18-447 Lecture 22:
1 Lecture Worth of Parallel
Programming Primer

James C. Hoe
Department of ECE
Carnegie Mellon University

18-447-523-122-S1, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Housekeeping

e Your goal today

— see basic concepts in shared-memory
multithreading (context for topics to come)

— appreciate how easy parallel programming can be

— appreciate how difficult “good” parallel
programming can be

e Notices

— HWS5, due Friday 4/28 midnight

— get going on Lab 4, now less than 2 weeks left
e Readings

— P&H Ch 6

18-447-523-122-S2, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Shared-Memory Multicores

e Today’s general-purpose multicore processors are
MIMD, symmetric, shared memory

— individual cores follow classic von Neuman
— common access to physical address space and mem

— threads on different cores communicate by writing
and reading agreed-upon mem locations

I |
Memory

Eer | oo] B f s pREM e f o R l . I | | "l—,:: ‘l !
18-447-523-122-S3, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Single Program Multiple Data

e SPMD is MIMD except all threads
based on the same program image

e On SMP, SPMD starts as a single-
thread process and its memory

e |[ndependent “threads of execution”
(think program counters, regfile and
stacks) spawned

— **same process memory**—same
EA in different threads refers to
shared program and data locations

— different threads run concurrently
(on different cores) or interleaved

18-447-523-122-S4, James C. Hoe, CMU/ECE/CALCM, ©2023

i)
-
Q
S
©
o
fork « - - _
\ =~
4 —y
i)
- o &
GL) g eeee O
(g} c o —
o -
© O

SPMD just one of many
options; prevalent and
easy to start on

CarnegieMellon

E.g., POSIX Threads Create and Join

long count=0; // globals are in memory and shared!!

void *foo (void *arg) { return count = count + (long)arg; }

int main|() {
pthread t tid[HOWMANY] ; // array of thread IDs
long i;
void *retval;

// spawn children threads
for (i=0; i<HOWMANY, i++)

pthread create(&tid[i], // ID to be set
NULL, // attribute (default)
foo, // £xn to run by thread
(void*)1i) ; // ptr-size arg to £fxn

// wait for children threads to exit
for (i=0; i<HOWMANY; i++)
pthread join(tid[i], // ID to wait on
&retval) ; // ptr-size return value

}

18-447-523-122-S5, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Memory Consistency

e Memory consistency model says for each read
which write bound the value to be returned

— intuitively: a read should return value of “most
recent” write to the same address

— straight forward for a single thread
* |n a shared-memory multicore, cores C1/C2/C3
perform following streams of reads and writes

ca. ... W(X).......
C2:W(x), W(x), W(y), R(x), R(y) . ..
C3: ... W(y), W(x), W(y), W(x) ...

Which is the last write to x before R(x) by C2?

Ordering determines what can be seen by reads, but
what is observed by reads determines ordering!!

18-447-523-122-S6, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Sequential Consistency (SC)

e A thread perceives its own memory ops in
program order (of course)

e Memory ops from threads in program order can
be interleaved arbitrarily; different interleaving
allowed on different runs, i.e., nondeterminism

e For each run, all threads must not disagree on
any orderings observed

e Switch Model: ceccece C

point of serialization - -‘\\-‘ /

‘———_—————

18-447-523-122-S7, James C. Hoe, CMU/ECE/CALCM, ©2023

SC Example: what can and cannot be

e Threads T1 and T2 and shared locations X and Y
(initially X=0,Y=0)

T1: T2:
store(X, 1); vy = load(Y);
store(Y, 1); vx = load(X);

e SCsays
— vy and vx may get different values from run to
run

e.g., (vy=0, vx=0), (vy=0, vx=1), or (vy=1, vx=1)
— but if vy is 1 then vx cannot be O

18-447-523-122-S8, James C. Hoe, CMU/ECE/CALCM, ©2023

An Useful Example

e Threads T1 and T2 communicate via shared memory
locations X and Y

— T1 produces result in X to be consumed by T2

— T1 signals readiness to T2 by setting Y

reorder?’4

T1:

Yis initially 0

compute v

_ store (X, v)
—> store (Y, 1)

T2:

ready=load Y

} while (Iready)

>

data = load X <«

eorder?

e This works because SC says T1 and T2 must see the
stores to X and Y in the same order

18-447-523-122-S9, James C. Hoe, CMU/ECE/CALCM, ©2023

Easy to think about hard to build

Co C, (o o0 o000 C.,
S0 0 G 51
S2 S2 S2 S2

$$_§—$_

Memory

e Where is “point of serialization” if memory ops
don’t always go to memory or even onto a “bus”?

