18-447 Lecture 18:
VM Mechanisms: Page Tables and TLBs

James C. Hoe
Department of ECE
Carnegie Mellon University

18-447-524-118-S1, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Housekeeping

e Your goal today
— see the reality of page tables
— delve into the many nuts and bolts of VM supports
e Notices
— HW 4, due 4/8
— Lab 4, due Friday 4/26 (No late submissions)
e Required readings for L19
— “Virtual Memory in...” [Jacob&Mudge] (Canvas)
— Meltdown—>Mechanism (Wikipedia)

18-447-524-118-S2, James C. Hoe, CMU/ECE/CALCM, ©2024

Address Translation: VPN to PPN

64-bit
' A '\
| ASID | VPN PO
52-bit +12-bit

Pase | QD f— PA
table | 2s-bit U 40-bit

e A page table holds mapping from VPN to PPN

e Suppose 64-bit VA and 40-bit PA, how large is the
page table? 2°? entries x ~4 bytes ~ 16x10%> Bytes

e omemos AN that is for just one process!!?

CarnegieMellon

How large should the table be?

e Don’t need to track entire VA space

— total allocated VA space is 254 bytes x # processes,
but most of which not backed by storage

— can’t use more memory locations than physically
exist (DRAM and swap disk)

e A clever page table should scale linearly with
physical storage size and not VA space size

e Table cannot be too convoluted
— a page table must be “walkable” by HW
— a page table is accessed not infrequently

Two dominant schemes in use today:
hierarchical page table and hashed page table

18-447-524-118-S4, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

EA or VA

Hierarchical Page Table on this

e Hierarchical page table is a “tree” data structure

slide?

in DRAM (and is cacheable)

VPN)4 PO —

ASID VA[31:22] | VA[21:12] | VA[11:0]

L1 idx,, L2 idx,, PO,,

context
table

»| descriptor

address space ID

base of L1

ASID

18-447-524-118-S5, James C. Hoe, CMU/ECE/CALCM, ©2024

TL1 table TL2 table T page
rame

descriptor$~— PTE ¢»——| data

1
1
|
Iy 1 N

1\l \
\ \

PA to PA to base of page
base of L2 frame (i.e., PPN) or
location on swap disk

CarnegieMellon

Hierarchical page table is a tree

e For example on previous page
— L1 table could have 1024 descendants (L2 tables)

— each L2 table could have 1024 decedents (physical
page frames)

— —

—
—

— —

o
»

context TL1 table TL2 table age
table rame

ASID > ‘ jmup.to.ﬁ ‘ data

e More levels can be used for larger VA space, but
more memory references per translation

e Simple ratio btwn table sizes and page size (2, 1,
0.5) so tables demand-pageable btwn DRAM/disk

18-447-524-118-S6, James C. Hoe, CMU/ECE/CALCM, ©2024

Hierarchical page table is a sparse tree

e Most virtual pages are not allocated,;
corresponding L2 entries point to null

e |f a L2 table comprises entirely null pointers (no
live descendants), itself does not need to exist;
corresponding L1 entry points to null

e When more than 2 levels, an entire unused sub-
tree is avoided

e Consider typical size ratio of VA to PA, the tree
should be quite sparse for even the largest

rograms
Pros How sparse?

18-447-524-118-S7, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Assume 32-bit VA with 4 MByte in use

e Best Case: one contiguous 4-MByte VA region
aligned on 4 MByte boundaries

— 1024 physical page frames used
— needs 1 L2 table + 1 L1 table=2 x 4KBytes
overhead = sizeof(PTE) per data page used, or 0.1%

e Worst Case: 1024 x 4-KByte VA regions; each is 4-
MByte alighed

— 1024 physical page frames used
— needs 1K L2 tables (only 1 entry per L2 table used),
overhead = sizeof(L2 table) per data page, or 100%

e Locality says we should be closer to the best case

18-447-524-118-S8, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Hashed Page Table

table base page table
table >
A0 7 offset 4.\ AsiD| vPN| PTE
VPN PA of entry : .
tag
e Monolithic table

— indexed by hashing VPN and ASID,

— e.g., index=(VPNDASID)%table_size
e Entry “tagged” by ASID and VPN to detect collision
e Hashed table fast to access but not complete

— lookup can fail even though page is valid

— on a miss, consult a backup complete table

18-447-524-118-S9, James C. Hoe, CMU/ECE/CALCM, ©2024

How large is the hashed page table?

e Table size is an engineered choice, balancing
storage overhead and hash collision

— at least 1 entry per physical page
e.g., 1GB DRAM = 256K frames = 256K PTEs
— typically some factor more to reduce collisions
e Original “inverted” page table
— allocate 1 entry per physical page frame
— use hashed index as PPN (a bit like direct-map . . .)
— table entry contains only VPN tag

Viewed out of context, the table seems indexed
by PPN and returns VPN, hence the misnomer

18-447-524-118-510, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Translation Look-Aside Buffer (TLB)

e Every memory access requires a translation

— table walk requires its own memory accesses

— can’t possibly be walking the table on every access
e Keep a “cache” of recently used translations

e Similar “tagged” lookup structure as cache

— same design considerations: A/B/C, replacement
policy, split vs. unified, L1/L2, etc.

— TLB entry:
tag: address tag (from VA), ASID

PTE: PPN & protections TLB == all-HW, in SRAM,

misc: valid, dirty, etc. small (how small?)
18-447-524-118-511, James C. Hoe, CMU/ECE/CALCM, ©2024 haShed page table??

