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Housekeeping
• Your goal today

– see basic concepts in shared-memory 
multithreading (context for topics to come)

– appreciate how easy parallel programming can be
– appreciate how difficult “good” parallel 

programming can be
• Notices

– HW5, due Friday 4/28 midnight
– get going on Lab 4, now less than 2 weeks left

• Readings
– P&H Ch 6 
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Shared-Memory Multicores
• Today’s general-purpose multicore processors are 

MIMD, symmetric, shared memory
– individual cores follow classic von Neuman
– common access to physical address space and mem
– threads on different cores communicate by writing 

and reading agreed-upon mem locations

C0 C1 C2 Cn-1

Memory
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Single Program Multiple Data

• SPMD is MIMD except all threads 
based on the same program image

• On SMP, SPMD starts as a single-
thread process and its memory

• Independent “threads of execution” 
(think program counters, regfile and 
stacks) spawned
– **same process memory**same 

EA in different threads refers to 
shared program and data locations

– different threads run concurrently 
(on different cores) or interleaved
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SPMD just one of many 
options; prevalent and 

easy to start on 
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E.g., POSIX Threads Create and Join
long count=0;         // globals are in memory and shared!!

void *foo(void *arg) { return count = count + (long)arg; }

int main(){
pthread_t tid[HOWMANY];  // array of thread IDs
long i;
void *retval;

// spawn children threads
for(i=0; i<HOWMANY; i++ )
pthread_create( &tid[i], // ID to be set

NULL, // attribute (default)
foo, // fxn to run by thread
(void*)i); // ptr-size arg to fxn

// wait for children threads to exit
for (i=0; i<HOWMANY; i++ )
pthread_join( tid[i], // ID to wait on

&retval); // ptr-size return value
}
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Memory Consistency
• Memory consistency model says for each read 

which write bound the value to be returned
– intuitively:  a read should return value of “most 

recent” write to the same address
– straight forward for a single thread

• In a shared-memory multicore, cores C1/C2/C3
perform following streams of reads and writes

C1:          . . . . . . W(x) . . . . . . .
C2:  . . . .W(x), W(x), W(y), R(x), R(y) . . .
C3:       . . . W(y), W(x), W(y), W(x) . . .

Which is the last write to x before R(x) by C2?
Ordering determines what can be seen by reads, but 

what is observed by reads determines ordering!!
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Sequential Consistency (SC)
• A thread perceives its own memory ops in 

program order (of course)
• Memory ops from threads in program order can 

be interleaved arbitrarily; different interleaving 
allowed on different runs, i.e., nondeterminism

• For each run, all threads must not disagree on 
any orderings observed

• Switch Model:

point of serialization

C0 C1 C2 Cn-1

Memory
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SC Example: what can and cannot be
• Threads T1 and T2 and shared locations X and Y

(initially X = 0, Y = 0)

T1: . . . . T2: . . . .
store(X,  1); vy = load(Y);
store(Y,  1); vx = load(X);
. . . . . . . .

• SC says
– vy and vx may get different values from run to 

run
e.g., (vy=0, vx=0), (vy=0, vx=1), or (vy=1, vx=1) 

– but if vy is 1 then vx cannot be 0
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An Useful Example
• Threads T1 and T2 communicate via shared memory 

locations X and Y
– T1 produces result in X to be consumed by T2
– T1 signals readiness to T2 by setting Y

• This works because SC says T1 and T2 must see the 
stores to X and Y in the same order

T1:
Y is initially 0
……
compute v
store (X, v)
store (Y, 1)
……

T2:
……
do {

ready=load Y
} while (!ready)
data = load X
……

reorder?
reorder?
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Easy to think about hard to build

• Where is “point of serialization” if memory ops 
don’t always go to memory or even onto a “bus”? 

• SC restricts many memory reordering 
optimizations taken-for-granted in sequential 
execution  (e.g., non-blocking miss)

C0 C1 C2 Cn-1

Memory

$1
$2

$1
$2

$1
$2

$1
$2
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• WC imposes only uniprocessor memory ordering 
requirements: R(x)<W(x); W(x)<R(x); W(x)<W(x)

• Program inserts explicit memory fence 
instructions to force serialization when it matters

• If serialization is rare, cheap(hw)/slow fences 
okay, e.g., fully drain/restart pipeline and buffers

Intermediate models exist between SC and WC

Weak Consistency (WC)

T1:
Y is initially 0
……
compute v
store (X, v)
fence
store (Y, 1)

T2:
……
do {

ready=load Y
} while (!ready)
fence
data = load X
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Embarrassingly Parallel Processing
• Summing 10,000 numbers from array A[]
• In sequential algorithm

for (i=0; i<10000; i=i+1)
sum = sum “+” A[i];

• Assuming “+” is 1 unit-time; everything else free
– T1=10,000
– T∞=log2 10,000 =14 (using associativity of “+”)
– Pavg= T1/T∞=714

• Ideally, at p=100 << T1/T∞

expect T100  T1/p=100 or S100p=100

recall if T1/T∞>>p then Sp
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Shared-Memory Pthreads Strategy 1

