
18-447-S23-L21-S1, James C. Hoe, CMU/ECE/CALCM, ©2023

18-447 Lecture 21:
Parallel Architecture Overview

James C. Hoe
Department of ECE

Carnegie Mellon University

18-447-S23-L21-S2, James C. Hoe, CMU/ECE/CALCM, ©2023

Housekeeping
• Your goal today

– see the diverse landscape of parallel computer
architectures/organizations

– set the context for focused topics to come
• Notices

– Handout #14: HW5, due Friday 4/28 midnight
– get going on Lab 4, now less than 3 weeks left
– All final conflicts have been declared!!

• Readings
– P&H Ch 6
– Synthesis Lecture: Parallel Processing, 1980 to 2020

18-447-S23-L21-S3, James C. Hoe, CMU/ECE/CALCM, ©2023

Parallelism Defined
• T1 (work measured in time):

– time to do work with 1 PE
• T (critical path):

– time to do work with infinite PEs
– T bounded by dataflow dependence

• Average parallelism:
Pavg = T1 / T

• For a system with p PEs
Tp max{ T1/p, T }

• When Pavg>>p
Tp  T1/p, aka “linear speedup”

+

+-

*

*2

a b

x
y

x = a + b;
y = b * 2
z =(x-y) * (x+y)

18-447-S23-L21-S4, James C. Hoe, CMU/ECE/CALCM, ©2023

A Non-Parallel Architecture

• Memory holds both program and data
– instructions and data in a linear memory array
– instructions can be modified as data

• Sequential instruction processing
1. program counter (PC) identifies current instruction
2. fetch instruction from memory
3. update some state (e.g. PC and memory) as a

function of current state (according to instruction)
4. repeat

…

program counter

0 1 2 3 4 5 . . .

Dominant paradigm since its invention

18-447-S23-L21-S5, James C. Hoe, CMU/ECE/CALCM, ©2023

Inherently Parallel Architecture
• Consider a von Neumann program

– What is the significance of the program order?
– What is the significance of the storage locations?

• Dataflow program instruction ordering
implied by data dependence
– instruction specifies who receives the result
– instruction executes when operands received
– no program counter, no* intermediate state

v := a + b ;
w := b * 2 ;
x := v - w ;
y := v + w ;
z := x * y ;

+ *2

- +

*

a b

z

[dataflow figure and example from Arvind]

18-447-S23-L21-S6, James C. Hoe, CMU/ECE/CALCM, ©2023

More Conventionally Parallel

P1 P2 P3 Pn

Memory

Do you naturally think parallel or sequential?

18-447-S23-L21-S7, James C. Hoe, CMU/ECE/CALCM, ©2023

Simple First Look: Data Parallelism

• Same work on disjoint sets of dataimportant in
linear algebra behind scientific/numerical apps

• Example: AXPY (from Level 1 Basic Linear Algebra
Subroutine)

– Y and X are vectors
– same operations repeated on each Y[i] and X[i]
– iteration i does not touch Y[j] and X[j], ij

How to exploit data parallelism?

for(i=0; i<N; i++) {
Y[i]=a*X[i]+Y[i]

}
Y = a*X+Y =

18-447-S23-L21-S8, James C. Hoe, CMU/ECE/CALCM, ©2023

Parallelism vs Concurrency

• Instantiate k copies of the hardware unit foo to
process k iterations of the loop in parallel

b0 b1 b2 b3 b4 b5 b6 b7

a0 a1 a2 a3 a4 a5 a6 a7

foo foo foo foo foo foo foo foo

c0 c1 c2 c3 c4 c5 c6 c7

for(i=0; i<N; i++) {
C[i]=foo(A[i], B[i])

}

18-447-S23-L21-S9, James C. Hoe, CMU/ECE/CALCM, ©2023

Parallelism vs Concurrency

• Build a deeply (super)pipelined version of foo()

for(i=0; i<N; i++) {
C[i]=foo(A[i], B[i])

}

b0b1b2b3b4

a0a1a2a3a4…………
c0c1c2c3c4

available many
cycles laterconsumed 1 element

per cycle

…………
…………

Can combine concurrency and
pipelining at the same time

concurrency? yes!

18-447-S23-L21-S10, James C. Hoe, CMU/ECE/CALCM, ©2023

Harder Kind of Parallelism:
Irregular and Data Dependent

0

1

2

4

3
root

Neighbors can be visited concurrently, usually without conflict

e.g., BFS

18-447-S23-L21-S11, James C. Hoe, CMU/ECE/CALCM, ©2023

A Spotty Tour of the MP Universe

18-447-S23-L21-S12, James C. Hoe, CMU/ECE/CALCM, ©2023

Classic Thinking: Flynn’s Taxonomy
Multiple Instruction

Stream
Single Instruction

Stream

MISD:
DB query??

SISD:
your vanilla uniprocessor

Si
ng

le
 D

at
a

St
re

am

MIMD:
fully independent

programs/control-flows
working in parallel

(collaborating SISDs?)

