
18-447-S24-L19-S1, James C. Hoe, CMU/ECE/CALCM, ©2024

18-447 Lecture 19:
Survey of Realworld VM Arch +

Decomposition of Meltdown

James C. Hoe
Department of ECE

Carnegie Mellon University

18-447-S24-L19-S2, James C. Hoe, CMU/ECE/CALCM, ©2024

Housekeeping
• Your goal today

– Part I: see many realworld, non-textbook examples
of “VM”

– Part II: everything in 447 together in Meltdown
• Notices

– HW 4, due 4/8
– Midterm regrades, due 4/3
– Lab 4, due Thursday 4/25 (No late submissions)

• Readings
– Synthesis Lecture: Architectural and Operating

System Support for Virtual Memory (optional)
– start on P&H Ch 6

18-447-S24-L19-S3, James C. Hoe, CMU/ECE/CALCM, ©2024

A Sampling from
B. Jacob and T. Mudge, Virtual

Memory in Contemporary
Processors, IEEE Micro, 1998

emphasis on departures from
textbook-conceptual norms

18-447-S24-L19-S4, James C. Hoe, CMU/ECE/CALCM, ©2024

EA, VA and PA (IBM Power view)

64-bit EA0 divided into
X fixed-size segments

64-bit EA1 divided into
X fixed-size segments 80~90-bit VA divided into Y segments (Y>>X);

segmented EA:
private, contiguous + sharing

40~50-bit PA divided
into W pages (Z>>W)

swap space divided into V
pages (Z>>V, V>?W)

demand paged VA:
capacity of disk, speed of DRAM

also divided as Z pages

18-447-S24-L19-S5, James C. Hoe, CMU/ECE/CALCM, ©2024

swap space divided into V
pages (Z>>V, V>?W)

PA divided into W pages
(Z>>W)

EA, VA and PA (almost everyone else)

VA divided into N “address spaces”
indexed by ASID;

also divided as Z pages

EA0
with unique ASID=0

EAi
with unique ASID=i

how do processes
share pages?

Easy to blur EA and VA
colloquially but full VA is
{ASID, EA}!!!

18-447-S24-L19-S6, James C. Hoe, CMU/ECE/CALCM, ©2024

SPARC V9 PTE/TLB Entry
• 64-bit VA + context ID

– implementation can choose not to map high-order
bits (require sign extension in unmapped bits)

– e.g., UltraSPARC 1 mapped only lower 44 bits
• PA space size set by implementation, 228 max pgs
• 64 entry fully associative I-TLB and D-TLB

context13g VA<63:13> 51 Tag64

v size nfo IE Soft diag PA<40:13> Soft L CP CV e p w g PTE64

Unlike caches, TLB specifics and operation
have effects visible to kernel SW!!

18-447-S24-L19-S7, James C. Hoe, CMU/ECE/CALCM, ©2024

SPARC TLB Miss Handling
• 32-bit V8 used a 3-level hierarchical page table for

HW MMU page-table walk

• 64-bit V9 switched to Translation Storage Buffer
– a software managed, in-DRAM direct-mapped

“cache” of PTEs (think hashed pg table or SW TLB)
– HW assisted address generation on a TLB miss
– TLB miss handler (SW) searches TSB. If TSB misses,

a slower TSB-miss handler takes over
– OS can use any page table structure after TSB

context
table

descriptors

L1 Table:
256

descriptors
(1024-byte)

L2 Table:
64

descriptors
(256-byte)

L3 Table:
64

PTEs
(256-byte)

+VA[31:24] +VA[23:18] +VA[17:12]

context

18-447-S24-L19-S8, James C. Hoe, CMU/ECE/CALCM, ©2024

IBM PowerPC (32-bit)

seg#4 seg offset16 page offset12 EA32

16-entry
segment table

seg ID24 seg offset16 page offset12 VA52

Pr
ot

ec
tio

n

128 2-way ITLB and DTLB

PPN20 page offset12
PA32

VM
+p

ag
in

g

64-bit PowerPC = 64-bit EA -> 80-bit VA 64-bit PA
How many segments in 64-bit EA?

