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• Your goal today
– see the reality of page tables
– delve into the many nuts and bolts of VM supports

• Notices
– HW 4, due 4/8
– Lab 4, due Friday 4/26 (No late submissions)

• Required readings for L19
– “Virtual Memory in . . .” [Jacob&Mudge]  (Canvas)
– MeltdownMechanism (Wikipedia)

Housekeeping
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Address Translation: VPN to PPN

• A page table holds mapping from VPN to PPN
• Suppose 64-bit VA and 40-bit PA, how large is the 

page table?     252 entries x ~4 bytes  16x1015 Bytes
And that is for just one process!!?
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How large should the table be?
• Don’t need to track entire VA space 

– total allocated VA space is 264 bytes x # processes, 
but most of which not backed by storage

– can’t use more memory locations than physically 
exist (DRAM and swap disk)

• A clever page table should scale linearly with 
physical storage size and not VA space size

• Table cannot be too convoluted 
– a page table must be “walkable” by HW
– a page table is accessed not infrequently

Two dominant schemes in use today: 
hierarchical page table and hashed page table
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Hierarchical Page Table
• Hierarchical page table is a “tree” data structure 

in DRAM (and is cacheable)
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Hierarchical page table is a tree
• For example on previous page

– L1 table could have 1024 descendants (L2 tables)
– each L2 table could have 1024 decedents (physical 

page frames)

• More levels can be used for larger VA space, but 
more memory references per translation

• Simple ratio btwn table sizes and page size (2, 1, 
0.5) so tables demand-pageable btwn DRAM/disk
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Hierarchical page table is a sparse tree 

• Most virtual pages are not allocated; 
corresponding L2 entries point to null

• If a L2 table comprises entirely null pointers (no 
live descendants), itself does not need to exist; 
corresponding L1 entry points to null

• When more than 2 levels, an entire unused sub-
tree is avoided

• Consider typical size ratio of VA to PA, the tree 
should be quite sparse for even the largest 
programs How sparse?
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Assume 32-bit VA with 4 MByte in use
• Best Case: one contiguous 4-MByte VA region 

aligned on 4 MByte boundaries
– 1024 physical page frames used
– needs 1 L2 table + 1 L1 table=2 x 4KBytes 

overhead  sizeof(PTE) per data page used, or 0.1%
• Worst Case: 1024 x 4-KByte VA regions; each is 4-

MByte aligned
– 1024 physical page frames used
– needs 1K L2 tables (only 1 entry per L2 table used), 

overhead  sizeof(L2 table) per data page, or 100%
• Locality says we should be closer to the best case
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hash
fxn

Hashed Page Table

• Monolithic table 
– indexed by hashing VPN and ASID, 
– e.g., index=(VPNASID)%table_size

• Entry “tagged” by ASID and VPN to detect collision
• Hashed table fast to access but not complete

– lookup can fail even though page is valid
– on a miss, consult a backup complete table
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How large is the hashed page table?

• Table size is an engineered choice, balancing 
storage overhead and hash collision
– at least 1 entry per physical page

e.g., 1GB DRAM  256K frames  256K PTEs
– typically some factor more to reduce collisions

• Original “inverted” page table
– allocate 1 entry per physical page frame
– use hashed index as PPN (a bit like direct-map . . . )
– table entry contains only VPN tag

Viewed out of context, the table seems indexed 
by PPN and returns VPN, hence the misnomer
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Translation Look-Aside Buffer (TLB)
• Every memory access requires a translation

– table walk requires its own memory accesses
– can’t possibly be walking the table on every access

• Keep a “cache” of recently used translations
• Similar “tagged” lookup structure as cache

– same design considerations: A/B/C, replacement 
policy, split vs. unified, L1/L2, etc.

– TLB entry:
tag: address tag (from VA), ASID
PTE: PPN & protections
misc: valid, dirty, etc.

