
18-447-S23-L20-S1, James C. Hoe, CMU/ECE/CALCM, ©2023

18-447 Lecture 20:
ILP to Multicores

James C. Hoe
Department of ECE

Carnegie Mellon University

18-447-S23-L20-S2, James C. Hoe, CMU/ECE/CALCM, ©2023

Housekeeping
• Your goal today

– transition from sequential to parallel
– enjoy (only first part, before OOO, on 447 exam)

• Notices
– HW4 and Midterm Regrades past due
– Handout #14: HW5, due Friday 4/28 midnight
– get going on Lab 4, now 3 weeks left

• Readings (advanced optional)
– MIPS R10K Superscalar Microprocessor, Yeager
– Synthesis Lectures: Processor Microarchitecture:

An Implementation Perspective, 2010
– Superscalar Club!!

18-447-S23-L20-S3, James C. Hoe, CMU/ECE/CALCM, ©2023

Parallelism Defined
• T1 (work measured in time):

– time to do work with 1 PE
• T (critical path):

– time to do work with infinite PEs
– T bounded by dataflow dependence

• Average parallelism:
Pavg = T1 / T

• For a system with p PEs
Tp max{ T1/p, T }

• When Pavg>>p
Tp T1/p, aka “linear speedup”

+

+-

*

*2

a b

x
y

x = a + b;
y = b * 2
z =(x-y) * (x+y)

let’s call p
concurrency

[Shiloach&Vishkin]

18-447-S23-L20-S4, James C. Hoe, CMU/ECE/CALCM, ©2023

ILP: Instruction-Level Parallelism
• Average ILP = T1 / T

= no. instruction / no. cyc required

code1: ILP = 1
i.e., must execute serially

code2: ILP = 3
i.e., can execute at the same time

code1: r1 r2 + 1
r3 r1 / 17
r4 r0 - r3

code2: r1 r2 + 1
r3 r9 / 17
r4 r0 - r10

18-447-S23-L20-S5, James C. Hoe, CMU/ECE/CALCM, ©2023

Superscalar Speculative
Out-of-Order Execution

18-447-S23-L20-S6, James C. Hoe, CMU/ECE/CALCM, ©2023

Exploiting ILP for Performance

Scalar in-order pipeline with forwarding
- operation latency (OL)= 1 base cycle

- peak IPC = 1 // no concurrency

- require ILP ≥ 1 to avoid stall

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

in
st

ru
ct

io
n

st
re

am

base cyc 0 1 2 3 4 5 6 7 8 9 10

18-447-S23-L20-S7, James C. Hoe, CMU/ECE/CALCM, ©2023

OL = M minor-cycle; same as 1 base cycle
peak IPC = 1 per minor-cycle // has concurrency though
required ILP ≥ M

Superpipelined Execution

base-cycle = M minor-cycles
minor-cycle

in
st

ru
ct

io
n

st
re

am

base cyc 0 1 2 3 4 5 6 7 8 9 10

IF ID EX MEM WB
IF IF IF IF

IF IF IF IF
IF IF IF IF

IF IF IF IF
IF IF IF IF

IF IF IF IF

Achieving full performance requires always
finding M “independent” instructions in a row

18-447-S23-L20-S8, James C. Hoe, CMU/ECE/CALCM, ©2023

Superscalar (Inorder) Execution
OL = 1 base cycle
peak IPC = N
required ILP ≥ N

IF ID EX MEM WB
IF ID EX MEM WB
IF ID EX MEM WB

in
st

ru
ct

io
n

st
re

am

Base cyc 0 1 2 3 4 5 6 7 8 9 10

IF ID EX MEM WB
IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB
IF ID EX MEM WB

Achieving full performance requires finding N
“independent” instructions on every cycle

18-447-S23-L20-S9, James C. Hoe, CMU/ECE/CALCM, ©2023

Lab 4 Aside: 2-way, In-order Superscalar

I-cache
Reg
File

Read
PC

D-cache
full
ALU

ALU
(no BR)

Reg
File

Write

2 X
fetch

bandwidth

2 X
read
ports

2 X
Logic

2X Dmem BW?
benefit/cost?