e SC restricts many memory reordering
optimizations taken-for-granted in sequential
execution (e.qg., non-blocking miss)

18-447-523-122-S10, James C. Hoe, CMU/ECE/CALCM, ©2023

Weak Consistency (WC)
e \WWC imposes only uniprocessor memory ordering
requirements: R(x)<W(x); W(x)<R(x); W(x)<W(x)
e Program inserts explicit memory fence
instructions to force serialization when it matters

T1: T2:
YisinitiallyO | ...
...... do {
compute v ready=load Y
> store (X, v) } while (!ready)
fence fence
<\> store (Y, 1) data=load X <

e If serialization is rare, cheap(hw)/slow fences
okay, e.g., fully drain/restart pipeline and buffers
Intermediate models exist between SC and WC

18-447-523-122-S11, James C. Hoe, CMU/ECE/CALCM, ©2023

Embarrassingly Parallel Processing

e Summing 10,000 numbers from array A[]
e |n sequential algorithm

for (i=0; i1i<10000; i=i+1)
sum = sum ;+” A[i];

-
-7 -
- -
-

e Assuming “+” is 1 unit-time; everything else free

- T,=10,000
- T.= |_Iog2 10,000 | =14 (using associativity of “+”)
— P,= To/T..=714
4. Ideally, at p=100 << T,/T.,
%A expect T,p0 ~ T,/p=100 or S,,,~p=100
¢
18-447—523-:‘\0 mes C. Hoe, CMU/ECE/CALCM, ©2023 reca” if T1/T°°>>p then Szp

CarnegieMellon

Shared-Memory Pthreads Strategy 1

e Fork p=100 threads on a p-way
shared memory multiprocessor

—A[10000] isin shared
memory

—psum[100] is also in shared
memory
e Child thread-1i uses psum[i] to
compute its portion of the
partial sum

e When all threads finish, parent
SUMS psum[0] “psum[99]

18-447-523-122-S13, James C. Hoe, CMU/ECE/CALCM, ©2023

fork <~ -__
= T
o)
2l 2
o)
()] o o
E it oooo:
o/ % 2
o =
< o)
o)
8 <
oo k//—’—ﬂ—
join =€~

?Zpsum[0]~psum[99]

Children Thread Code

double A[ARRAX_SIZE];
double psum[p];

void *sumParallel (void *_id) ({
long id=(long) _id;
long 1i;

psum[id]=0;

for (i=0;i< (ARRAY SIZE/p) ;it++)
psum[id]+=A[id* (ARRAY SIZE/p) + i];

return NULL;

This looks data parallel?

18-447-523-122-S14, James C. Hoe, CMU/ECE/CALCM, ©2023

Parent Code

double A[ARRAX_SIZE];
double psum[p];
double sum=0;

int main () {
skipped pthreads boilerplate

for (i=0; i<p; i++)
pthread create(&tid[i],
NULL,
sumParallel,
(void*) 1) ;

for (i=0; i<p; i++) {
pthread join(tid[i], &retval);
sum+=psum|[i] ;

}

18-447-523-122-S15, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Performance Analysis

e Summing 10,000 numbers on 100 cores
— 100 threads performs 100 +’s each in parallel
— parent thread performs 100 +’s sequentially
— T100= 100 + 100
— S.100= 50 Sl FORK >
e |f 100,000 num on 100 cores
— T,00= 1000 + 100
— S,00=90.9
e |f 10,000 num on 10 cores
— T,,= 1000 + 10
- $,0=9.9
e Don’t forget,
— fork and join are not free
— moving data (even thru shared memory) not free

18-447-523-122-S16, James C. Hoe, CMU/ECE/CALCM, ©2023

Amdahl’s Law: a lesson on speedup

e |f only a fraction f (of time) is speedup by s

tlmeoriginal

(1 - f) [

tlmeimproved

(1 - f) f/s | V\?j

time, = time, iginar((1-f) + f/s)

improved

Seffective =1 / ((1'f) + f/ S)
— if fis small, s doesn’t matter

— even when fis large, diminishing return on s;
eventually “1-f” dominates

, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Strategy 2: parallelizing the reduction

e How about asking each thread to do a bit of the
reduction, i.e.,

void *sumParallel (void *_id) ({
long id=(long) _id;
long 1;

psum[id]=0;

