18-447 Lecture 19:
Survey of Realworld VM Arch +
Decomposition of Meltdown

James C. Hoe
Department of ECE
Carnegie Mellon University

18-447-524-119-S1, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Housekeeping

e Your goal today

— Part I: see many realworld, non-textbook examples
of “VM”

— Part Il: everything in 447 together in Meltdown
e Notices

— HW 4, due 4/8

— Midterm regrades, due 4/3

— Lab 4, due Thursday 4/25 (No late submissions)
e Readings

— Synthesis Lecture: Architectural and Operating

System Support for Virtual Memory (optional)

— start on P&H Ch 6

18-447-524-119-S2, James C. Hoe, CMU/ECE/CALCM, ©2024

A Sampling from
B. Jacob and T. Mudge, Virtual
Memory in Contemporary

Processors, IEEE Micro, 1998

emphasis on departures from
textbook-conceptual norms

18-447-524-119-S3, James C. Hoe, CMU/ECE/CALCM, ©2024

EA, VA and PA (IBM Power view)

64-bit EA, divided into
X fixed-size segments

40~50-bit PA divided
into W pages (Z>>W)

.................................... Swap Space diVided into V
pages (Z>>V, V>?W)

64-bit EA, divided into

X fixed-size segments 80~90-bit VA divided into Y segments (Y>>X);
also divided as Z pages
segmented EA: demand paged VA:
private, contiguous + sharing capacity of disk, speed of DRAM

18-447-524-119-54, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

EA, VA and PA (almost everyone else)

EA,
with unique ASID=0

EA,

with unique ASID=i

Easy to blur EA and VA

colloquially but full VA is
VA divided into N “address spaces”
{ASID, EA}I I I indexed by ASID;

also divided as Z pages

18-447-524-119-S5, James C. Hoe, CMU/ECE/CALCM, ©2024

A

PA divided into W pages
(Z>>W)

swap space divided into V
pages (Z>>V, V>?W)

how do processes
share pages?

CarnegieMellon

SPARC V9 PTE/TLB Entry

e 64-bit VA + context ID

— implementation can choose not to map high-order
bits (require sign extension in unmapped bits)

— e.g., UltraSPARC 1 mapped only lower 44 bits
e PA space size set by implementation, 228 max pgs

e 64 entry fully associative I-TLB and D-TLB

g| context,, VA<63:13> ., Tagg,

v|size| nfo| IE | Soft | diag PA<40:13> Soft |L|CP|CV|e[pw]g| PTE,,

NN NN N, Y U N T s
%, % Opn 4 4 O o o o %770
o o SN o v & K BB QTR
S, %y E, % S . N4
S Y, U B o % % 8, 886
®s © 7o o % o O . . o0
o 4 S W, Qo 2 %
7 %) 73 & 7 A e ’)L 2
7@ QJ‘J\ 2 6/g< S 6/)0/ Y. . .OJ‘
(og $ (og °)<‘ /OO’ \//)O"OGO
[] [] [] [] @
Unlike caches, TLB specifics and operation %, %a%,,
(e (o)

have effects visible to kernel SW!! 2

CarnegieMellon

SPARC TLB Miss Handling

e 32-bit V8 used a 3-level hierarchical page table for
HW MMU page-table walk

context

context

table +VA ;3104

descriptors

L1 Table:
256

descriptors
(1024-byte)

+VA 3.5

L2 Table:
64

descriptors
(256-byte)

| L3 Table:

+VA ;7.1

64
PTEs
(256-byte)

e 64-bit V9 switched to Translation Storage Buffer

— a software managed, in-DRAM direct-mapped
“cache” of PTEs (think hashed pg table or SW TLB)

— HW assisted address generation on a TLB miss

— TLB miss handler (SW) searches TSB. If TSB misses,
a slower TSB-miss handler takes over

— OS can use any page table structure after TSB

18-447-524-119-S7, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

IBM PowerPC (32-bit)

segments 256MB regions
A

—

™~

segH,

seg offset,,

page offset,,

EA,

\ 4

16-entry
segment table

\ 4

Protection

seg ID,,

seg offset,,

page offset,,

B

-

N

|

128 2-way ITLB and DTLB

\ 4

VM+paging

v

PPN,,

page offset,,

PA,,

64-bit PowerPC = 64-bit EA -> 80-bit VA = 64-bit PA
How many segments in 64-bit EA?