segments 256MB regions

18-447-S24-L19-S9, James C. Hoe, CMU/ECE/CALCM, ©2024

IBM PowerPC Hashed Page Table

• HW table walk
– VPN hashes into a PTE group (PTEG) of 8
– 8 PTEs searched for tag match
– if not found in first PTEG search a secondary PTEG
– if not found in 2nd PTEG, trap to software handler

• Hashed table structure also used for 64-bit EAVA

VPN40

hash
function Hashed Page Table

8 PTE’s per group
(recommend at least N PTEG’s for
a system with 2N physical pages)

table base +

18-447-S24-L19-S10, James C. Hoe, CMU/ECE/CALCM, ©2024

MIPS R10K
• 64-bit VA

– top 2 bits set kernel/supervisor/user mode
– additional bits set cache and translation

behavior
– bit 61-40 not translate at all

(holes and repeats in the VA??)

• 8-bit ASID (address space ID) distinguishes
between processes

• 40-bit PA
• Translation -

“64”-bit VA and 8-bit ASID 40-bit PA

1 GB
mapped

(kseg)

0.5 GB
unmapped
uncached

0.5 GB
unmapped

cached

bottom
2 GB

mapped

(normal)

si
m

pl
ifi

ed
 e

xa
m

pl
e

fr
om

 3
2-

bi
t V

A
in

 R
20

00
/3

00
0

18-447-S24-L19-S11, James C. Hoe, CMU/ECE/CALCM, ©2024

MIPS TLB
• 64-entry fully associative unified TLB
• Each entry maps 2 consecutive VPNs to

independent respective PPNs
• Software TLB-miss handling (exotic at the time)

– 7-instruction page table walk in the best case
– TLB Write Random: chooses a random entry for

TLB replacement
– OS can exclude low TLB entries from replacement

(some translations must not miss)

• TLB entry
– N: noncacheable D: dirty (write-enable!!)
– V: valid G: ignore ASID

VPN20 ASID6 06
PPN20 ndvg 08

18-447-S24-L19-S12, James C. Hoe, CMU/ECE/CALCM, ©2024

MIPS Bottom-Up Hierarchical Table

• TLB miss vectors to a SW handler
– page table organization is not hardcoded in ISA
– ISA favors a chosen reference page table scheme

by providing “optional” hardware assistance

• Bottom-Up Table
– start with 2-level hierarchical table (32-bit case)
– allocate all L2 tables for all VA pages (empty or

not) linearly in the mapped kseg space
– VPN is index into this linear table in VA

This table scales with VA size!! Is this okay?

18-447-S24-L19-S13, James C. Hoe, CMU/ECE/CALCM, ©2024

Bottom-Up Table Walk

VPN PO

VPN 0sPTEBase

VA on TLB Miss, trap

VA of PTE
(generated automatically
by HW after TLB miss)

whose
address
space?

PPN status

mem
load

PTE loaded from mem

Can this load miss in the TLB?
What happens if it misses?

notice translation also eats up TLB entries!

18-447-S24-L19-S14, James C. Hoe, CMU/ECE/CALCM, ©2024

User TLB Miss Handling

mfc0 k0,tlbcxt # move the contents of TLB
context register into k0

mfc0 k1,epc # move PC of faulting memory
instruction into k1

lw k0,0(k0) # load thru address that was
in TLB context register

mtc0 k0,entry_lo # move the loaded value (a PTE)
into the EntryLo register

tlbwr # write PTE into the TLB
at a random slot number

j k1 # jump to PC of faulting
load instruction to retry

rfe # restore privilege (in delay slot)

18-447-S24-L19-S15, James C. Hoe, CMU/ECE/CALCM, ©2024

HP PA-RISC: PID and AID
• 2-level: 64b EA96b VA (global)64b PA
• Variable sized segmented EAVA translation
• Rights-based access control

– user controls segment registers (user can
generate any VA it wants!!)

in contrast, everyone else controls translation to
control what VA can be reached from a process

– each virtual page has an access ID (AID) assigned
by OS

– each process has 8 active protection IDs (PIDs) in
privileged HW registers managed by OS

– a process can access a page only if one of the 8
PIDs matches the page’s AID (think lock and keys)

18-447-S24-L19-S16, James C. Hoe, CMU/ECE/CALCM, ©2024

Intel 80386

• Two-level address translation:
segmented EA global VA PA

• User-private 48-bit EA
– 16-bit SN (implicit) + 32-bit SO
– 6 user-controlled registers hold active SNs;

selected according to usage: code, data, stack, etc

• Global 32-bit VA
– 20-bit VPN + 12-bit PO

• An implementation defined paged PA space
What is very odd about this?

