
18-447-S24-L18-S1, James C. Hoe, CMU/ECE/CALCM, ©2024

18-447 Lecture 18:
VM Mechanisms: Page Tables and TLBs

James C. Hoe
Department of ECE

Carnegie Mellon University

18-447-S24-L18-S2, James C. Hoe, CMU/ECE/CALCM, ©2024

• Your goal today
– see the reality of page tables
– delve into the many nuts and bolts of VM supports

• Notices
– HW 4, due 4/8
– Lab 4, due Friday 4/26 (No late submissions)

• Required readings for L19
– “Virtual Memory in . . .” [Jacob&Mudge] (Canvas)
– MeltdownMechanism (Wikipedia)

Housekeeping

18-447-S24-L18-S3, James C. Hoe, CMU/ECE/CALCM, ©2024

Address Translation: VPN to PPN

• A page table holds mapping from VPN to PPN
• Suppose 64-bit VA and 40-bit PA, how large is the

page table? 252 entries x ~4 bytes  16x1015 Bytes
And that is for just one process!!?

VPN PO

page
table

concat PA

64-bit

12-bit52-bit

28-bit 40-bit

ASID

18-447-S24-L18-S4, James C. Hoe, CMU/ECE/CALCM, ©2024

How large should the table be?
• Don’t need to track entire VA space

– total allocated VA space is 264 bytes x # processes,
but most of which not backed by storage

– can’t use more memory locations than physically
exist (DRAM and swap disk)

• A clever page table should scale linearly with
physical storage size and not VA space size

• Table cannot be too convoluted
– a page table must be “walkable” by HW
– a page table is accessed not infrequently

Two dominant schemes in use today:
hierarchical page table and hashed page table

18-447-S24-L18-S5, James C. Hoe, CMU/ECE/CALCM, ©2024

Hierarchical Page Table
• Hierarchical page table is a “tree” data structure

in DRAM (and is cacheable)

VA[11:0]VA[21:12]VA[31:22]

L1 table

ASID

context
table

descriptor

PA to
base of L1

descriptor

L2 table

PA to
base of L2

L1 idx10

PTE

page
frame

PA to base of page
frame (i.e., PPN) or

location on swap disk

L2 idx10

data

PO12

AS
ID

=a
dd

re
ss

 s
pa

ce
 ID

EA or VA
on this

slide?

VPN PO

18-447-S24-L18-S6, James C. Hoe, CMU/ECE/CALCM, ©2024

Hierarchical page table is a tree
• For example on previous page

– L1 table could have 1024 descendants (L2 tables)
– each L2 table could have 1024 decedents (physical

page frames)

• More levels can be used for larger VA space, but
more memory references per translation

• Simple ratio btwn table sizes and page size (2, 1,
0.5) so tables demand-pageable btwn DRAM/disk

L1 table

ASID

context
table

descriptor descriptor

L2 table

PTE

page
frame

data

18-447-S24-L18-S7, James C. Hoe, CMU/ECE/CALCM, ©2024

Hierarchical page table is a sparse tree

• Most virtual pages are not allocated;
corresponding L2 entries point to null

• If a L2 table comprises entirely null pointers (no
live descendants), itself does not need to exist;
corresponding L1 entry points to null

• When more than 2 levels, an entire unused sub-
tree is avoided

• Consider typical size ratio of VA to PA, the tree
should be quite sparse for even the largest
programs How sparse?