Direct-Mapped TLB (bad example)

PO

ASID VPN

18-447-524-118-512, James C. Hoe, CMU/ECE/CALCM, ©2024

e
tag bank TE PTE bank
_/
hit?kﬁ PTE

CarnegieMellon

TLB Design

e C:L1I-TLB should cover same footprint as L1 I-
cache, e.g., if L1 I-cache is 64KB

— L1 I-TLB needs minimum 16 pages but only if
working set always use entire pages

— was 32~64 entries; nowadays a few hundred

the next page? (coarse grain spatial locality)

— usually one PTE per TLB entry

— exception, MIPS keeps 2 PTEs per TLB entry

: associativity to minimize collision?

— in the old days, fully-associative is the norm

— nowadays, 2~4-way-associative is more common

18-447-524-118-513, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Translation Hierarchy: Speed vs Coverage

e L1 TLB: speed-driven, split

L1-I L1-D /D, small C, high a
TLB TLB

accessed every cycle

e |2/L3/etc: capacity-driven,
still on-chip, still HW

e “Soft TLB” or “Hashed

di — Page Table”: in DRAM, SW
SW-managed in-DRAM “TLB managed, HW or SW

(i.e., hashed page table)

L2-unified
TLB

as needed to
bridge speed gap

walked—fewer memory
lookups than hier. table on
large addresses

Complete Table
(hierarchical) e Hierarchical complete

table at bottom

18-447-524-118-514, James C. Hoe, CMU/ECE/CALCM, ©2024

VA to PA Translation Flow Chart

VA
¥

TLB

lookup

no

\ 4

10~100 pclk | PT walk

page in DRAMf/\

ound

don‘t exist
even virtually

“page fault”
allocate new
(quick) or
bring from
disk (10 ms)

18-447-524-118-515, James C. Hoe, CMU/ECE/CALCM, ©2024

A\ 4

update TLB [+~

%in DRAM

A

“seg fault”
now what?

yes

CarnegieMellon

—_——_——_.__—_.___~
=
—
-~

{

\

1

1

no es !
1

v

‘protection

violation”

\ Q
N V)
\ =
AN)
\\ &‘Q_
v O
A
| X
. \
protection D
(N @)
check =3

PA to
cache

How should VM and Cache Interact?

CPU CPU CPU
©
- = |- T8 VA = | cache . J, l
PA = -
- £ cache + | —TtB- HVA
_ | | £ PA
R VA
v h - =FFLB ==
_:: cache A l
lower lower lower
hier. hier. hier.

Only a question for L1 caches

18-447-524-118-S16, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Virtual Caches

e Even with TLB, translation takes time
e Naively, memory access time in the best case is
TLB hit time + cache hit time
e Why not access cache with virtual addresses; only
translate on a cache miss to DRAM
make sense if TLB hit time >> cache hit time
e Virtual caches in SUN SPARC ISA, circa 1990
— CPU fast enough for off-chip SRAM access to take
multiple cycles
— dies size large enough to include on-chip L1 caches
— MMU and TLB still separate chip

These conditions no longer hold

18-447-524-118-517, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Resolving Synonym and Homonym
in Virtual Caches

e Homonyms: same sound different meaning
— same EA (in different processes) — different PAs

— flush virtual cache between context; or include
ASID in cache tag

e Synonyms: different sound same meaning

— different EAs (from the same or different
processes) — same PA

— PA could be cached twice under different EAs

— writes to one cached copy not reflected in the
other cached copy

Resolve by ensuring only 1 such EA in cache at a time

18-447-524-118-518, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Virtually-Indexed Physically-Tagged

e |f C<(page_sizexassociativity), cache index bits
come only from page offset

e |f both cache and TLB are on chip
— index both SRAMs concurrently using PO from VA
— check cache tag (physical) against TLB at the end

VPN
Il
LR physical
cache
| — 1

PPN @ tag data

TLthit? cache hit?

18-447-524-118-519, James C. Hoe, CMU/ECE/CALCM, ©2024

“Large” Virtually-Indexed Caches

e |f C>(page_sizexassociativity), cache index bits
include VPN = synonyms can cause problems

III

e Solutions to contain “virtual” index in page offset
— Increase associativity, 4KB page x 8 way =32KB

— Increase page size

VPN

virtual

TLB index bits physical

cache

I
v v

PPN @(tag data

TLB hit? cache hit?

18-447-524-118-520, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

R10000’s True Virtually Index Cache

e 32KB, 2-Way L1 D-cache
— needs 10 bits of index + 4 bits of block offset
— highest 2 index bits are VA[13:12] or VPN|[1:0]
e Direct-mapped L2
— L2 isinclusive of L1
— VPN[1:0] is kept and checked as a part of L2 tag
e Given synonyms A, and B,,, that differs in VPN[1:0]
— suppose A, , accessed first so cached in L1 and L2
— when accessing B, later
1.B,,, indexes to a different block in L1 and misses
2.B,, indexes to the same block as A, in physical L2
3. L2 detects synonym when comparing VPN portion of
tag; L2 evicts A, from L1 before reloading B, ,

18-447-524-118-S21, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Interactions of VM and DMA

e A contiguous block in VA
— is not guaranteed contiguous in PA
— may not be in memory at all

e Software solutions

— kernel copies from user buffer to pinned,
contiguous buffer before DMA, or

— user allocate special pinned and consecutive pages
for zero-copy DMA

e Smarter DMA engines follow a “linked list” of
commands for moving non-contiguous blocks

e Virtually-addressed I/O bus with I/O0 MMU

18-447-524-118-S22, James C. Hoe, CMU/ECE/CALCM, ©2024

Read “Virtual memory in
contemporary microprocessors” by
Jacob and Mudge before coming to

next Lecture!!!

18-447-524-118-523, James C. Hoe, CMU/ECE/CALCM, ©2024