SIMD:
many PEs following
common instruction

stream/control-flow on
different dataM

ul
tip

le
 D

at
a

St
re

am

18-447-S23-L21-S13, James C. Hoe, CMU/ECE/CALCM, ©2023

alu

data

alu

data

alu

data

SIMD vs. MIMD
(an abstract and general depiction)

cntrl cntrl cntrl

cntrl

alu

data

alu

data

alu

data

together or separate?together or separate?

18-447-S23-L21-S14, James C. Hoe, CMU/ECE/CALCM, ©2023

Variety in the details
• Scale, technology, application
• Concurrency

– granularity of concurrency (how finely is work
divided)whole programs down to bits

– regularityall “nodes” look the same and look out
to the same environment

– static vs. dynamice.g., load-balancing
• Communication

– message-passing vs. shared memory
– granularity of communicationwords to pages
– interconnect and interface design/performance

18-447-S23-L21-S15, James C. Hoe, CMU/ECE/CALCM, ©2023

SIMD: Vector Machines

[Figure from H&P CAaQA, COPYRIGHT 2007 Elsevier.
ALL RIGHTS RESERVED.]

• Vector data type and regfile
• Deeply pipelined fxn units
• Matching high-perf load-store

units and multi-banked memory
• E.g., Cray 1, circa 1976

– 64 x 64-word vector RF
– 12 pipelines, 12.5ns clk
– ECL 4-input NAND and SRAM

(no caches!!)
– 2x25-ton cooling system
– 250 MIPS peak for ~10M

1970$

18-447-S23-L21-S16, James C. Hoe, CMU/ECE/CALCM, ©2023

SIMD: Big-Irons
• Sea of PEs on a regular grid

– synchronized common cntrl
– direct access to local mem
– nearest-neighbor exchanges
– special support for

broadcast, reduction, etc.
• E.g., Thinking Machines CM-2

– 1000s of bit-sliced PEs lock-
step controlled by a
common sequencer

– “hypercube” topology
– special external I/O nodes

PE
M

R
PE
M

R
PE
M

R

PE
M

R
PE
M

R
PE
M

R

PE
M

R
PE
M

R
PE
M

R

Front
End

18-447-S23-L21-S17, James C. Hoe, CMU/ECE/CALCM, ©2023

SIMD: Modern Renditions, e.g.,
• Intel SSE (Streaming SIMD Extension), 1999

– 16 x 128-bit “vector” registers, 4 floats or 2
doubles

– SIMD instructions: ld/st, arithmetic, shuffle,
bitwise

– SSE4 with true full-width operations
Core i7 does upto 4 sp-mult & 4 sp-add

per cyc per core, (24GFLOPS @3GHz)

• AVX 2 doubles the above (over 1TFLOPS/chip)
• “GP”GPUs . . . (next slide)

Simple hardware, big perf numbers but
only if massively data-parallel app!!

18-447-S23-L21-S18, James C. Hoe, CMU/ECE/CALCM, ©2023

E.g., 8+ TFLOPs Nvidia GP104 GPU

• 20 Streaming Multiproc
– 128 SIMD lane per SM
– 1 mul, 1 add per lane
– 1.73 GHz (boosted)

• Performance
– 8874 GFLOPs
– 320GB/sec
– 180 Watt

How many FLOPs per
Watt? How many FLOPs

per DRAM byte accessed?
[NVIDIA GeForce GTX 1080 Whitepaper]

18-447-S23-L21-S19, James C. Hoe, CMU/ECE/CALCM, ©2023

• Each cycle, select a “ready” thread from scheduling pool
– only one instruction per thread in flight at once
– on a long stall (DRAM), remove thread from

scheduling
• Simpler and faster pipeline implementation since

– no data dependence, hence no stall or forwarding
– no penalty in making pipeline deeper

Instthread1

Instthread3

A B C F G H
A B C D E E G H

D E
A B E F G HC D

A B E F G HC D

Instthread2

Instthread4
A B E F G HC D

A B E F G HC D
A B E F G HC D

A B E F G HC D
A B E F G HC D

Instthread5

Instthread7

Instthread6

Instthread8
Instthread1

Aside: IPC, ILP, and TLP

e.g., Barrel Processor [HEP, Smith]

18-447-S23-L21-S20, James C. Hoe, CMU/ECE/CALCM, ©2023

Historical: what 1 TFLOP meant in 1996
• ASCI Red, 1996World’s 1st TFLOP computer!!

– $50M, 1600ft2 system
– ~10K 200MHz PentiumPro’s
– ~1 TByte DRAM (total)
– 500kW to power + 500kW on cooling

• Advanced Simulation and Computing Initiative
– how to know if nuclear stockpile still good if you

can’t blow one up to find out?
– require ever more expensive simulation as

stockpile aged
– Red 1.3TFLOPS 1996; Blue Mountain/Pacific

4TFLOPS 1998; White 12TFLOPS 2000; Purple
100TFLOPS 2005; . . . HPE Frontier 1.1ExaFLOPS

18-447-S23-L21-S21, James C. Hoe, CMU/ECE/CALCM, ©2023

alu

data

alu

data

alu

data

SIMD vs. MIMD
(an abstract and general depiction)

cntrl cntrl cntrl

cntrl

alu

data

alu

data

alu

data

together or separate?together or separate?