TLB == all-HW, in SRAM,
small (how small?)
hashed page table??
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Direct-Mapped TLB (bad example)
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TLB Design
• C: L1 I-TLB should cover same footprint as L1 I-

cache, e.g., if L1 I-cache is 64KB
– L1 I-TLB needs minimum 16 pages but only if 

working set always use entire pages
– was 32~64 entries; nowadays a few hundred 

• B: after accessing a page, how likely is it to access 
the next page? (coarse grain spatial locality)
– usually one PTE per TLB entry   
– exception, MIPS keeps 2 PTEs per TLB entry

• a: associativity to minimize collision?
– in the old days, fully-associative is the norm
– nowadays, 2~4-way-associative is more common
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Translation Hierarchy: Speed vs Coverage
• L1 TLB: speed-driven, split 

I/D, small C, high a
accessed every cycle

• L2/L3/etc: capacity-driven, 
still on-chip, still HW

• “Soft TLB” or “Hashed 
Page Table”: in DRAM, SW 
managed, HW or SW 
walkedfewer memory 
lookups than hier. table on 
large addresses

• Hierarchical complete 
table at bottom
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VA to PA Translation Flow Chart
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How should VM and Cache Interact?
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Virtual Caches
• Even with TLB, translation takes time
• Naively, memory access time in the best case is 

TLB hit time + cache hit time
• Why not access cache with virtual addresses; only 

translate on a cache miss to DRAM
make sense if TLB hit time >> cache hit time

• Virtual caches in SUN SPARC ISA, circa 1990
– CPU fast enough for off-chip SRAM access to take 

multiple cycles
– dies size large enough to include on-chip L1 caches
– MMU and TLB still separate chip

These conditions no longer hold
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Resolving Synonym and Homonym
in Virtual Caches

• Homonyms: same sound different meaning
– same EA (in different processes)  different PAs
– flush virtual cache between context; or include 

ASID in cache tag

• Synonyms: different sound same meaning
– different EAs (from the same or different 

processes)  same PA
– PA could be cached twice under different EAs
– writes to one cached copy not reflected in the 

other cached copy
Resolve by ensuring only 1 such EA in cache at a time
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Virtually-Indexed Physically-Tagged
• If C≤(page_sizeassociativity), cache index bits 

come only from page offset
• If both cache and TLB are on chip

– index both SRAMs concurrently using PO from VA
– check cache tag (physical) against TLB at the end
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“Large” Virtually-Indexed Caches
• If C>(page_sizeassociativity), cache index bits 

include VPN synonyms can cause problems
• Solutions to contain “virtual” index in page offset

– increase associativity, 4KB page x 8 way =32KB
– increase page size
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R10000’s True Virtually Index Cache
• 32KB, 2-Way L1 D-cache 

– needs 10 bits of index + 4 bits of block offset
– highest 2 index bits are VA[13:12] or VPN[1:0]

• Direct-mapped L2 
– L2 is inclusive of L1
– VPN[1:0] is kept and checked as a part of L2 tag

• Given synonyms AVA and BVA that differs in VPN[1:0]
– suppose AVA accessed first so cached in L1 and L2
– when accessing BVA later

1.BVA indexes to a different block in L1 and misses
2.BVA indexes to the same block as AVA in physical L2
3.L2 detects synonym when comparing VPN portion of    

tag; L2 evicts AVA from L1 before reloading BVA
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Interactions of VM and DMA

• A contiguous block in VA
– is not guaranteed contiguous in PA
– may not be in memory at all

• Software solutions
– kernel copies from user buffer to pinned, 

contiguous buffer before DMA, or 
– user allocate special pinned and consecutive pages 

for zero-copy DMA

• Smarter DMA engines follow a “linked list” of 
commands for moving non-contiguous blocks 

• Virtually-addressed I/O bus with I/O MMU
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Read “Virtual memory in 
contemporary microprocessors” by 
Jacob and Mudge before coming to 

next Lecture!!!


