fit in scratchpad (2xNb2x4 bytes)

– 2Nb3 4-byte on-chip reads (A, B) (fast)
– 3Nb2 4-byte off-chip DRAM read A, B, C (slow)
– Nb2 4-byte off-chip DRAM writeback C (slow)

• Arithmetic Intensity = 2Nb3/(44Nb2)=Nb/8

need to copy
block (not shown)

18-447-S23-L23-S21, James C. Hoe, CMU/ECE/CALCM, ©2023

AI and Scaling

• AI is a function of algorithm and problem size
• Higher AI means more work per communication

and therefore easier to scale
• Recall strong vs. weak scaling

– strong=increase perf on fixed problem sizes
– weak=increase perf on proportional problem sizes
– weak scaling easier if AI grows with problem size

[Figure from P&H CO&D, COPYRIGHT 2009 Elsevier. ALL RIGHTS RESERVED.]

18-447-S23-L23-S22, James C. Hoe, CMU/ECE/CALCM, ©2023

LogP Model:
Components of Communication Cost

18-447-S23-L23-S23, James C. Hoe, CMU/ECE/CALCM, ©2023

LogP
• A parallel machine model with explicit

communication cost
– Latency: transit time between sender and receiver
– overhead: time used up to setup a send or a receive

(cycles not doing computation)
– gap: wait time in between successive data units sent

or received due to limited transfer bandwidth
– Processors: number of processors, i.e., computation

throughput

CPU
(send) NI interconnect CPU

(rcv)NI
gaptx

latency
overheadrxoverheadtx

gaprx

18-447-S23-L23-S24, James C. Hoe, CMU/ECE/CALCM, ©2023

Message Passing Example
if (id==0) //assume node-0 has A initially

for (i=1;i<p;i=i+1)
SEND(i, &A[SHARE*i], SHARE*sizeof(double));

else
RECEIVE(0,A[]) //receive into local array

sum=0;
for(i=0;i<SHARE;i=i+1) sum=sum+A[i];

remain=p;
do {

BARRIER();
half=(remain+1)/2;
if (id>=half&&id<remain) SEND(id-half,sum,8);
if (id<(remain/2)) {

RECEIVE(id+half,&temp);
sum=sum+temp;

}
remain=half;

} while (remain>1); [based on P&H Ch 6 example]

S
H
A
R
E
=
H
O
W
M
A
N
Y
/
p

18-447-S23-L23-S25, James C. Hoe, CMU/ECE/CALCM, ©2023

Parallel Sum Revisited with LogP

• assuming no back-pressure, node-0 finishes sending
to node-99 after 99× overhead of SEND()

• first byte arrives at node-99 some network latency
later

• the complete message arrives at node-99 after
100*sizeof(double)/network_bandwidth

• node-99 finally ready to compute after the overhead
to RECEIVE()

What if 100*sizeof(double)/network_bandwidth
greater than the overhead to SEND()?

H
ow

 lo
ng

?

1: if (id==0)
2: for (i=1;i<100;i=i+1)
3: SEND(i, &A[100*i], 100*sizeof(double));
4: else RECEIVE(0, A[])

o

L

g

o

18-447-S23-L23-S26, James C. Hoe, CMU/ECE/CALCM, ©2023

Parallel Sum Revisited with LogP

• ideally, this step is computed p=100 times faster than
summing 10,000 numbers by one processor

• big picture thinking, e.g.,
– is the time saved worth the data distribution cost?
– if not, actually faster if parallelized less

• fine-tooth comb thinking, e.g.,
– node-1 begins work first; node-99 begins work last
 minimize overall finish time by assigning more
work to node-1 and less work to node-99

– maybe latency and bandwidth are different to
different nodes

H
ow

 lo
ng

?

sum=0;
for(i=0;i<100;i=i+1) sum=sum+A[i];

Performance tuning is a craft

18-447-S23-L23-S27, James C. Hoe, CMU/ECE/CALCM, ©2023

T8 T9 T10 T11 T12 T13 T14 T15T4 T5 T6 T7T2 T3T1

T8 T9 T10 T11 T12 T13 T14 T15T4 T5 T6 T7T2 T3

T8 T9 T10 T11 T12 T13 T14 T15T4 T5 T6 T7

T8 T9 T10 T11 T12 T13 T14 T15

do {
BARRIER();
half=(remain+1)/2;
if (id>=half&&id<remain)

SEND(id-half,sum,8);
if (id<(remain/2)) {

RECEIVE(id+half,&temp);
sum=sum+temp;

}
remain=half;

} while (remain>1);

Parallel Sum Revisited with LogP

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

T0 T1 T2 T3 T4 T5 T6 T7

T0 T1 T2 T3

T0

T0

T1

18-447-S23-L23-S28, James C. Hoe, CMU/ECE/CALCM, ©2023

Parallel Sum Revisited with LogP

• do we need to synchronize each round?
how does one build a BARRIER()?

• is this actually faster than if all nodes sent to node-0?
What if p is small? What if p is very large?

Real answer is a combination of techniques

do {
BARRIER();
half=(remain+1)/2;
if (id>=half&&id<remain) SEND(id-half,sum,8);
if (id<(remain/2)) {

RECEIVE(id+half,&temp);
sum=sum+temp;

}
remain=half;

} while (remain>1);

18-447-S23-L23-S29, James C. Hoe, CMU/ECE/CALCM, ©2023

LogP applies to shared memory too

• When C0 is reading psum[0+half], the value
originates in the cache of C“half”

– L: time from C0’s cache miss to when data retrieved
from the cache of C“half” (via cache coherence)

– g: there is a finite bandwidth between C0 and C“half”

– o: as low as a LW instruction but also pay for stalls

C0 C1 C2 Cn-1

Memory

$1

$2

$1

$2

$1

$2

$1

$2

do {
pthread_barrier_wait(…);

half=(remain+1)/2;
if (id<(remain/2))

psum[id]=psum[id]+
psum[id+half];

remain=half;
} while (remain>1);

18-447-S23-L23-S30, James C. Hoe, CMU/ECE/CALCM, ©2023

Implications of Communication Cost
• Large gcan’t exchange a large amount of data

– must have lots of work per byte communicated
– only scalable for applications with high AI

• Large ocan’t communicate frequently
– can only exploit coarse-grain parallelism
– if DMA, amount of data not necessarily limited

• Large Lcan’ t send data at the last minute
– must have high average parallelism (more

work/time between production and use of data)
• High cost in each category limits

– the kind of applications that can speed up, and
– how much they can speed up

18-447-S23-L23-S31, James C. Hoe, CMU/ECE/CALCM, ©2023

Parallelization not just for Performance
• Ideal parallelization over N CPUs

– T = Work / (kperf ·N)
– E = (kswitch + kstatic / kperf)·Work

N-times static power, but N-times faster runtime
– P = N (kswitch·kperf + kstatic)

• Alternatively, forfeit speedup for power and energy
reduction by sfreq=1/N (assume svoltagesfreq below)

– T = Work / kperf

– E’’ = (kswitch / N2 + kstatic / (kperf N))·Work
– P’’ = kswitch·kperf / N2 + kstatic / N

• Also works with using N slower-simpler CPUs

