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Housekeeping
• Your goal today

– see the diverse landscape of parallel computer 
architectures/organizations

– set the context for focused topics to come
• Notices

– Handout #14: HW5, due Friday 4/28 midnight
– get going on Lab 4, now less than 3 weeks left
– All final conflicts have been declared!!

• Readings
– P&H Ch 6
– Synthesis Lecture: Parallel Processing, 1980 to 2020
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Parallelism Defined
• T1 (work measured in time):

– time to do work with 1 PE
• T (critical path):

– time to do work with infinite PEs 
– T bounded by dataflow dependence

• Average parallelism:
Pavg = T1 / T

• For a system with p PEs
Tp max{ T1/p, T }

• When Pavg>>p
Tp  T1/p, aka “linear speedup”

+

+-
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a b
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y

x = a + b;   
y = b * 2
z =(x-y) * (x+y)
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A Non-Parallel Architecture

• Memory holds both program and data
– instructions and data in a linear memory array
– instructions can be modified as data

• Sequential instruction processing 
1. program counter (PC) identifies current instruction
2. fetch instruction from memory
3. update some state (e.g. PC and memory) as a 

function of current state (according to instruction) 
4. repeat

…

program counter

0  1   2  3  4  5 . . . 

Dominant paradigm since its invention
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Inherently Parallel Architecture
• Consider a von Neumann program 

– What is the significance of the program order?
– What is the significance of the storage locations?

• Dataflow program instruction ordering 
implied by data dependence
– instruction specifies who receives the result
– instruction executes when operands received
– no program counter, no* intermediate state

v := a + b ;   
w := b * 2 ;
x := v - w ;
y := v + w ;
z := x * y ;

+ *2

- +

*

a b

z

[dataflow figure and example from Arvind]
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More Conventionally Parallel

P1 P2 P3 Pn

Memory

Do you naturally think parallel or sequential?
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Simple First Look: Data Parallelism

• Same work on disjoint sets of dataimportant in 
linear algebra behind scientific/numerical apps

• Example: AXPY (from Level 1 Basic Linear Algebra 
Subroutine)

– Y and X are vectors
– same operations repeated on each Y[i] and X[i]
– iteration i does not touch Y[j] and X[j], ij

How to exploit data parallelism?

for(i=0; i<N; i++) {
Y[i]=a*X[i]+Y[i]

}
Y = a*X+Y =
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Parallelism vs Concurrency

• Instantiate k copies of the hardware unit foo to 
process k iterations of the loop in parallel

b0 b1 b2 b3 b4 b5 b6 b7

a0 a1 a2 a3 a4 a5 a6 a7

foo foo foo foo foo foo foo foo

c0 c1 c2 c3 c4 c5 c6 c7

for(i=0; i<N; i++) {
C[i]=foo(A[i], B[i])

}
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Parallelism vs Concurrency

• Build a deeply (super)pipelined version of foo()

for(i=0; i<N; i++) {
C[i]=foo(A[i], B[i])

}

b0b1b2b3b4

a0a1a2a3a4…………
c0c1c2c3c4

available many
cycles laterconsumed 1 element

per cycle

…………
…………

Can combine concurrency and 
pipelining at the same time

concurrency? yes!
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Harder Kind of Parallelism:
Irregular and Data Dependent

0

1

2

4

3
root

Neighbors can be visited concurrently, usually without conflict 

e.g., BFS
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A Spotty Tour of the MP Universe
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Classic Thinking: Flynn’s Taxonomy
Multiple Instruction 

Stream
Single Instruction 

Stream

MISD:
DB query??

SISD:
your vanilla uniprocessor

Si
ng

le
 D

at
a

St
re

am

MIMD:
fully independent 

programs/control-flows
working in parallel

(collaborating SISDs?)