2 X
write
ports

primary

econdary

No!

18-447-S23-L20-S10, James C. Hoe, CMU/ECE/CALCM, ©2023

Lab4 Aside: Stall and Restart
• E.g., inst j cannot advance with i from D

– j not RV32I ALU, or
– j depends (RAW) on i, or
– j depends (RAW) on a LW in primary E, i.e., g

• Pipeline stall of F and secondary D in cyc2

76543210cyc

SPSPSPSPSPSPSPSP

tsrqponmlk(l)(k)jihgF

rqponmlkbubj(j)ihgD

ponmlkbubjbubihgE

nmlkbubjbubihgM

lkbubjbubihgW

18-447-S23-L20-S11, James C. Hoe, CMU/ECE/CALCM, ©2023

cache block offset

Lab 4 Aside: 2-way Branch Predictor
Sketch

Branch
History
Table
(BHT)

Branch
Target
Buffer
(BTB)

tag BTBidx

Tag
Table

=
ta

ke
n?

PC+4 PC+8

predPC

1 0

1 0

last inst in cache block?

fir
st

?
hit

Start from the shallow end:
1. Predicte PC+8
2. Add 2nd port to Lab3 BTB;

lookup PC and PC+4

(no alignment
restriction in Lab 4)

18-447-S23-L20-S12, James C. Hoe, CMU/ECE/CALCM, ©2023

Limitations of Inorder Pipeline
• Achieved IPC of inorder pipelines degrades rapidly

as NxM approaches ILP
• Despite high concurrency potential, pipeline never

full due to frequent dependency stalls!!

in
st

ru
ct

io
n

st
re

am

18-447-S23-L20-S13, James C. Hoe, CMU/ECE/CALCM, ©2023

Out-of-Order Execution

• ILP is scope dependent

r1 r2 + 1
r3 r1 / 17
r4 r0 - r3

ILP=1

r11 r12 + 1
r13 r19 / 17
r14 r0 - r20

ILP=2

Accessing ILP=2 requires not only (1) larger scheduling
window but also (2) out-of-order execution

18-447-S23-L20-S14, James C. Hoe, CMU/ECE/CALCM, ©2023

Pass this point not on exams

For more, go read “Synthesis Lectures: Processor
Microarchitecture: An Implementation Perspective,”

2010

18-447-S23-L20-S15, James C. Hoe, CMU/ECE/CALCM, ©2023

Superscalar Speculative
Out-of-Order Execution

18-447-S23-L20-S16, James C. Hoe, CMU/ECE/CALCM, ©2023

IFIF

Data Forwarding (or Register Bypassing)
• What does “ADD rx ry rz” mean? Get inputs from

RF[ry] and RF[rz] and put result in RF[rx]?
• But, RF is just a part of an abstraction

– a way to connect dataflow between instructions
“operands to ADD are resulting values of the last

instructions to assign to RF[ry] and RF[rz]”
– RF doesn’t have to exist/behave as a literal object!!!

• If only dataflow matters, don’t wait for WB . . .

WBIF ID EX MEM

ID ID ID ID

addi x1, x0, 0

addi x2, x1, 0 WBMEMEXID

18-447-S23-L20-S17, James C. Hoe, CMU/ECE/CALCM, ©2023

von Neuman vs Dataflow
• Consider a von Neumann program

– What is the significance of the program order?
– What is the significance of the storage locations?

• Dataflow program instruction ordering
implied by data dependence
– instruction specifies who receives the result
– instruction executes when operands received
– no program counter, no* intermediate state

v := a + b ;
w := b * 2 ;
x := v - w ;
y := v + w ;
z := x * y ;

+ *2

- +

*

a b

z

[dataflow figure and example from Arvind]

18-447-S23-L20-S18, James C. Hoe, CMU/ECE/CALCM, ©2023

Instruction Micro-Dataflow
• Maintain a buffer of many pending instructions,

a.k.a. reservation stations (RSs)
– wait for functional unit to be free
– wait for required input operands to be available