18-447-S23-L21-S22, James C. Hoe, CMU/ECE/CALCM, ©2023

MIMD: Message Passing

• Private address space and memory per processor
• Parallel threads on different processors communicate

by explicit sending and receiving of messages

Interconnect

P0M0
tx fifo
rx fifo

NIU

P1M1
tx fifo
rx fifo

NIU

P2M2
tx fifo
rx fifo

NIU

Pi Mitx fifo
rx fifo

NIU

Pj Mj
tx fifo
rx fifo

NIU

Pk Mk
tx fifo
rx fifo

NIU

18-447-S23-L21-S23, James C. Hoe, CMU/ECE/CALCM, ©2023

MIMD Message Passing Systems
(by network interface placement)

• Any Clusters (e.g., data centers, Beowulf) (I/O bus)
– Linux PCs connected by Ethernet

• “High-Performance Computing” Clusters (I/O bus)
– stock workstations/servers but

exotic interconnects, e.g.,
Myrinet, HIPPI, Infiniband, etc.

• Supers (memory bus)
– stock CPUs on custom platform
– e.g., Cray XT5 (“fastest”

in 2011 224K AMD Opteron
• Inside the CPU

– single-instruction send/receive
– e.g., iAPX 432 (1981), Transputers (80s), . . . (now?)

DiskDiskDisk

I/O Bus

Memory Bus (GB/sec)

Main
Memory

I/O
Bridge

I/O

CPU
ALU RF

$ X
X

X

18-447-S23-L21-S24, James C. Hoe, CMU/ECE/CALCM, ©2023

MIMD Shared Memory:
Symmetric Multiprocessors (SMPs)

• Symmetric means
– identical procs connected to common memory
– all procs have equal access to system (mem & I/O)
– OS can schedule any process on any processor

• Uniform Memory Access (UMA)
– processor/memory

connected by bus or crossbar
– all processors have equal

memory access performance
to all memory locations

– caches need to stay coherent DiskDiskDisk

I/O Bus

CPU
ALU RF

cache

Memory Bus (GB/sec)

Main Memory

I/O
Bridge

I/O

CPU
ALU RF

cache

18-447-S23-L21-S25, James C. Hoe, CMU/ECE/CALCM, ©2023

MIMD Shared Memory: Big Irons
Distributed Shared Memory

• UMA hard to scale due to concentration of BW
• Large scale SMPs have distributed memory with

non-uniform memory (NUMA)
– “local” memory pages (faster to access)
– “remote” memory pages (slower to access)
– cache-coherence still possible but complicated

• E.g., SGI Origin 2000
– upto 512 CPUs and 512GB

DRAM ($40M)
– 48 128-CPU system was

collectively the 2nd fastest
computer (3TFLOPS) in 1999

mem PE

NIU

mem PE

NIU

network

dirdir dirdir

18-447-S23-L21-S26, James C. Hoe, CMU/ECE/CALCM, ©2023

MIMD Shared Memory:
it is everywhere now!

• General-purpose “multicore” processors
implement SMP (not UMA) on a single chip

• Moore’s Law scaling in number of core’s

Intel Xeon e5345 [Figure from P&H CO&D, COPYRIGHT
2009 Elsevier. ALL RIGHTS RESERVED.]

18-447-S23-L21-S27, James C. Hoe, CMU/ECE/CALCM, ©2023

Today’s Normal

[https://www.amd.com/system/files/documents/2019-amd-epyc-7002-tg-windows-
server-56782_1.0.pdf]

18-447-S23-L21-S28, James C. Hoe, CMU/ECE/CALCM, ©2023

Today’s Normal

Intel Ponte Vecchio 2.5 and 3-D integration of 47 chips and chiplets
[https://www.intel.com/content/www/us/en/developer/articles/technical/intel-data-
center-gpu-max-series-overview.html]

18-447-S23-L21-S29, James C. Hoe, CMU/ECE/CALCM, ©2023

Remember how we got here

Big Corelittle
core

little
core

little
core little

core
little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

2005~??1970~2005

18-447-S23-L21-S30, James C. Hoe, CMU/ECE/CALCM, ©2023

Today’s Exotic

Microsoft Catapult
[MICRO 2016,
Caulfield, et al.]

Google TPU
[Hotchips, 2017,

Jeff Dean]

18-447-S23-L21-S31, James C. Hoe, CMU/ECE/CALCM, ©2023

March Toward Exascale (1018) HPC

w
w

w
.to

p5
00

.o
rg

18-447-S23-L21-S32, James C. Hoe, CMU/ECE/CALCM, ©2023

Top 500 Nov 22

#1 in 2021

#1 in2019

#5 in2020

#2 in Green500, 62.6 GFLOPS/W

private sector owned
AI supercomputer

(how many unlisted??)