SIMD:
many PEs following 
common instruction 

stream/control-flow on 
different dataM

ul
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SIMD vs. MIMD
(an abstract and general depiction) 

cntrl cntrl cntrl

cntrl

alu

data

alu

data

alu

data

together or separate?together or separate?
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Variety in the details
• Scale, technology, application . . . .
• Concurrency

– granularity of concurrency (how finely is work 
divided)whole programs down to bits

– regularityall “nodes” look the same and look out 
to the same environment 

– static vs. dynamice.g., load-balancing
• Communication

– message-passing vs. shared memory
– granularity of communicationwords to pages
– interconnect and interface design/performance
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SIMD: Vector Machines

[Figure from H&P CAaQA, COPYRIGHT 2007 Elsevier. 
ALL RIGHTS RESERVED.] 

• Vector data type and regfile 
• Deeply pipelined fxn units
• Matching high-perf load-store 

units and multi-banked memory
• E.g., Cray 1, circa 1976

– 64 x 64-word vector RF
– 12 pipelines, 12.5ns clk
– ECL 4-input NAND and SRAM 

(no caches!!)
– 2x25-ton cooling system
– 250 MIPS peak for ~10M 

1970$
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SIMD: Big-Irons
• Sea of PEs on a regular grid

– synchronized common cntrl
– direct access to local mem
– nearest-neighbor exchanges
– special support for 

broadcast, reduction, etc.
• E.g., Thinking Machines CM-2

– 1000s of bit-sliced PEs lock-
step controlled by a 
common sequencer

– “hypercube” topology
– special external I/O nodes

PE
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M
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SIMD: Modern Renditions, e.g.,
• Intel SSE (Streaming SIMD Extension), 1999

– 16 x 128-bit “vector” registers, 4 floats or 2 
doubles

– SIMD instructions: ld/st, arithmetic, shuffle, 
bitwise

– SSE4 with true full-width operations
Core i7 does upto 4 sp-mult & 4 sp-add 

per cyc per core, (24GFLOPS @3GHz)

• AVX 2 doubles the above (over 1TFLOPS/chip)
• “GP”GPUs . . . (next slide)

Simple hardware, big perf numbers but 
only if massively data-parallel app!!
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E.g., 8+ TFLOPs Nvidia GP104 GPU

• 20 Streaming Multiproc
– 128 SIMD lane per SM
– 1 mul, 1 add per lane
– 1.73 GHz (boosted)

• Performance
– 8874 GFLOPs
– 320GB/sec
– 180 Watt

How many FLOPs per 
Watt? How many FLOPs 

per DRAM byte accessed?
[NVIDIA GeForce GTX 1080  Whitepaper]
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• Each cycle, select a “ready” thread from scheduling pool
– only one instruction per thread in flight at once
– on a long stall (DRAM), remove thread from 

scheduling
• Simpler and faster pipeline implementation since

– no data dependence, hence no stall or forwarding
– no penalty in making pipeline deeper

Instthread1

Instthread3

A B C F G H
A B C D E E G H

D E
A B E F G HC D

A B E F G HC D

Instthread2

Instthread4
A B E F G HC D

A B E F G HC D
A B E F G HC D

A B E F G HC D
A B E F G HC D

Instthread5

Instthread7

Instthread6

Instthread8
Instthread1

Aside: IPC, ILP, and TLP

e.g., Barrel Processor [HEP, Smith]
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Historical: what 1 TFLOP meant in 1996
• ASCI Red, 1996World’s 1st TFLOP computer!!

– $50M, 1600ft2 system
– ~10K 200MHz PentiumPro’s 
– ~1 TByte DRAM (total)
– 500kW to power + 500kW on cooling

• Advanced Simulation and Computing Initiative
– how to know if nuclear stockpile still good if you 

can’t blow one up to find out?
– require ever more expensive simulation as 

stockpile aged
– Red 1.3TFLOPS 1996; Blue Mountain/Pacific 

4TFLOPS 1998; White 12TFLOPS 2000; Purple 
100TFLOPS 2005; . . . HPE Frontier 1.1ExaFLOPS 
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MIMD: Message Passing