18-447-S24-L19-S17, James C. Hoe, CMU/ECE/CALCM, ©2024

Living with too small VA space
• 32-bit global VA too small to share by processes

– per-process EA space oddly bigger than VA space
– until 1990, no one cared DOS and Windows

• Later multitasking OS ignore segment protection
– time-multiplex **global** VA space for use by 1

process at a time
– code, data, stack segments always map to entire

VA space, 0~(232-1)
– set MMU to use a different table on context switch
– BUT! TLB for VA translation doesn’t have ASID;

must flush TLB on context switch

• Much later IA32e/Intel 64 added PCID to TLB

18-447-S24-L19-S18, James C. Hoe, CMU/ECE/CALCM, ©2024

A Contemporary Example: RISC-V

• Sv32 (also Sv39, Sv48, Sv48): hierarchical, HW-
walked table for each “hart”

• With hypervisor: VA Guest PA Supervisor PA
• Does not define a TLB (march can cache translation)

18-447-S24-L19-S19, James C. Hoe, CMU/ECE/CALCM, ©2024

SV57

18-447-S24-L19-S20, James C. Hoe, CMU/ECE/CALCM, ©2024

Meltdown in 18-447 Terms

How to “know” the value at a memory
location without permission to read it?

18-447-S24-L19-S21, James C. Hoe, CMU/ECE/CALCM, ©2024

VA to PA Translation Flow Chart
VA

TLB
lookup

PT walk

update TLB

“page fault”
allocate or
bring from
disk (10 ms)

protection
check

PA to
cache

no yes

“protection
violation”

10~100 pclk

hit

found
not in DRAM

page in DRAM

okayno yes

“seg fault”
now what?

don‘t exist

18-447-S24-L19-S22, James C. Hoe, CMU/ECE/CALCM, ©2024

VA to PA Translation Flow Chart
VA

TLB
lookup

PT walk

update TLB

“page fault”
allocate or
bring from
disk (10 ms)

protection
check

PA to
cache

no yes

“protection
violation”

10~100 pclk

hit

found
not in DRAM

page in DRAM

okayno yes

“seg fault”
now what?

don‘t exist

ISA says can’t “read”
without permission

18-447-S24-L19-S23, James C. Hoe, CMU/ECE/CALCM, ©2024

How should VM and Cache Interact?

CPU

TLB

cache

lower
hier.

ph
ys

ic
al

VA
PA

CPU

cache

TLB

lower
hier.

vi
rt

ua
l

VA
PA

CPU

cache TLB

lower
hier.

hy
br

id
??

VA
PA

Only a question for L1 caches

18-447-S24-L19-S24, James C. Hoe, CMU/ECE/CALCM, ©2024

How should VM and Cache Interact?

CPU

TLB

cache

lower
hier.

ph
ys

ic
al

VA
PA

CPU

cache

TLB

lower
hier.

vi
rt

ua
l

VA
PA

CPU

cache TLB

lower
hier.

hy
br

id
??

VA
PA

Only a question for L1 caches

ISA allows marchitecture
to perform “read”
without permission; ISA
only care program can’t
“see” the read-value

18-447-S24-L19-S25, James C. Hoe, CMU/ECE/CALCM, ©2024

bub

bub

bub

bub

bub

“Flushing” a Pipeline

• Kill faulting and younger inst; drain older inst
• Don’t start handler until faulting inst. is oldest
• Better yet, don’t start handler until pipeline is empty

