
18-447-S23-L22-S1, James C. Hoe, CMU/ECE/CALCM, ©2023

18-447 Lecture 22:
1 Lecture Worth of Parallel

Programming Primer

James C. Hoe
Department of ECE

Carnegie Mellon University

18-447-S23-L22-S2, James C. Hoe, CMU/ECE/CALCM, ©2023

Housekeeping
• Your goal today

– see basic concepts in shared-memory
multithreading (context for topics to come)

– appreciate how easy parallel programming can be
– appreciate how difficult “good” parallel

programming can be
• Notices

– HW5, due Friday 4/28 midnight
– get going on Lab 4, now less than 2 weeks left

• Readings
– P&H Ch 6

18-447-S23-L22-S3, James C. Hoe, CMU/ECE/CALCM, ©2023

Shared-Memory Multicores
• Today’s general-purpose multicore processors are

MIMD, symmetric, shared memory
– individual cores follow classic von Neuman
– common access to physical address space and mem
– threads on different cores communicate by writing

and reading agreed-upon mem locations

C0 C1 C2 Cn-1

Memory

18-447-S23-L22-S4, James C. Hoe, CMU/ECE/CALCM, ©2023

Single Program Multiple Data

• SPMD is MIMD except all threads
based on the same program image

• On SMP, SPMD starts as a single-
thread process and its memory

• Independent “threads of execution”
(think program counters, regfile and
stacks) spawned
– **same process memory**same

EA in different threads refers to
shared program and data locations

– different threads run concurrently
(on different cores) or interleaved

fork

pa
re

nt

ch
ild

0

ch
ild

n-
1

pa
re

nt

SPMD just one of many
options; prevalent and

easy to start on

18-447-S23-L22-S5, James C. Hoe, CMU/ECE/CALCM, ©2023

E.g., POSIX Threads Create and Join
long count=0; // globals are in memory and shared!!

void *foo(void *arg) { return count = count + (long)arg; }

int main(){
pthread_t tid[HOWMANY]; // array of thread IDs
long i;
void *retval;

// spawn children threads
for(i=0; i<HOWMANY; i++)
pthread_create(&tid[i], // ID to be set

NULL, // attribute (default)
foo, // fxn to run by thread
(void*)i); // ptr-size arg to fxn

// wait for children threads to exit
for (i=0; i<HOWMANY; i++)
pthread_join(tid[i], // ID to wait on

&retval); // ptr-size return value
}

18-447-S23-L22-S6, James C. Hoe, CMU/ECE/CALCM, ©2023

Memory Consistency
• Memory consistency model says for each read

which write bound the value to be returned
– intuitively: a read should return value of “most

recent” write to the same address
– straight forward for a single thread

• In a shared-memory multicore, cores C1/C2/C3
perform following streams of reads and writes

C1: W(x)
C2: W(x), W(x), W(y), R(x), R(y) . . .
C3: . . . W(y), W(x), W(y), W(x) . . .

Which is the last write to x before R(x) by C2?
Ordering determines what can be seen by reads, but

what is observed by reads determines ordering!!

18-447-S23-L22-S7, James C. Hoe, CMU/ECE/CALCM, ©2023

Sequential Consistency (SC)
• A thread perceives its own memory ops in

program order (of course)
• Memory ops from threads in program order can

be interleaved arbitrarily; different interleaving
allowed on different runs, i.e., nondeterminism

• For each run, all threads must not disagree on
any orderings observed

• Switch Model:

point of serialization

C0 C1 C2 Cn-1

Memory

18-447-S23-L22-S8, James C. Hoe, CMU/ECE/CALCM, ©2023

SC Example: what can and cannot be
• Threads T1 and T2 and shared locations X and Y

(initially X = 0, Y = 0)

T1: T2:
store(X, 1); vy = load(Y);
store(Y, 1); vx = load(X);
.

• SC says
– vy and vx may get different values from run to

run
e.g., (vy=0, vx=0), (vy=0, vx=1), or (vy=1, vx=1)

– but if vy is 1 then vx cannot be 0

18-447-S23-L22-S9, James C. Hoe, CMU/ECE/CALCM, ©2023

An Useful Example
• Threads T1 and T2 communicate via shared memory

locations X and Y
– T1 produces result in X to be consumed by T2
– T1 signals readiness to T2 by setting Y

• This works because SC says T1 and T2 must see the
stores to X and Y in the same order

T1:
Y is initially 0
……
compute v
store (X, v)
store (Y, 1)
……

T2:
……
do {

ready=load Y
} while (!ready)
data = load X
……

reorder?
reorder?