18-447-S24-L18-S8, James C. Hoe, CMU/ECE/CALCM, ©2024

Assume 32-bit VA with 4 MByte in use
• Best Case: one contiguous 4-MByte VA region

aligned on 4 MByte boundaries
– 1024 physical page frames used
– needs 1 L2 table + 1 L1 table=2 x 4KBytes

overhead  sizeof(PTE) per data page used, or 0.1%
• Worst Case: 1024 x 4-KByte VA regions; each is 4-

MByte aligned
– 1024 physical page frames used
– needs 1K L2 tables (only 1 entry per L2 table used),

overhead  sizeof(L2 table) per data page, or 100%
• Locality says we should be closer to the best case

18-447-S24-L18-S9, James C. Hoe, CMU/ECE/CALCM, ©2024

hash
fxn

Hashed Page Table

• Monolithic table
– indexed by hashing VPN and ASID,
– e.g., index=(VPNASID)%table_size

• Entry “tagged” by ASID and VPN to detect collision
• Hashed table fast to access but not complete

– lookup can fail even though page is valid
– on a miss, consult a backup complete table

VPN

ASID

table base

table
offset + PA of entry

page table

ASID VPN PTE

tag

18-447-S24-L18-S10, James C. Hoe, CMU/ECE/CALCM, ©2024

How large is the hashed page table?

• Table size is an engineered choice, balancing
storage overhead and hash collision
– at least 1 entry per physical page

e.g., 1GB DRAM  256K frames  256K PTEs
– typically some factor more to reduce collisions

• Original “inverted” page table
– allocate 1 entry per physical page frame
– use hashed index as PPN (a bit like direct-map . . .)
– table entry contains only VPN tag

Viewed out of context, the table seems indexed
by PPN and returns VPN, hence the misnomer

18-447-S24-L18-S11, James C. Hoe, CMU/ECE/CALCM, ©2024

Translation Look-Aside Buffer (TLB)
• Every memory access requires a translation

– table walk requires its own memory accesses
– can’t possibly be walking the table on every access

• Keep a “cache” of recently used translations
• Similar “tagged” lookup structure as cache

– same design considerations: A/B/C, replacement
policy, split vs. unified, L1/L2, etc.

– TLB entry:
tag: address tag (from VA), ASID
PTE: PPN & protections
misc: valid, dirty, etc.

TLB == all-HW, in SRAM,
small (how small?)
hashed page table??

18-447-S24-L18-S12, James C. Hoe, CMU/ECE/CALCM, ©2024

Direct-Mapped TLB (bad example)

PTE bank

tag idx

PTE

=

tag bank

hit?
va

lid

VPN POASID

18-447-S24-L18-S13, James C. Hoe, CMU/ECE/CALCM, ©2024

TLB Design
• C: L1 I-TLB should cover same footprint as L1 I-

cache, e.g., if L1 I-cache is 64KB
– L1 I-TLB needs minimum 16 pages but only if

working set always use entire pages
– was 32~64 entries; nowadays a few hundred

• B: after accessing a page, how likely is it to access
the next page? (coarse grain spatial locality)
– usually one PTE per TLB entry
– exception, MIPS keeps 2 PTEs per TLB entry

• a: associativity to minimize collision?
– in the old days, fully-associative is the norm
– nowadays, 2~4-way-associative is more common

18-447-S24-L18-S14, James C. Hoe, CMU/ECE/CALCM, ©2024

Translation Hierarchy: Speed vs Coverage
• L1 TLB: speed-driven, split

I/D, small C, high a
accessed every cycle

• L2/L3/etc: capacity-driven,
still on-chip, still HW

• “Soft TLB” or “Hashed
Page Table”: in DRAM, SW
managed, HW or SW
walkedfewer memory
lookups than hier. table on
large addresses

• Hierarchical complete
table at bottom

L1-I
TLB

L1-D
TLB

L2-unified
TLB

SW-managed in-DRAM “TLB”
(i.e., hashed page table)

Complete Table
(hierarchical)

as
 n

ee
de

d
to

br
id

ge
 s

pe
ed

 g
ap

18-447-S24-L18-S15, James C. Hoe, CMU/ECE/CALCM, ©2024

VA to PA Translation Flow Chart
VA

TLB
lookup

PT walk

update TLB

“page fault”
allocate new

(quick) or
bring from
disk (10 ms)

protection
check

PA to
cache

no yes

“protection
violation”

10~100 pclk

hit

found
not in DRAM

page in DRAM

okayno yes

“seg fault”
now what?

don‘t exist
even virtually

18-447-S24-L18-S16, James C. Hoe, CMU/ECE/CALCM, ©2024

How should VM and Cache Interact?