for (i=0;i< (ARRAY SIZE/p) ;it++)
psum[id]+=A[id*ARRA¥_SIZE/p+i];

sum=sum+psum|[id] ;

return NULL;
}

18-447-523-122-518, James C. Hoe, CMU/ECE/CALCM, ©2023

Assume SC for simplicity

Data Races

e On last slide sumis read and updated by all
threads at around the same time

e |Let’stryjust 2 threads T1 and T2, sumis initially O

T1l: computev

— temp=load sum
temp=temp+v

__ store (sum, temp)

RMW
1
|\

T2: compute w
temp=load sum
temp=temp+w o
store (sum, temp) |

—_—

MINY

e \What are the possible fina

values of sum?

— v+w or v or w depending on the interleaving of the
read/modify/write sequence in T1 and T2

e To work, RMW regions needs to be atomic
i.e., no intervening reads/writes by other threads

18-447-523-122-S19, James C. Hoe, CMU/ECE/CALCM, ©2023

Critical Sections

e Special “lock” variables and lock/unlock operators
to demarcate a “critical section” that only one
thread can enter at a time, e.g.,

pthread mutex lock(&lockvar) ;
sum=sum+psum[id] ; // atomic RMW
pthread mutex unlock (&lockvar);

e lock () blocks until lockwvar is free or freed
(released by previous owner)

e onunlock (), if multiple 1ock () pending, only 1
should succeed; the rest keep waiting

e Strategy 2 is now correct but actually slower

Reduction still sequential plus
extra cost of locking and unlocking

18-447-523-122-S20, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Strategy 3: Parallel Reduction
(assume “+” associative and commutative)

TO Tl T2 T3 T4 T5 T6 T7 T8 T9 TlOTll T12T13 T14T15

L—]

Tol T T T3 Ta|Ts| Tl T

// at the end of sumParallel ()
remain=p;
do {
pthread barrier wait(&barrier);
half=(remain+l)/2;
if (id<(remain/2))
psum[id]=psum[id] +psum[id+half];

remain=half;
To } while (remain>1l) ;

18-447-523-122-S21, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Performance Analysis

e Summing 10,000 on 100 cores
— 100 threads performs 100 +’s each in parallel, and

— between 1~7 +’s each in the parallel reduction
— T,00= 100 + 7
— S,00=93.5
e |f summing 100,000 on 100 cores
— T100= 1000 + 7
— S100=99.3
e |f summing 10,000 on 10 cores
— T,,= 1000 + 4
- $,,= 10.0

< FORK I

First-order analysis! Don’t bet on this.

18-447-523-122-S22, James C. Hoe, CMU/ECE/CALCM, ©2023

CarnegieMellon

Message Passing

_, tx fifo tx fifo «— C + M
MO ™ CO <« rx fifo rx fifo|=—> i i
—»%(Lil%l tx fifo < o
M, ~ C1 <+Irx fifo rx fifo|=> CJ' Mj
— tx fifol x fifo <« C, « M.
M, -+ C, «—Irx fifo rx fifol— “k j

e Private address space and memory per processor

Parallel threads on different processors communicate
explicit sending and receiving of messages

18-447-523-122-523, , CMU/ECE/CALCM, ©2023

Example using Matched Send/Receive

if (id==0) //assume node-0 has A initially
for (i=1;i<p;i=i+1)
SEND (i1, &A[SHARE*i], SHARE*sizeof (double)) ;
else
RECEIVE (0,A[]) //receive into local array

sum=0 ;
for (i=0;i<SHARE;i=i+l) sum=sum+A[i];

remain=p;
do {
BARRIER () ;
half=(remain+l) /2;
if (id>=half&&id<remain) SEND (id-half,sum,8) ;
if (id<(remain/2)) {
RECEIVE (id+half, &temp) ;
sum=sum+temp;

SHARE=HOWMANY /p

}

remain=half;

} while (remain>1l) ;
18-447-523-122-524, James C. Hoe, CMU/ECE/CALCM, ©2023 [ba Se d O n P& H C h 6 exa m p I e]

CarnegieMellon

Communication Cost

e Communication cost is a part of parallel execution

e Easier to perceive communication cost in
message passing

— overhead: takes time to send and receive data
— latency: takes time for data to go from Ato B

— gap (1/bandwidth): takes time to push successive
data through a finite bandwidth

e Same cost was also there in shared memory

To be continued......

18-447-523-122-S25, James C. Hoe, CMU/ECE/CALCM, ©2023