18-447-524-1.19-S8, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

IBM PowerPC Hashed Page Table

VPN,
hash
function Hashed Page Table
table base =é > 8 PTE's per group
(recommend at least N PTEG’s for
a system with 2N physical pages)

e HW table walk
— VPN hashes into a PTE group (PTEG) of 8
— 8 PTEs searched for tag match
— if not found in first PTEG search a secondary PTEG
— if not found in 2" PTEG, trap to software handler

e Hashed table structure also used for 64-bit EA—>VA

18-447-524-119-S9, James C. Hoe, CMU/ECE/CALCM, ©2024

64-bit VA
— top 2 bits set kernel/supervisor/user mode

behavior

MIPS R10K

— additional bits set cache and translation

— bit 61-40 not translate at all

(holes and repeats in the VA??)

8-bit ASID (address space ID) distinguishes
between processes
40-bit PA
Translation -

“64”-bit VA and 8-bit ASID - 40-bit PA

18-447-524-119-510, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

1 GB
mapped
(kseg)

0.5 GB
unmapped
uncached

0.5GB
unmapped
cached

bottom
2 GB
mapped

(normal)

simplified example from 32-bit VA in R2000/3000

MIPS TLB

e 64-entry fully associative unified TLB

e Each entry maps 2 consecutive VPNs to
independent respective PPNs

e Software TLB-miss handling (exotic at the time)

— 7-instruction page table walk in the best case

— TLB Write Random: chooses a random entry for

TLB replacement

— OS can exclude low TLB entries from replacement
(some translations must not miss)

e TLB entry

— N: noncacheable
— V:valid

18-447-524-119-511, James C. Hoe, CMU/ECE/CALCM, ©2024

VPN,

ASID,

Os

PPN,

ndvg

Og

D: dirty (write-enable!!)
G: ignore ASID

CarnegieMellon

MIPS Bottom-Up Hierarchical Table

e TLB miss vectors to a SW handler
— page table organization is not hardcoded in ISA

— ISA favors a chosen reference page table scheme
by providing “optional” hardware assistance

e Bottom-Up Table
— start with 2-level hierarchical table (32-bit case)

— allocate all L2 tables for all VA pages (empty or
not) linearly in the mapped kseg space

— VPN is index into this linear table in VA
This table scales with VA size!l Is this okay?

18-447-524-119-512, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Bottom-Up Table Walk

VPN PO VA on TLB Miss, trap
whose
address

PTEBase VPN Os| VA of PTE Space?
P (generated automqtically
laEre \ by HW after TLB miss)

PPN status PTE loaded from mem

Can this load miss in the TLB?
What happens if it misses?

notice translation also eats up TLB entries!

18-447-524-119-513, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

User TLB Miss Handling

mfcO kO,tlbcxt
mfcO k1,epc

lw kO,0(kO)

mtcO kO,entry_lo
tlbwr

j k1

rfe

18-447-524-1L19-514, James C. Hoe, CMU/ECE/CALCM, ©2024

move the contents of TLB

context register into kO
move PC of faulting memory
instruction into k1

load thru address that was

H in TLB context register

move the loaded value (a PTE)
into the EntryLo register
write PTE into the TLB

at a random slot number
jump to PC of faulting

load instruction to retry
restore privilege (in delay slot)

HP PA-RISC: PID and AID

e 2-level: 64b EA—96b VA (global)—>64b PA
e Variable sized segmented EA—VA translation

e Rights-based access control
— user controls segment registers (user can
generate any VA it wants!!)
in contrast, everyone else controls translation to
control what VA can be reached from a process
— each virtual page has an access ID (AID) assigned
by OS
— each process has 8 active protection IDs (PIDs) in
privileged HW registers managed by OS