CPU

TLB

cache

lower
hier.

ph
ys

ic
al

VA
PA

CPU

cache

TLB

lower
hier.

vi
rt

ua
l

VA
PA

CPU

cache TLB

lower
hier.

hy
br

id
??

VA
PA

Only a question for L1 caches

18-447-S24-L18-S17, James C. Hoe, CMU/ECE/CALCM, ©2024

Virtual Caches
• Even with TLB, translation takes time
• Naively, memory access time in the best case is

TLB hit time + cache hit time
• Why not access cache with virtual addresses; only

translate on a cache miss to DRAM
make sense if TLB hit time >> cache hit time

• Virtual caches in SUN SPARC ISA, circa 1990
– CPU fast enough for off-chip SRAM access to take

multiple cycles
– dies size large enough to include on-chip L1 caches
– MMU and TLB still separate chip

These conditions no longer hold

18-447-S24-L18-S18, James C. Hoe, CMU/ECE/CALCM, ©2024

Resolving Synonym and Homonym
in Virtual Caches

• Homonyms: same sound different meaning
– same EA (in different processes)  different PAs
– flush virtual cache between context; or include

ASID in cache tag

• Synonyms: different sound same meaning
– different EAs (from the same or different

processes)  same PA
– PA could be cached twice under different EAs
– writes to one cached copy not reflected in the

other cached copy
Resolve by ensuring only 1 such EA in cache at a time

18-447-S24-L18-S19, James C. Hoe, CMU/ECE/CALCM, ©2024

Virtually-Indexed Physically-Tagged
• If C≤(page_sizeassociativity), cache index bits

come only from page offset
• If both cache and TLB are on chip

– index both SRAMs concurrently using PO from VA
– check cache tag (physical) against TLB at the end

VPN PO

TLB

PPN

IDX BO

physical
cache

tag data=

cache hit?TLB hit?

18-447-S24-L18-S20, James C. Hoe, CMU/ECE/CALCM, ©2024

“Large” Virtually-Indexed Caches
• If C>(page_sizeassociativity), cache index bits

include VPN synonyms can cause problems
• Solutions to contain “virtual” index in page offset

– increase associativity, 4KB page x 8 way =32KB
– increase page size

VPN PO

TLB

PPN

IDX BO

physical
cache

tag data=

cache hit?TLB hit?

virtual
index bits

18-447-S24-L18-S21, James C. Hoe, CMU/ECE/CALCM, ©2024

R10000’s True Virtually Index Cache
• 32KB, 2-Way L1 D-cache

– needs 10 bits of index + 4 bits of block offset
– highest 2 index bits are VA[13:12] or VPN[1:0]

• Direct-mapped L2
– L2 is inclusive of L1
– VPN[1:0] is kept and checked as a part of L2 tag

• Given synonyms AVA and BVA that differs in VPN[1:0]
– suppose AVA accessed first so cached in L1 and L2
– when accessing BVA later

1.BVA indexes to a different block in L1 and misses
2.BVA indexes to the same block as AVA in physical L2
3.L2 detects synonym when comparing VPN portion of

tag; L2 evicts AVA from L1 before reloading BVA

18-447-S24-L18-S22, James C. Hoe, CMU/ECE/CALCM, ©2024

Interactions of VM and DMA

• A contiguous block in VA
– is not guaranteed contiguous in PA
– may not be in memory at all

• Software solutions
– kernel copies from user buffer to pinned,

contiguous buffer before DMA, or
– user allocate special pinned and consecutive pages

for zero-copy DMA

• Smarter DMA engines follow a “linked list” of
commands for moving non-contiguous blocks

• Virtually-addressed I/O bus with I/O MMU

18-447-S24-L18-S23, James C. Hoe, CMU/ECE/CALCM, ©2024

Read “Virtual memory in
contemporary microprocessors” by
Jacob and Mudge before coming to

next Lecture!!!