Better to be safe than to be fast

I0

I1

I0

I1

I2

I0

I1

I2

I3

bub

bub

Ih

bub

bub

bub

Ih

Ih+1

bub

bub

bub

Ih

Ih+1

Ih+2

bub

I0

I1

I2

I3

I4

I1

I2

I3

bub

bub

privileged mode

I2

bub

bub

bub

bubI0

t10t9t8t7t6t5t4t3t2t1t0

IF

ID

EX

MEM

WB

18-447-S24-L19-S26, James C. Hoe, CMU/ECE/CALCM, ©2024

bub

bub

bub

bub

bub

“Flushing” a Pipeline

• Kill faulting and younger inst; drain older inst
• Don’t start handler until faulting inst. is oldest
• Better yet, don’t start handler until pipeline is empty

Better to be safe than to be fast

I0

I1

I0

I1

I2

I0

I1

I2

I3

bub

bub

Ih

bub

bub

bub

Ih

Ih+1

bub

bub

bub

Ih

Ih+1

Ih+2

bub

I0

I1

I2

I3

I4

I1

I2

I3

bub

bub

privileged mode

I2

bub

bub

bub

bubI0

t10t9t8t7t6t5t4t3t2t1t0

IF

ID

EX

MEM

WB

In fact, marchitecturally
• can read without permission
• can even use read-value in

dependent instructions
• as long as at the end can’t

“see” any of it
100s of speculative instructions

in flight in modern OOO CPUs

18-447-S24-L19-S27, James C. Hoe, CMU/ECE/CALCM, ©2024

Key Idea 3: Inter-Model Compatibility

[Amdahl, Blaauw and Brooks, 1964]

“a valid program whose logic will not depend implicitly
upon time of execution and which runs upon
configuration A, will also run on configuration B if the
latter includes at least the required storage, at least the
required I/O devices ….”
• Invalid programs not constrained to yield same result

– “invalid”==violating architecture manual
– “exceptions” are architecturally defined

• The King of Binary Compatibility: Intel x86, IBM 360
– stable software base and ecosystem
– performance scalability

18-447-S24-L19-S28, James C. Hoe, CMU/ECE/CALCM, ©2024

Key Idea 3: Inter-Model Compatibility

[Amdahl, Blaauw and Brooks, 1964]

“a valid program whose logic will not depend implicitly
upon time of execution and which runs upon
configuration A, will also run on configuration B if the
latter includes at least the required storage, at least the
required I/O devices ….”
• Invalid programs not constrained to yield same result

– “invalid”==violating architecture manual
– “exceptions” are architecturally defined

• The King of Binary Compatibility: Intel x86, IBM 360
– stable software base and ecosystem
– performance scalability

a fundamental tenet that ISA
does not care about time;

nevertheless, performance is
measurable and has information

18-447-S24-L19-S29, James C. Hoe, CMU/ECE/CALCM, ©2024

What cache is in your computer?

• How to figure out what cache configuration is in
your computer
– capacity (C), associativity (a), and block-size (B)
– number of levels

• The presence or lack of a cache should not be
detectable by functional behavior of software

• But you could tell if you measured execution time
to infer the number of cache misses

18-447-S24-L19-S30, James C. Hoe, CMU/ECE/CALCM, ©2024

What cache is in your computer?

• How to figure out what cache configuration is in
your computer
– capacity (C), associativity (a), and block-size (B)
– number of levels

• The presence or lack of a cache should not be
detectable by functional behavior of software

• But you could tell if you measured execution time
to infer the number of cache misses

Timing side-channel attack: infer read-value
without “seeing” by running code to cause
hit/miss based on unseen value

Cache invisible architecturally, but performance
“side-effect” easily detectable using timer

18-447-S24-L19-S31, James C. Hoe, CMU/ECE/CALCM, ©2024

• 64-bit virtual address
– top 2 bits set kernel/supervisor/user mode
– additional bits set cache and translation

behavior
– bit 61-40 not translate at all

(holes and repeats in the VA??)

• 8-bit ASID (address space ID) distinguishes
between processes

• 40-bit physical address
• Translation -

“64”-bit VA and 8-bit ASID 40-bit PA

MIPS R10K
1 GB

mapped
(kseg)

0.5 GB
unmapped
uncached

0.5 GB
unmapped

cached

bottom
2 GB

mapped

(normal)

si
m

pl
ifi

ed
 e

xa
m

pl
e

fr
om

 3
2-

bi
t V

A
in

 R
20

00
/3

00
0

X:

18-447-S24-L19-S32, James C. Hoe, CMU/ECE/CALCM, ©2024

• 64-bit virtual address
– top 2 bits set kernel/supervisor/user mode
– additional bits set cache and translation

behavior
– bit 61-40 not translate at all

(holes and repeats in the VA??)