— a process can access a page only if one of the 8
PIDs matches the page’s AID (think lock and keys)

18-447-524-119-515, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Intel 80386

e Two-level address translation:

segmented EA — global VA — PA
e User-private 48-bit EA
— 16-bit SN (implicit) + 32-bit SO

— 6 user-controlled registers hold active SNs;
selected according to usage: code, data, stack, etc

o Global 32-bit VA

— 20-bit VPN + 12-bit PO
e An implementation defined paged PA space

18-447-524-119-516, James C. Hoe, CMU/ECE/CALCM, ©2024

What is very odd about this?

CarnegieMellon

Living with too small VA space

e 32-bit global VA too small to share by processes
— per-process EA space oddly bigger than VA space
— until 1990, no one cared DOS and Windows

e Later multitasking OS ignore segment protection

— time-multiplex **global** VA space for use by 1
process at a time

— code, data, stack segments always map to entire
VA space, 0~(23%-1)
— set MMU to use a different table on context switch

— BUT! TLB for VA translation doesn’t have ASID;
must flush TLB on context switch

e Much later IA32e/Intel 64 added PCID to TLB

18-447-524-119-S17, James C. Hoe, CMU/ECE/CALCM, ©2024

A Contemporary Example: RISC-V

e Sv32 (also Sv39, Sv48, Sv48): hierarchical, HW-
walked table for each “hart”

31 22 21 12 11 0
| VPN[1] | VPN[0] } page offset
10 10 12

Figure 4.15: Sv32 virtual address.

33 22 21 12 11 0
PPN[1] | PPN|0] | page offset
12 10 12

Figure 4.16: Sv32 physical address.

31 20 19 10 9 8 7 6 5 4 3 2 1 0
PPN[] [PPN[0] [RSW [DJA[GJU[X[W][R][V]
12 10 2 1 1 1 1 1 1 1 1

Figure 4.17: Sv32 page table entry.

e With hypervisor: VA — Guest PA — Supervisor PA
e Does not define a TLB (uarch can cache translation)

18-447-524-119-518, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

SV57

56 48 47 39 38 30 29 21 20 12 11 0
| VPN[4] I VPN|3] I VPN|2] I VPN(1] I VPN|[0] I page offset |
9 9 9 9 9 12

Figure 4.25: Sv57 virtual address.

55 48 47 39 38 30 29 21 20 12 11 0
PPN[4] PPN[3] | PPN[2] PPN[1] PPN[0] [page offset |
8 9 9 9 9 12

Figure 4.26: Sv57 physical address.

63 62 61 60 54 53 10 9 8 7 6 5 4 3 2 1 0
N | PBMT | Reserved PPN RSW | DI A|G|U|X| W | R |V
1 2 ' ool 2 1 1 1 1 1 1 1 1

53 46 45 37 36 28 27 19 18 10
[[PPN[4] [PPN[3] [PPN[2] | PPN[i] | PPN[0] |
8 9 9 9 9

Figure 4.27: Svb7 page table entry.

18-447-524-119-519, James C. Hoe, CMU/ECE/CALCM, ©2024

Meltdown in 18-447 Terms

How to “know” the value at a memory
location without permission to read it?

18-447-524-119-520, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

VA to PA Translation Flow Chart

VA

-
TLB | -
lookup

no yes

\ 4

10~100 pclk | PT walk

page in DRAMf/\ don‘t exist

ound
not in DRAM

<

“page fault”

allocate or Y Yo

. “seg fault” “protection PA to
SBT3 UL now what? violation” cache
disk (10 ms) '

18-447-S24-119-S21, U/ECE/CALCM, ©2024

CarnegieMellon

VA to PA Translation Flow Chart

VA

¥
TLB

lookup

no

yes

ISA says can’t “read”
---1 without permission

\ 4

10~100 pclk | PT walk

page in DRAMf/\ don‘t exist

ound

<

“page fault”
allocate or
bring from

disk (10 ms)

18-447-S24-119-S22, U/ECE/CALCM, ©2024

not in DRAM

v

“seg fault”
now what?

v

“protection PA to
violation” cache

How should VM and Cache Interact?

