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Midterm Class Distribution
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Midterm Summary Statistics

total8:assmb7:pwr6:ucode5:BP4:hzrd3:spdup2:pareto1:jump

9012131212151088possible

52.07.48.010.67.47.82.93.34.2average

17.33.84.12.63.84.83.13.12.2stdev

81.512131212151088max

51.5981268544median

1600030000min
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Housekeeping

• Your goal today
– understand cache design and operation in context 
– focus on uniprocessor for now

• Notices
– HW 4, due 4/10 (Handout #13)
– Lab 3, due this week
– Midterm regrade due Monday 4/10 noon

Follow Canvas instructions carefully!!
• Readings

– P&H Ch 5
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M=232, a=2, C=1K, B=4, G=2: “textbook” solution
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Same cache parameters 
but tune for “narrower” data SRAM banks
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Same cache parameters 
but tune for “fatter” data SRAM banks
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Same cache parameters but each block frame 
is interleaved over 2 SRAM banks
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The Cache and You
(simple, single core from Lab)
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The Context
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[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]
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Programmer-Visible State
(aka Architectural State)
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]
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Adding Caches to In-order Pipeline
• On I-fetch and LW assuming 1-cyc SRAM lookup

– if hit, just like magic memory
– if miss, stall pipeline until cache ready

• On SW also assuming 1-cycle SRAM lookup
– if miss, stall pipeline until cache ready (must we??)
– if hit, ???. . .

• For SW, need to check tag array to ascertain hit 
before committing to write data array
– data array write happens in the next cycle
– if SW is followed immediately by LW 
 structural hazard on data array  stall, whom?
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Store Buffer
• Why stall when memory port is usually free?
• After tag array hit, buffer SW address and data 

until next free data array cycle (not used by LW)
– younger LW keep going (reorder w. buffered SW)
– must ensure buffered SW’s target block not evicted

• Memory dependence and forwarding
– younger LW must check against pending SW-

addresses in store buffer (CAM) for RAW 
dependence

store 
buffer w-data

rw-addr
r-dataaddr

data

youngest matching SW data

forward
if RAW 

CAM

DATA
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Must wait for a miss? (uniprocessor)

• In-order pipeline must stall for LW-miss
• Younger instructions can move ahead of SW-miss

– except LW to same address; if so, stall or forward 
– additional SW-misses to same and different addr’s 

can be “completed” from pipeline’s view
• Modern out-of-order execution supports non-

blocking miss handling for both LW and SW
– too expensive to stall (CPU/memory speed gap)
– significant complexity in 

• detecting and resolving memory dependencies
• constructing precise exception state 
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Details and more details when 
building a cache for real
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Basic Operation
Ans (1): demand-driven

hit?
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return
data

data

M address

yes

evict old
to Li+1

yesoccupied?

no

fetch new
from Li+1

update
cache

(3) 
how?

choose
locationno

(2) how?

(1)

(1’)

Can cache decide to prefetch an addr
without a miss first? when and which?
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Write-Through Cache
• On write-hit in Li, should Li+1 be updated?
• If yes, Li is write-through

– simple management (discard on replacement)
– external agents (DMA and other proc’s) see up-to-

date values in Li+1 (e.g., DRAM)

• With write-through, on a write-miss, should a 
cache block be allocated in Li (aka write-allocate)?

------------------------
• Write-through to DRAM not viable today

3.0GHz, IPC=2, 10% SW, ~8byte/SW ~5GB/s/core
L1 (w. parity) write-through to L2 (w. ECC) is in use
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Write-Back Cache
• Hold changes in Li until block is displaced to Li+1

– on read or write miss, entire block is brought into Li

– LWs and SWs hit in Li until replacement
– on replacement, Li copy written back out to Li+1

adds latency to load miss stall
• “Dirty” bit optimization

– keep per-block status bit to track if a block has 
been modified since brought into Li

– if not dirty, no write-back on replacement
• What if a DMA device wants to read a DRAM 

location with a dirty cached copy? 
How to find out? How to access?
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Write-Back Cache and DMA
• DRAM not always up-to-

date if write-back
• DMA should see up-to-date 

value (aka, cache coherent)
• Option 1: SW flushes whole 

cache or specific blocks 
before programming DMA

• Option 2: cache monitors 
bus for external requests
– ask request to a dirty 

location to “retry”
– write out dirty copy before 

request is repeated

Cache

DMA

Proc

DRAM

M[A]=X

c[A]={drty, X’}
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Idempotency and Side-effects
• Loading from real memory location M[A] should 

return most recent value stored to M[A] 
 writing M[A] once is the same as writing M[A] with 

same value multiple times in a row
 reading M[A] multiple times returns same value

This is why memory caching works!!
• LW/SW to mmap locations can have side-effects

– reading/writing mmap location can imply
commands and other state changes

– e.g., a mmap device that is a FIFO
• SW to 0xffff0000 pushes value
• LW from 0xffff0000 returns popped value

FIFO

0xffff0000

What happens if 0xffff0000 is cached?
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Programmer-Visible State
(aka Architectural State)
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Harvard vs Princeton Architecture
• Historically

– “Harvard” referred to Aiken’s Mark series with 
separate instruction and data memory

– “Princeton” referred to von Neumann’s unified 
instruction and data memory 

• Contemporary usage: split vs unified “caches”
• L1 I/D caches commonly split and asymmetrical 