• 8-bit ASID (address space ID) distinguishes
between processes

• 40-bit physical address
• Translation -

“64”-bit VA and 8-bit ASID 40-bit PA

MIPS R10K
1 GB

mapped
(kseg)

0.5 GB
unmapped
uncached

0.5 GB
unmapped

cached

bottom
2 GB

mapped

(normal)

si
m

pl
ifi

ed
 e

xa
m

pl
e

fr
om

 3
2-

bi
t V

A
in

 R
20

00
/3

00
0

X:

Y:

Read addr Y+C, Y+2C, Y+3C . . . so addr Y
is not in cache; then attempt to execute:

I1: lw t0, 0(r“X”)
I2: andi t0, t0, 0x1
I3: sli t0, t0,“log2(blocksize)”
I4: add t0, t0, r“Y”
I5: lw x0, 0(t0)

I1 is an exception so I1~I5 not observed
architecturally; nevertheless addr Y is
cached if LSB of mem[X] is 0

18-447-S24-L19-S33, James C. Hoe, CMU/ECE/CALCM, ©2024

IFPC

t0 t1 t2 t3 t4 t5

Insth

IFPC+4Insti

ID

Instj

ALU
ID

IFPC+8

Control Speculation: PC+4

Insth is a taken branch

Insth branch condition and target
evaluated in ALU

first opportunity to decode Insth
should we correct now?

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Insth ID ALU
ID

IFPC+8

ALU
ID

IFtarget

MEM

When insth branch resolves
- branch target (Instk) is fetched
- flush instructions fetched since
insth (“wrong-path”)

18-447-S24-L19-S34, James C. Hoe, CMU/ECE/CALCM, ©2024

IFPC

t0 t1 t2 t3 t4 t5

Insth

IFPC+4Insti

ID

Instj

ALU
ID

IFPC+8

Control Speculation: PC+4

Insth is a taken branch

Insth branch condition and target
evaluated in ALU

first opportunity to decode Insth
should we correct now?

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Insth ID ALU
ID

IFPC+8

ALU
ID

IFtarget

MEM

When insth branch resolves
- branch target (Instk) is fetched
- flush instructions fetched since
insth (“wrong-path”)

Train BTB so the
previous executes as
“wrong path” 

architecturally nothing
illegal happened!!

18-447-S24-L19-S35, James C. Hoe, CMU/ECE/CALCM, ©2024

Idempotency and Side-effects
• Loading from real memory location M[A] should

return most recent value stored to M[A]
 writing M[A] once is the same as writing M[A] with

same value multiple times in a row
 reading M[A] multiple times returns same value

This is why memory caching works!!
• LW/SW to mmap locations can have side-effects

– reading/writing mmap location can imply
commands and other state changes

– consider a FIFO example
• SW to 0xffff0000 pushes value
• LW from 0xffff0000 returns popped value

FIFO

0xffff0000

What happens if 0xffff0000 is cached?

18-447-S24-L19-S36, James C. Hoe, CMU/ECE/CALCM, ©2024

Idempotency and Side-effects
• Loading from real memory location M[A] should

return most recent value stored to M[A]
 writing M[A] once is the same as writing M[A] with

same value multiple times in a row
 reading M[A] multiple times returns same value

This is why memory caching works!!
• LW/SW to mmap locations can have side-effects

– reading/writing mmap location can imply
commands and other state changes

– consider a FIFO example
• SW to 0xffff0000 pushes value
• LW from 0xffff0000 returns popped value

FIFO

0xffff0000

What happens if 0xffff0000 is cached?

• Meltdown vulnerability not a bug but an ISA-allowed
simplificationno fast kill after exception as with BP miss

• Same issue doesn’t arise with MMIOISA disallows
spurious read if PTE says “uncacheable” or “side-effect”

Not a “bug” but something is very wrong!!!
How to fix this