CPU

virtual

physical

lower
hier.

18-447-S24-119-S23,

U/ECE/CALCM, ©2024

Only a question for L1 caches

CarnegieMellon

How should VM and Cache Interact?

CPU CPU CPU
©
== LB %ﬁ é cache
'S

—.~- VA

ISA allows parchitecture
to perform “read”

without permission; ISA
only care program can’t
“see” the read-value

physical
@)
Q
@)
0
()

o1y a question for L1 caches

18-447-S24-119-S24, U/ECE/CALCM, ©2024

“Flushing” a Pipeline

I privileged mode

CarnegieMellon

L 1L | L || :fs '_56 gt | b | tw
IFll | ||l w ees btb lh | hhea| lhs2
ID |0 |1 |2 |3 Tbub bub | bub jbub |h |h+1
EX I I, |l %ub bub ybub | bub | |

MEM |0 |1 |2 bub bubIbub bub | bub
WB b [l |1 bubIbub bub | bub

e Kill faulting and younger inst; drain older inst

e Don’t start handler until faulting inst. is oldest

e Better yet, don’t start handler until pipeline is em
Better to be safe tha

18-447-524-119-S25, James C. Hoe, CMU/ECE/CALCM, ©2024

ast

CarnegieMellon

“Flushing” a Pipeline

I privileged mode

L4 |5 t | G ts | to| by
2R

IF |0 |1 |2 bub | bub Ih |h+1 |h+2

ID |0 |1 bub | bub bub |h |h+1

ub | bub g bub | bub |h

In fact, parchitecturally
* can read without permission bub | bub
* can even use read-value in
dependent instructions
e aslong as at the end can’t
“see” any of it
100s of speculative instructions
in flight in modern OO0 CPUs

18-447-524-119-S26, James C. Hoe, CMU/ECE/CALCM, ©2024

bub | bub | bub

bubIbub bub | bub

rain older inst

g inst. is oldest

intil pipeline is em

Per to be safe tha ast

CarnegieMellon

Key Idea 3: Inter-Model Compatibility

“a valid program whose logic will not depend implicitly
uponime of executio®and which runs upon
configuration A, will also run on configuration B if the
latter includes at least the required storage, at least the
required /O devices”

e |nvalid programs not constrained to yield same result
— “invalid”==violating architecture manual
— “exceptions” are architecturally defined
e The King of Binary Compatibility: Intel x86, IBM 360
— stable software base and ecosystem

erformance scalability
[Amdahl, Blaauw and Brooks, 1964]

18-447-S24-119-S27, U/ECE/CALCM, ©2024

CarnegieMellon

Key Idea 3: Inter-Model Compatibility

“a valid program whose logic will not depend implicitly
uponime of executio®and which runs upon

configuration A, wi
latter includes at least
required 1/O devices ...

a fundamental tenet that ISA
does not care about time;
nevertheless, performance is
measurable and has information

— “invalid”==violating architecture manual

__a

e |nvalid programs no

— “exceptions” are architecturally defined

e The King of Binary Compatibility: Intel x86, IBM 360
— stable software base and ecosystem

erformance scalability
[Amdahl, Blaauw and Brooks, 1964]

18-447-524-119-S28, U/ECE/CALCM, ©2024

What cache is in your computer?

e How to figure out what cache configuration is in
your computer

— capacity (C), associativity (a), and block-size (B)
— number of levels

qii;zzence or lack of a cache should not be

ble by functional behavior

<5:|t you could tell if you measured executlcﬁﬁ'b
infer the number of cache misses

18-447-S24-119-S29, U/ECE/CALCM, ©2024

CarnegieMellon

What cache is in your computer?

e How to figure out what cache configuration is in

YOUr €Q cache invisible architecturally, but performance

— Capa; “side-effect” easily detectable using timer

— number of levels
%ence or lack of a cache should not be

ble by functional behavior
<It?rout you could tell if you measured executl%
infer the number of cache misses