• Private address space and memory per processor
• Parallel threads on different processors communicate 

by explicit sending and receiving of messages  

Interconnect

P0M0
tx fifo
rx fifo

NIU

P1M1
tx fifo
rx fifo

NIU

P2M2
tx fifo
rx fifo

NIU

Pi Mitx fifo
rx fifo

NIU

Pj Mj
tx fifo
rx fifo

NIU

Pk Mk
tx fifo
rx fifo

NIU
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MIMD Message Passing Systems
(by network interface placement)

• Any Clusters (e.g., data centers, Beowulf) (I/O bus)
– Linux PCs connected by Ethernet

• “High-Performance Computing” Clusters (I/O bus)
– stock workstations/servers but

exotic interconnects, e.g., 
Myrinet, HIPPI, Infiniband, etc.

• Supers (memory bus)
– stock CPUs on custom platform
– e.g., Cray XT5 (“fastest”

in 2011 224K AMD Opteron
• Inside the CPU

– single-instruction send/receive
– e.g., iAPX 432 (1981),  Transputers (80s), . . . (now?)

DiskDiskDisk

I/O Bus

Memory Bus (GB/sec)

Main
Memory

I/O
Bridge

I/O

CPU
ALU RF

$ X
X

X
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MIMD Shared Memory:
Symmetric Multiprocessors (SMPs)

• Symmetric means
– identical procs connected to common memory
– all procs have equal access to system (mem & I/O)
– OS can schedule any process on any processor

• Uniform Memory Access (UMA)
– processor/memory 

connected by bus or crossbar
– all processors have equal

memory access performance
to all memory locations

– caches need to stay coherent DiskDiskDisk

I/O Bus

CPU
ALU RF

cache

Memory Bus (GB/sec)

Main Memory

I/O
Bridge

I/O

CPU
ALU RF

cache
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MIMD Shared Memory: Big Irons
Distributed Shared Memory

• UMA hard to scale due to concentration of BW 
• Large scale SMPs have distributed memory with 

non-uniform memory (NUMA)
– “local” memory pages (faster to access)
– “remote” memory pages (slower to access)
– cache-coherence still possible but complicated 

• E.g., SGI Origin 2000
– upto 512 CPUs and 512GB

DRAM ($40M)
– 48 128-CPU system was

collectively the 2nd fastest 
computer (3TFLOPS) in 1999

mem PE

NIU

mem PE

NIU

network

dirdir dirdir
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MIMD Shared Memory: 
it is everywhere now! 

• General-purpose “multicore” processors 
implement SMP (not UMA) on a single chip

• Moore’s Law scaling in number of core’s

Intel Xeon e5345 [Figure from P&H CO&D, COPYRIGHT 
2009 Elsevier. ALL RIGHTS RESERVED.]
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Today’s Normal

[https://www.amd.com/system/files/documents/2019-amd-epyc-7002-tg-windows-
server-56782_1.0.pdf]
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Today’s Normal

Intel Ponte Vecchio 2.5 and 3-D integration of 47 chips and chiplets
[https://www.intel.com/content/www/us/en/developer/articles/technical/intel-data-
center-gpu-max-series-overview.html]
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Remember how we got here . . . .

Big Corelittle 
core

little 
core

little 
core little 

core
little 
core

little 
core

little 
core

little 
core

little 
core

little 
core

little 
core

little 
core

little 
core

little 
core

little 
core

little 
core

little 
core

little 
core

little 
core

little 
core

little 
core

2005~??1970~2005
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Today’s Exotic

Microsoft Catapult 
[MICRO 2016, 
Caulfield, et al.]

Google TPU 
[Hotchips, 2017,

Jeff Dean]
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March Toward Exascale (1018) HPC
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Top 500 Nov 22

#1 in 2021

#1 in2019

#5 in2020

#2 in Green500, 62.6 GFLOPS/W

private sector owned
AI supercomputer

(how many unlisted??)