18-447-S23-L22-S10, James C. Hoe, CMU/ECE/CALCM, ©2023

Easy to think about hard to build

• Where is “point of serialization” if memory ops
don’t always go to memory or even onto a “bus”?

• SC restricts many memory reordering
optimizations taken-for-granted in sequential
execution (e.g., non-blocking miss)

C0 C1 C2 Cn-1

Memory

$1
$2

$1
$2

$1
$2

$1
$2

18-447-S23-L22-S11, James C. Hoe, CMU/ECE/CALCM, ©2023

• WC imposes only uniprocessor memory ordering
requirements: R(x)<W(x); W(x)<R(x); W(x)<W(x)

• Program inserts explicit memory fence
instructions to force serialization when it matters

• If serialization is rare, cheap(hw)/slow fences
okay, e.g., fully drain/restart pipeline and buffers

Intermediate models exist between SC and WC

Weak Consistency (WC)

T1:
Y is initially 0
……
compute v
store (X, v)
fence
store (Y, 1)

T2:
……
do {

ready=load Y
} while (!ready)
fence
data = load X

18-447-S23-L22-S12, James C. Hoe, CMU/ECE/CALCM, ©2023

Embarrassingly Parallel Processing
• Summing 10,000 numbers from array A[]
• In sequential algorithm

for (i=0; i<10000; i=i+1)
sum = sum “+” A[i];

• Assuming “+” is 1 unit-time; everything else free
– T1=10,000
– T∞=log2 10,000 =14 (using associativity of “+”)
– Pavg= T1/T∞=714

• Ideally, at p=100 << T1/T∞

expect T100  T1/p=100 or S100p=100

recall if T1/T∞>>p then Sp

18-447-S23-L22-S13, James C. Hoe, CMU/ECE/CALCM, ©2023

Shared-Memory Pthreads Strategy 1

• Fork p=100 threads on a p-way
shared memory multiprocessor
– A[10000] is in shared

memory
– psum[100] is also in shared

memory
• Child thread-i uses psum[i] to

compute its portion of the
partial sum

• When all threads finish, parent
sums psum[0]~psum[99]

fork

pa
re

nt


A
[
0
]
~
A
[
9
9
]

pa
re

nt


A
[
9
9
0
0
]
~
A
[
9
9
9
9
]

join

 psum[0]~psum[99]

18-447-S23-L22-S14, James C. Hoe, CMU/ECE/CALCM, ©2023

Children Thread Code

double A[ARRAY_SIZE];
double psum[p];

void *sumParallel(void *_id) {
long id=(long) _id;
long i;

psum[id]=0;

for(i=0;i<(ARRAY_SIZE/p);i++)
psum[id]+=A[id*(ARRAY_SIZE/p) + i];

return NULL;
}

This looks data parallel?

18-447-S23-L22-S15, James C. Hoe, CMU/ECE/CALCM, ©2023

Parent Code
double A[ARRAY_SIZE];
double psum[p];
double sum=0;

int main(){

... skipped pthreads boilerplate ...

for(i=0; i<p; i++)
pthread_create(&tid[i],

NULL,
sumParallel,
(void*)i);

for (i=0; i<p; i++) {
pthread_join(tid[i], &retval);
sum+=psum[i];

}
}

18-447-S23-L22-S16, James C. Hoe, CMU/ECE/CALCM, ©2023

Performance Analysis
• Summing 10,000 numbers on 100 cores

– 100 threads performs 100 +’s each in parallel
– parent thread performs 100 +’s sequentially
– T100= 100 + 100
– S100= 50

• If 100,000 num on 100 cores
– T100= 1000 + 100
– S100= 90.9

• If 10,000 num on 10 cores
– T10= 1000 + 10
– S10= 9.9

• Don’t forget,
– fork and join are not free
– moving data (even thru shared memory) not free

ch
ild

0

ch
ild

99

pa
re

nt

ch
ild

1

ch
ild

2

JOIN

FORK

18-447-S23-L22-S17, James C. Hoe, CMU/ECE/CALCM, ©2023

Amdahl’s Law: a lesson on speedup

• If only a fraction f (of time) is speedup by s

timeimproved = timeoriginal·((1-f) + f/s)
Seffective = 1 / ((1-f) + f/s)

– if f is small, s doesn’t matter
– even when f is large, diminishing return on s;

eventually “1-f” dominates

f(1 - f)

timeoriginal

timeimproved

(1 - f) f/s

18-447-S23-L22-S18, James C. Hoe, CMU/ECE/CALCM, ©2023

Strategy 2: parallelizing the reduction
• How about asking each thread to do a bit of the

reduction, i.e.,
void *sumParallel(void *_id) {

long id=(long) _id;

long i;

psum[id]=0;

for(i=0;i<(ARRAY_SIZE/p);i++)

psum[id]+=A[id*ARRAY_SIZE/p+i];

sum=sum+psum[id];

return NULL;