• Fork p=100 threads on a p-way 
shared memory multiprocessor
– A[10000] is in shared 

memory
– psum[100] is also in shared 

memory
• Child thread-i uses psum[i] to 

compute its portion of the 
partial sum

• When all threads finish, parent 
sums psum[0]~psum[99]
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Children Thread Code

double A[ARRAY_SIZE];
double psum[p];

void *sumParallel(void *_id) {
long id=(long) _id;
long i;

psum[id]=0;

for(i=0;i<(ARRAY_SIZE/p);i++)
psum[id]+=A[id*(ARRAY_SIZE/p) + i];

return NULL;
}

This looks data parallel?
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Parent Code
double A[ARRAY_SIZE];
double psum[p];
double sum=0;

int main(){

... skipped pthreads boilerplate ...

for(i=0; i<p; i++ )
pthread_create( &tid[i], 

NULL, 
sumParallel,
(void*)i);

for (i=0; i<p; i++ ) {
pthread_join( tid[i], &retval); 
sum+=psum[i];

}
}
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Performance Analysis
• Summing 10,000 numbers on 100 cores

– 100 threads performs 100 +’s each in parallel
– parent thread performs 100 +’s sequentially
– T100= 100 + 100
– S100= 50

• If 100,000 num on 100 cores
– T100= 1000 + 100
– S100= 90.9

• If 10,000 num on 10 cores
– T10= 1000 + 10
– S10= 9.9

• Don’t forget,
– fork and join are not free
– moving data (even thru shared memory) not free
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Amdahl’s Law: a lesson on speedup

• If only a fraction f (of time) is speedup by s

timeimproved = timeoriginal·( (1-f) + f/s )
Seffective = 1 / ( (1-f) + f/s )

– if f is small, s doesn’t matter
– even when f is large, diminishing return on s; 

eventually “1-f” dominates

f(1 - f)

timeoriginal

timeimproved

(1 - f) f/s
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Strategy 2: parallelizing the reduction
• How about asking each thread to do a bit of the 

reduction, i.e.,
void *sumParallel(void *_id) {

long id=(long) _id;

long i;

psum[id]=0;

for(i=0;i<(ARRAY_SIZE/p);i++)

psum[id]+=A[id*ARRAY_SIZE/p+i];

sum=sum+psum[id];

return NULL;

} Assume SC for simplicity
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Data Races
• On last slide sum is read and updated by all 

threads at around the same time
• Let’s try just 2 threads T1 and T2, sum is initially 0

• What are the possible final values of sum?
– v+w or v or w depending on the interleaving of the 

read/modify/write sequence in T1 and T2
• To work, RMW regions needs to be atomic

i.e., no intervening reads/writes by other threads

T1:  compute v
temp=load sum
temp=temp+v
store (sum, temp)

T2:  compute w
temp=load sum
temp=temp+w
store (sum, temp)

RM
W

RM
W
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Critical Sections
• Special “lock” variables and lock/unlock operators 

to demarcate a “critical section” that only one 
thread can enter at a time, e.g.,

pthread_mutex_lock(&lockvar);
sum=sum+psum[id]; // atomic RMW
pthread_mutex_unlock(&lockvar);

• lock() blocks until lockvar is free or freed 
(released by previous owner)

• on unlock(), if multiple lock() pending, only 1 
should succeed; the rest keep waiting

• Strategy 2 is now correct but actually slower
Reduction still sequential plus 

extra cost of locking and unlocking
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// at the end of sumParallel()
remain=p;
do {

pthread_barrier_wait(&barrier);
half=(remain+1)/2;
if (id<(remain/2))

psum[id]=psum[id]+psum[id+half];
remain=half; 

} while (remain>1);

Strategy 3: Parallel Reduction
(assume “+” associative and commutative)

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

T0 T1 T2 T3 T4 T5 T6 T7

T0 T1 T2 T3

T0

T0

T1
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Performance Analysis
• Summing 10,000 on 100 cores

– 100 threads performs 100 +’s each in parallel, and
– between 1~7 +’s each in the parallel reduction
– T100= 100 + 7
– S100= 93.5

• If summing 100,000 on 100 cores
– T100= 1000 + 7
– S100= 99.3

• If summing 10,000 on 10 cores
– T10= 1000 + 4
– S10= 10.0
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First-order analysis! Don’t bet on this.
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Message Passing

• Private address space and memory per processor
• Parallel threads on different processors communicate 

by explicit sending and receiving of messages  

Interconnect

C0M0
tx fifo
rx fifo

NIU

C1M1
tx fifo
rx fifo

NIU

C2M2
tx fifo
rx fifo

NIU

Ci Mi
tx fifo
rx fifo

NIU

Cj Mj
tx fifo
rx fifo

NIU

Ck Mj
tx fifo
rx fifo

NIU
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Example using Matched Send/Receive
if (id==0)        //assume node-0 has A initially

for (i=1;i<p;i=i+1)
SEND(i, &A[SHARE*i], SHARE*sizeof(double));

else 
RECEIVE(0,A[])   //receive into local array

sum=0;
for(i=0;i<SHARE;i=i+1) sum=sum+A[i];

remain=p;
do {

BARRIER();
half=(remain+1)/2;
if (id>=half&&id<remain) SEND(id-half,sum,8);
if (id<(remain/2)) {

RECEIVE(id+half,&temp);
sum=sum+temp;

}
remain=half;

} while (remain>1); [based on P&H Ch 6 example]
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Communication Cost

• Communication cost is a part of parallel execution
• Easier to perceive communication cost in 

message passing
– overhead: takes time to send and receive data
– latency: takes time for data to go from A to B
– gap (1/bandwidth): takes time to push successive 

data through a finite bandwidth

• Same cost was also there in shared memory

To be continued . . . . .