– double bandwidth and no-cross pollution on 
disjoint I and D footprints

– I-fetch smaller footprint, high-spatial locality and 
read-only   I-cache smaller, simpler

what about self-modifying code?
• L2 and L3 are unified for simplicity
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Multi-Level Caches

L1-I L1-D

DRAM

- a few pclk latency
- many GB/sec on 
random word accesses

- hundreds of pclk latency
- ~GB/sec on sequential

block accesses

L2-Unified

Intermediate cache levels 
bridge latency and 
bandwidth gap between 
L1 and DRAM

On-chip or
off-chip?
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aBC of Multi-Level Cache Design
• Upper-level caches (L1)

– small C: upper-bound by SRAM access time
– smallish B: upper-bound by C/B effects 
– a: required to counter C/B effects

• Lower-level caches (L2, L3, etc.)
– large C: upper-bound by chip area
– large B: to reduce tag storage overhead 
– a: upper bound by complexity and speed

• New very large (10s MB) on-chip caches on are 
distributed structures
– same basic notions of ways and sets
– but they don’t look or operate anything like 

“textbook”
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Modern Last-Level Cache (LLC)

• Disaggregated, asynchronous structure; shared by 
all cores within a socket

• Hold, fast “coherent” copies of local and remote 
DRAM locations
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Departure from classic uniproc. hierarchy
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Inclusion Principle

• Classically, Li contents is always a subset of Li+1

– if an address is important enough to be in Li, it  
must be important enough to be in Li+1

– external agents (DMA and other proc’s) only have 
to check the lowest level to know if an address is 
cacheddo not need to consume L1 bandwidth

• Inclusion no longer taken as a given
– nontrivial to maintain if Li+1 has lower associativity
– too much redundant capacity in multicore with 

many per-core Li and shared Li+1

– Last-level cache “directories” track cached addr
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Inclusion Violation Example

x yx

y

x,y,z have same L1 idx bits
y,z have the same L2 idx bits

x,{y,z} have different L2 idx bits

step 1: L1 miss on z

step 2: x selected 
for eviction

2-way set asso. L1

direct mapped L2

step 3: must evict y from 
L1 to replace y by z in L2

z
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Aside: Victim “Cache”
• High-associativity is an expensive solution to 

avoid conflicts in a few sets only
• Augment a low-associative main cache with a 

very small but fully associative victim cache
– blocks evicted from main cache is first held in 

victim cache
– if an evicted block is referenced again soon, it is 

returned to main cache
– if an evicted block doesn’t get referenced again, it 

will eventually be displaced from victim cache to 
next level Plays a different role outside of standard 

memory hierarchy stacking
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Aside: Software-Assists
• Separate “temporal” vs “non-temporal” hierarchy

– exposed in the ISA (e.g., Intel IA64 below)
– load and store instructions include hints about where 

to cache on a cache miss
– “hint” only so implementation could support a 

subset or none of the levels and actions

L1 L2 L3

Main
Memory

NT
L1

NT
L2 NT L3

temporal

non-temporal-All

non-temporal-L1

non-temporal-L2
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Test yourself

Optional Reading: “Measuring Cache and 
TLB Performance and Their Effect on 
Benchmark Run Times,” Saavedra and 
Smith, 1995.
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What cache is in your computer?

• How to figure out what cache configuration is in 
your computer
– capacity (C), associativity (a), and block-size (B)
– number of levels

• The presence or lack of a cache should not be 
detectable by functional behavior of software

• But you could tell if you measured execution time 
to infer the number of cache misses
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Capacity Experiment: assume 2-power C

• For increasing Range = 1,2,4,8,16,…
– allocate a buffer of size R
– repeatedly {read every byte in buffer in sequence}
– measure average read time in steadystate

• Analysis
– for small R≤C, expect all reads to hit
– for large R>C, expect reads to miss and detect 

corresponding jump in average memory access time

• If continuing to increase R, read time jumps again 
when buffer size spills out to next cache level
Warning: timing won’t be perfect when you try this
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Block Size Experiment: knowing C

• Allocate a buffer of size R >> C
• For increasing S=1,2,4,8…., 

– repeatedly {read every S’th byte in buffer in 
sequence}

– measure average read time in steadystate

• Analysis
– since R>>C, expect first read to a block to miss 

when revisiting a block
– reads to same block in same round should hit
– expect increasing average read time for increasing 

S until S≥B (no reuse in block)
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Associativity Experiment: knowing C

• For increasing R, where R is a multiple of C
– allocate a buffer of size R
– repeatedly {read every C’th byte in buffer in 

sequence}

• Analysis
– all R/C references map to the same set
– for small R s.t. (R/C)≤a, expect all reads to hit
– for large R s.t. (R/C)>a, expect some reads to miss 

since touching more addresses than ways
note: 100% cache miss if LRU is used

How to detect associativity for lower-level caches?
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Know your cache

• What else can you tell?
– write-back vs write-through/write-allocate
– unified vs. split design
– I-cache C, B, a
– ti

– replacement policy of associative caches 

• Same mental exercise is required to control cache 
use in performance tuning

Caveat: experiments may not predict behaviors 
exactly for modern CPUs with virtual memory, 

complex hierarchies, and prefetchers