• Decouple execution order from who is first in line
(program order)
– select inst’s in RS whose operands are available
– give preference to older instructions (heuristical)

• A completing instruction (producer) signals
dependent instructions (consumer) of operand
availability

18-447-S23-L20-S19, James C. Hoe, CMU/ECE/CALCM, ©2023

Tomasulo’s Algorithm [IBM 360/91, 1967]
• Dispatch an instruction to a RS slot after decode

– decode received from RF either operand
value or placeholder RS-tag

– mark RF dest with RS-tag of
current inst’s RS slot

• Inst in RS can issue when
all operand values ready

• Completing instruction, in
addition to updating RF dest,
broadcast its RS-tag and value to all RS slots

• RS slot holding matching RS-tag placeholder pickup value

18-447-S23-L20-S20, James C. Hoe, CMU/ECE/CALCM, ©2023

WAW and WAR

• No WAW and WAR in 5-stage in-order because
– single write stage
– write stage at the end (later than any read stage)
– in-order progression in pipeline

WB

mul1

Addr

mul2

F D ALU &
BR/J

M1 M2 M3

18-447-S23-L20-S21, James C. Hoe, CMU/ECE/CALCM, ©2023

Removing False Dependencies
• With out-of-order execution comes WAW and

WAR hazards
• Anti and output dependencies are false

dependencies on register names rather than data

• With infinite number of registers, anti and output
dependencies avoidable by using a new register
for each new value

r3 r1 op r2
r5 r3 op r4
r3 r6 op r7

18-447-S23-L20-S22, James C. Hoe, CMU/ECE/CALCM, ©2023

Register Renaming: Example

Original
r1 r2 / r3
r4 r1 * r5
r1 r3 + r6
r3 r1 - r5

Renamed
r1 r2 / r3
r4 r1 * r5
r8 r3 + r6
r9 r8 - r5

18-447-S23-L20-S23, James C. Hoe, CMU/ECE/CALCM, ©2023

physical
registers

(t0 ... t63)

rename
table

On-the-fly HW Register Renaming

• Maintain mapping from ISA reg. names to physical registers
• When decoding an instruction that updates ‘rx’:

– allocate unused physical register ty to hold inst result
– set new mapping from ‘rx’ to ty

– younger instructions using ‘rx’ as input finds ty

• De-allocate a physical register for reuse
when it is never needed again?

^^^^^when is this exactly?

ISA name
e.g. r12

rename
t56

r1 r2 / r3
r4 r1 * r5
r1 r3 + r6

18-447-S23-L20-S24, James C. Hoe, CMU/ECE/CALCM, ©2023

Superscalar Speculative
Out-of-Order Execution

18-447-S23-L20-S25, James C. Hoe, CMU/ECE/CALCM, ©2023

Control Speculation
• For want of a large window of instructions

– if 14% of avg. instruction mix is control flow, what
is average distance between control flow?

– instruction fetch must make multiple levels of
branch predictions (condition and target) to fetch
far ahead of execution and commit

• Modern CPUs can have over 100 instructions in
out-of-order execution scope

• Question:
– how much more ILP is uncovered with look ahead
– how much useful work is done during look ahead

Ans: not much and not much

18-447-S23-L20-S26, James C. Hoe, CMU/ECE/CALCM, ©2023

Speculative Out-of-order Execution

• A mispredicted branch after resolution must be
rewound and restarted ASAP!

• Much trickier than 5-stage pipeline . . .
– can rewind to an intermediate speculative state
– a rewound branch could still be speculative and

itself be discarded by another rewind!
– rewind must reestablish both architectural state

(register value) and microarchitecture state (e.g.,
rename table)

– rewind/restart must be fast (not infrequent)

• Also need to rewind on exceptionsbut easier

18-447-S23-L20-S27, James C. Hoe, CMU/ECE/CALCM, ©2023

Nested Control Flow Speculation

NT T NT T NT T NT T

NT T NT T

NT T tag1

tag2

tag3

18-447-S23-L20-S28, James C. Hoe, CMU/ECE/CALCM, ©2023

Mis-speculation Recovery
can be Speculative

NT T NT T NT T NT T

NT T NT T

NT T tag1

tag2

tag3 tag3tag3

tag2

18-447-S23-L20-S29, James C. Hoe, CMU/ECE/CALCM, ©2023

Instruction Reorder Buffer (ROB)
• Program-order bookkeeping (circular buffer)