Timing side-channel attack: infer read-value
without “seeing” by running code to cause

18-447-524-119-S30, U/ECE/CALCM, ©2024

MIPS R10K

e 64-bit virtual address
— top 2 bits set kernel/supervisor/user mode
— additional bits set cache and translation
behavior
— bit 61-40 not translate at all
(holes and repeats in the VA??)
e 8-bit ASID (address space ID) distinguishes

between processes

e 40-bit physical address
ranslation -
”_bit VA and 8-bit ASID = 40-bit PA

18-447-524-119-S31; CMU/ECE/CALCM, ©2024

CarnegieMellon

1 GB
mapped
(kseg)

X.

0.5 GB
unmapped
uncached

0.5GB
unmapped
cached

bottom
2 GB
mapped

(normal)

simplified example from 32-bit VA in R2000/3000

MIPS R10K
o 7 o
- Read addr Y+C, Y+2C, Y+3C...soaddrY
is not in cache; then attempt to execute:

- 1w t0, O (ruw)
:andi t0, tO,
: s1li t0, tO0, “log,(blocksize)”

0x1

N

CarnegieMellon

1 GB
mapped
(kseg)

X.

0.5 GB
unmapped
uncached

0.5GB
unmapped
cached

3
.o add t0, t0, xru» — =
‘ . 1w x0, 0(tO0)

I, is an exception so I,~I; not observed
% architecturally; nevertheless addr Y is
2 . .
O/); cached if LSB of mem([X] is O
{

o

-DIL VA diU 0-DIL AJIV —~7 4U-piIL PA

L]
18-447-S24-119-S32; CMU/ECE/CALCM, ©2024

Y:

bottom
2 GB
mapped

(normal)

simplified example from 32-bit VA in R2000/3000

CarnegieMellon

Control Speculation: PC+4

S - —
I"IStk contro| flow _’lita;gat_

/’rEStitched”

When inst, branch resolves

- branch target (Inst,) is fetched

- flush instructions fetched since
inst, (“wrong-path”)

branch

18-447-S24-119-S33, U/ECE/CALCM, ©2024

CarnegieMellon

Control Speculation: PC+4

nst, [IF.c | ID |[ALU [[MEM
nst. I' Train BTB so the
I .
nst. \ BreVIous exe’c’utes as
| ~ wrong path” —
nst,

COntrOl ﬂOW
/’reStitChed”

architecturally nothing
illegal happened!!

When inst, branch resolves

- branch target (Inst,) is fetched

- flush instructions fetched since
inst, (“wrong-path”)

branch

18-447-S24-119-S34, U/ECE/CALCM, ©2024

CarnegieMellon

Idempotency and Side-effects

e Loading from real memory location M[A] should
return most recent value stored to M[A]
= writing M[A] once is the same as writing M[A] with
same value multiple times in a row
= reading M[A] multiple times returns same value
This is why memory caching works!!
e LW/SW to mmap locations can have side-effects
— reading/writing mmap location can imply Oxffff0000
commands and other state changes
— consider a FIFO example
e SW to Oxffff0O000 pushes value FIFO
e LW from OxffffO000 returns popped value
What happens if OxffffO000 is cached?

18-447-524-119-S35, U/ECE/CALCM, ©2024

Idempotency and Side-effects

 Meltdown vulnerability not a bug but an ISA-allowed
simplification—mno fast kill after exception as with BP miss
 Same issue doesn’t arise with MMIO—SA disallows
spurious read if PTE says “uncacheable” or “side-effect”
Not a “bug” but something is very wrong!!!
How to fix this

e LW/SW to mmap locations can have side-effects
— reading/writing mmap location can imply Oxffff0000
commands and other state changes
— consider a FIFO example
e SW to Oxffff0O000 pushes value

e LW from OxffffO000 returns popped value
What happens if OxffffO000 is cached?

FIFO

18-447-524-119-S36, U/ECE/CALCM, ©2024