} Assume SC for simplicity

18-447-S23-L22-S19, James C. Hoe, CMU/ECE/CALCM, ©2023

Data Races
• On last slide sum is read and updated by all

threads at around the same time
• Let’s try just 2 threads T1 and T2, sum is initially 0

• What are the possible final values of sum?
– v+w or v or w depending on the interleaving of the

read/modify/write sequence in T1 and T2
• To work, RMW regions needs to be atomic

i.e., no intervening reads/writes by other threads

T1: compute v
temp=load sum
temp=temp+v
store (sum, temp)

T2: compute w
temp=load sum
temp=temp+w
store (sum, temp)

RM
W

RM
W

18-447-S23-L22-S20, James C. Hoe, CMU/ECE/CALCM, ©2023

Critical Sections
• Special “lock” variables and lock/unlock operators

to demarcate a “critical section” that only one
thread can enter at a time, e.g.,

pthread_mutex_lock(&lockvar);
sum=sum+psum[id]; // atomic RMW
pthread_mutex_unlock(&lockvar);

• lock() blocks until lockvar is free or freed
(released by previous owner)

• on unlock(), if multiple lock() pending, only 1
should succeed; the rest keep waiting

• Strategy 2 is now correct but actually slower
Reduction still sequential plus

extra cost of locking and unlocking

18-447-S23-L22-S21, James C. Hoe, CMU/ECE/CALCM, ©2023

// at the end of sumParallel()
remain=p;
do {

pthread_barrier_wait(&barrier);
half=(remain+1)/2;
if (id<(remain/2))

psum[id]=psum[id]+psum[id+half];
remain=half;

} while (remain>1);

Strategy 3: Parallel Reduction
(assume “+” associative and commutative)

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

T0 T1 T2 T3 T4 T5 T6 T7

T0 T1 T2 T3

T0

T0

T1

18-447-S23-L22-S22, James C. Hoe, CMU/ECE/CALCM, ©2023

Performance Analysis
• Summing 10,000 on 100 cores

– 100 threads performs 100 +’s each in parallel, and
– between 1~7 +’s each in the parallel reduction
– T100= 100 + 7
– S100= 93.5

• If summing 100,000 on 100 cores
– T100= 1000 + 7
– S100= 99.3

• If summing 10,000 on 10 cores
– T10= 1000 + 4
– S10= 10.0

ch
ild

0

ch
ild

99

pa
re

nt

ch
ild

1

ch
ild

2

JOIN

FORK

First-order analysis! Don’t bet on this.

18-447-S23-L22-S23, James C. Hoe, CMU/ECE/CALCM, ©2023

Message Passing

• Private address space and memory per processor
• Parallel threads on different processors communicate

by explicit sending and receiving of messages

Interconnect

C0M0
tx fifo
rx fifo

NIU

C1M1
tx fifo
rx fifo

NIU

C2M2
tx fifo
rx fifo

NIU

Ci Mi
tx fifo
rx fifo

NIU

Cj Mj
tx fifo
rx fifo

NIU

Ck Mj
tx fifo
rx fifo

NIU

18-447-S23-L22-S24, James C. Hoe, CMU/ECE/CALCM, ©2023

Example using Matched Send/Receive
if (id==0) //assume node-0 has A initially

for (i=1;i<p;i=i+1)
SEND(i, &A[SHARE*i], SHARE*sizeof(double));

else
RECEIVE(0,A[]) //receive into local array

sum=0;
for(i=0;i<SHARE;i=i+1) sum=sum+A[i];

remain=p;
do {

BARRIER();
half=(remain+1)/2;
if (id>=half&&id<remain) SEND(id-half,sum,8);
if (id<(remain/2)) {

RECEIVE(id+half,&temp);
sum=sum+temp;

}
remain=half;

} while (remain>1); [based on P&H Ch 6 example]

S
H
A
R
E
=
H
O
W
M
A
N
Y
/
p

18-447-S23-L22-S25, James C. Hoe, CMU/ECE/CALCM, ©2023

Communication Cost

• Communication cost is a part of parallel execution
• Easier to perceive communication cost in

message passing
– overhead: takes time to send and receive data
– latency: takes time for data to go from A to B
– gap (1/bandwidth): takes time to push successive

data through a finite bandwidth

• Same cost was also there in shared memory

To be continued