– instructions enter and leave in program order
– tracks 10s to 100s of in-flight

instructions in different stages of
execution

• Dynamic juggling of state and
dependency
– oldest finished instruction “commit”

architectural state updates on exit
– all ROB entries considered

“speculative” due to potential for
exceptions and mispredictions

youngest

oldest

youngest

oldest

mispredict youngest

oldest

youngest

oldest

youngest

oldest

mispredict

18-447-S23-L20-S30, James C. Hoe, CMU/ECE/CALCM, ©2023

In-order vs Speculative State
• In-order state:

– cumulative architectural effects of all instructions
committed in-order so far

– can never be undone!!
• Speculative state, as viewed by a given inst in ROB

– in-order state + effects of older inst’s in ROB
– effects of some older inst’s may be pending

• Speculative state effects must be reversible
– remember both in-order and speculative values for

an RF register (may have multiple speculative values)
– store inst updates memory only at commit time

• Discard younger speculative state to rewind
execution to oldest remaining inst in ROB

18-447-S23-L20-S31, James C. Hoe, CMU/ECE/CALCM, ©2023

You have seen this before

PC Instruction

memory

4

Registers

Sign

extend

M
u
x

M
u
x

M
u
x

Control

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

M
u
x

Data

memory

M
u
x

Hazard
detection

unit

Forwarding

unit

IF.Flush

IF/ID

=

Except
PC

40000040

0

M
u
x

0

M
u
x

0

M
u
x

ID.Flush EX.Flush

Cause

Shift
left 2

Figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Where is “the current instruction”?

0

M
u
x

MEM.Flush

18-447-S23-L20-S32, James C. Hoe, CMU/ECE/CALCM, ©2023

Superscalar Speculative OOO All Together

wide inst decode

rename

wide inst fetch + predict

ROB

RS
(Int insts)

ALU1 ALU2

physical registers
(Integer)

LD/ST

physical registers
(FP)

FPU1 FPU2

RS
(FP insts)

rename

Read [Yeager 1996, IEEE Micro] if you are interested

18-447-S23-L20-S33, James C. Hoe, CMU/ECE/CALCM, ©2023

Truth about Superscalar Speculative OOO

• If memory speed kept up with core speed, we
would still be building in-order pipelines

• But, by 2005 we were seeing
e.g., Intel P4 at 4+GHz

• Speculative OOO has really been about
– finding independent work to do after cache hit&miss
– getting to future cache misses as early as possible
– overlapping multiple cache misses for BW (aka MLP)

18-447-S23-L20-S34, James C. Hoe, CMU/ECE/CALCM, ©2023

1,566

At the 2005 Peak of Superscalar OOO

Alpha
21364

AMD
Opteron

4 3 (x86)

7/9 9/11

80 72(rop)

48+41 36+36

135 106

issue rate

pipeline int/fp

inst in flight

rename reg

transistor (106)

power (W) 155 86

Microprocessor Report, December 2004

904SPECint 2000

SPECfp 2000 1279 1,591

Intel
Xeon

3 (rop)

22/24

126 rop

128

125

103

1,521

1,504

1.30 2.4clock (GHz) 3.6

Intel
Itanium2

8

8

inorder

328

592

130

1,590

2,712

1.6

MIPS
R14000

4

6

48

32/32

7.2

16

483

499

0.6

IBM
Power5

8

12/17

200

48/40

276

120

1,398

2,576

1.9

18-447-S23-L20-S35, James C. Hoe, CMU/ECE/CALCM, ©2023

At peak minus 5 years
Alpha
21264

AMD
Athlon

Intel
P4

MIPS
R12000

IBM
Power3

HP
PA8600

SUN
Ultra3

4 3 (x86) 3 (rop) 4 4 4 4

7/9 9/11 22/24 6 7/8 7/9 14//15

80 72(rop) 126 rop 48 32 56 inorder

48+41 36+36 128 32+32 16+24 56 inorder

15.4 37 42 7.2 23 130 29

833 1200 1500 400 450 552 900clock (MHz)

issue rate

pipeline int/fp

inst in flight

rename reg

transistor (106)

power (W) 75 76 55 25 36 60 65

Microprocessor Report, December 2000

518 524 320 286 417 438SPECint 2000

SPECfp 2000 590 304 549 319 356 400 427

18-447-S23-L20-S36, James C. Hoe, CMU/ECE/CALCM, ©2023

limit of
economical
cooling [ITRS]

Performance (In)efficiency
• To hit “expected” performance target

– push frequency harder by deepening pipelines
– used the 2x transistors to build more complicated

microarchitectures so fast/deep pipelines don’t stall
(i.e., caches, BP, superscalar, out-of-order)

• The consequence of performance inefficiency is

[Borkar, IEEE Micro, July 1999]

2005, Intel
P4 Tehas 150W

18-447-S23-L20-S37, James C. Hoe, CMU/ECE/CALCM, ©2023

Efficiency of Parallel Processing

technology
normalized

performance
(op/sec)

technology
normalized

power
(Watt)

PowerPerf1.75

Better to replace 1 of this
by 2 of these;
Or N of
these

[Energy per Instruction Trends in Intel®
Microprocessors, Grochowski et al., 2006]

486

Pentium 4

18-447-S23-L20-S38, James C. Hoe, CMU/ECE/CALCM, ©2023

1870

At peak plus 1 year
AMD
285

Intel
965

3 (x86) 3 (rop)

11 31

72(rop) 126(rop)

2x1 2x2

233 376

issue rate

pipeline depth

inst in flight

on-chip$ (MB)

transistor (106)

power (W) 95 130

Microprocessor Report, Aug 2006

1942SPECint 2000

SPECfp 2000 2260 2232

Intel
Itanium2

6

8

inorder

2x13

1700

104

1474

3017

2.6 3.73clock (GHz) 1.6

SUN
Ultra4

4

14

inorder

2

295

90

1300

1800

1.8

MIPS
R16000

4

6

48

0.064

7.2

17

560

580

0.7

IBM
P5+

8

17

200

1.9

276

100

1820

3369

2.3

2x1 2x2cores/threads 2x2 2x11x12x2

(1556*)

Intel
5160

4 (rop)

14

96(rop)

4

291

80

(1694+)

3.03

2x2

per core

per core

*3086/+2884 according to www.spec.org

18-447-S23-L20-S39, James C. Hoe, CMU/ECE/CALCM, ©2023

per-core/total

Intel
Itanium

9050

6

8

inorder

1+12

1720

104

14.5/1534

17.3/1671

1.60

Fijitsu
SPARC 7

4

15

64

6

600

135

10.5/2088

25.0/1861

2.52

IBM
P6

7

13

limited

8

790

>100

15.8/1837

20.1/1822

5

IBM
P5

5

15

200

1.92

276

100

10.5/197

12.9/229

2.2

2x2 4x22x22x2

AMD
Opteron
8360SE

3 (x86)

12/17

72(rop)

2+2

463

issue rate

pipeline depth

out-of-order

on-chip$ (MB)

transistor (106)

power max(W) 105

14.4/170SPECint 2006

SPECfp 2006 18.5/156

2.5clock (GHz)

4x1cores/threads

22/274

Intel
Xeon

X7460

4 (rop)

14

96(rop)

9+16

1900

130

22/142

2.67

6x1

per-core/total

At peak plus 3 years

Microprocessor Report, Oct 2008

SUN
T2

2

8/12

inorder

4

503

95

--/142

--/111

1.8

8x8

18-447-S23-L20-S40, James C. Hoe, CMU/ECE/CALCM, ©2023

Bigger L3

On to Mainstream Parallelism
in Multicores and Manycores

Core

$

Core

$

Core

$

Fat Interconnect

Big L2

Remember, we got here because we need to compute
faster while using less energy per operation

