
18-447-S23-L16-S1, James C. Hoe, CMU/ECE/CALCM, ©2023

18-447 Lecture 16:
Cache Design in Context

(Uniprocessor)

James C. Hoe
Department of ECE

Carnegie Mellon University

18-447-S23-L16-S2, James C. Hoe, CMU/ECE/CALCM, ©2023

Midterm Class Distribution

18-447-S23-L16-S3, James C. Hoe, CMU/ECE/CALCM, ©2023

Midterm Summary Statistics

total8:assmb7:pwr6:ucode5:BP4:hzrd3:spdup2:pareto1:jump

9012131212151088possible

52.07.48.010.67.47.82.93.34.2average

17.33.84.12.63.84.83.13.12.2stdev

81.512131212151088max

51.5981268544median

1600030000min

18-447-S23-L16-S4, James C. Hoe, CMU/ECE/CALCM, ©2023

Housekeeping

• Your goal today
– understand cache design and operation in context
– focus on uniprocessor for now

• Notices
– HW 4, due 4/10 (Handout #13)
– Lab 3, due this week
– Midterm regrade due Monday 4/10 noon

Follow Canvas instructions carefully!!
• Readings

– P&H Ch 5

18-447-S23-L16-S5, James C. Hoe, CMU/ECE/CALCM, ©2023

M=232, a=2, C=1K, B=4, G=2: “textbook” solution

tag
PA[31:9] PA[0]

b.o.
PA[1]

idx
PA[8:2]

tag0

128
x

23-b

v0

“
x

1-b

tag1

128
x

23-b

v1

“
x

1-b

7

idx
7

idx

=
tag

23

hit0

=

hit1

data 0

128-rows
x

4-bytes

data 1

128-rows
x

4-bytes

7

idx
7

idx

2-1-mux 2-1-muxb.o.

HIT

hi
t0

hi
t1

2-1-muxd
hit0
hit1

DATA
16

18-447-S23-L16-S6, James C. Hoe, CMU/ECE/CALCM, ©2023Can you make the tag SRAMs taller/narrower also?

Same cache parameters
but tune for “narrower” data SRAM banks

data 0

256-rows
x

2-bytes

data 1

256-rows
x

2-bytes

tag0

128
x

23-b

v0

“
x

1-b

tag1

128
x

23-b

v1

“
x

1-b

tag
PA[31:9] PA[0]

b.o.
PA[1]

idx
PA[8:2]

7

idx
7

idx

8

{idx,bo}
8

{idx,bo}

=
tag

23

hit0

=

hit1

2-1-muxd
hit0
hit1

HIT DATA

hi
t0

hi
t1

16

this part is
unchanged

16 16

18-447-S23-L16-S7, James C. Hoe, CMU/ECE/CALCM, ©2023Can you make the tag SRAMs shorter/wider also?

Same cache parameters
but tune for “fatter” data SRAM banks

data 0

64-rows
x

8-bytes

data 1

64-rows
x

8-bytes

tag0

128
x

23-b

v0

“
x

1-b

tag1

128
x

23-b

v1

“
x

1-b

tag
PA[31:9] PA[0]

b.o.
PA[1]

idx
PA[8:2]

7

idx
7

idx 6

PA[8:3]

6

PA[8:3]

=
tag

23

hit0

=

hit1

4-1-mux 4-1-mux{PA[2],b.o.}

2-1-muxd
hit0
hit1

HIT DATA

hi
t0

hi
t1

16

this part is
unchanged

18-447-S23-L16-S8, James C. Hoe, CMU/ECE/CALCM, ©2023

Same cache parameters but each block frame
is interleaved over 2 SRAM banks

data 0

128-rows
x

4-bytes

data 1

128-rows
x

4-bytes

tag0

128
x

23-b

v0

“
x

1-b

tag1

128
x

23-b

v1

“
x

1-b

tag
PA[31:9] PA[0]

b.o.
PA[1]

idx
PA[8:2]

7

idx
7

idx
7

idx
7

idx

=
tag

23

h0

=

h1

2-1-mux 2-1-muxb.o.

2-1-muxd
h0•bo+h1•bo
h1•bo+h0•bo

HIT DATA

h0 h1

16

h0•boh0•bo h1•boh1•bo

this part is
unchanged

row-sel

col-sel

18-447-S23-L16-S9, James C. Hoe, CMU/ECE/CALCM, ©2023

The Cache and You
(simple, single core from Lab)

18-447-S23-L16-S10, James C. Hoe, CMU/ECE/CALCM, ©2023

The Context

PC
Instruction

memory

4

Registers

M
u
x

M
u
x

M
u
x

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Data
memory

M
u
x

Hazard
detection

unit

Forwarding
unit

IF.Flush

IF/ID

Sign
extend

Control

M
u
x

=

Shift
left 2

M
u
x

[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

18-447-S23-L16-S11, James C. Hoe, CMU/ECE/CALCM, ©2023

Programmer-Visible State
(aka Architectural State)

PC

Instruction
memory

Instruction
address

Instruction

MemRead

MemWrite

Data
memory

Write
data

Read
data

Address

RegWrite

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

5

5

5

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

RFWrite

think
interfaces
not
modules

18-447-S23-L16-S12, James C. Hoe, CMU/ECE/CALCM, ©2023

Adding Caches to In-order Pipeline
• On I-fetch and LW assuming 1-cyc SRAM lookup

– if hit, just like magic memory
– if miss, stall pipeline until cache ready

• On SW also assuming 1-cycle SRAM lookup
– if miss, stall pipeline until cache ready (must we??)
– if hit, ???. . .

• For SW, need to check tag array to ascertain hit
before committing to write data array
– data array write happens in the next cycle
– if SW is followed immediately by LW
 structural hazard on data array  stall, whom?

18-447-S23-L16-S13, James C. Hoe, CMU/ECE/CALCM, ©2023

Store Buffer
• Why stall when memory port is usually free?
• After tag array hit, buffer SW address and data

until next free data array cycle (not used by LW)
– younger LW keep going (reorder w. buffered SW)
– must ensure buffered SW’s target block not evicted

• Memory dependence and forwarding
– younger LW must check against pending SW-

addresses in store buffer (CAM) for RAW
dependence

store
buffer w-data

rw-addr
r-dataaddr

data

youngest matching SW data

forward
if RAW

CAM

DATA

18-447-S23-L16-S14, James C. Hoe, CMU/ECE/CALCM, ©2023

Must wait for a miss? (uniprocessor)

• In-order pipeline must stall for LW-miss
• Younger instructions can move ahead of SW-miss

– except LW to same address; if so, stall or forward
– additional SW-misses to same and different addr’s

can be “completed” from pipeline’s view
• Modern out-of-order execution supports non-

blocking miss handling for both LW and SW
– too expensive to stall (CPU/memory speed gap)
– significant complexity in

• detecting and resolving memory dependencies
• constructing precise exception state

18-447-S23-L16-S15, James C. Hoe, CMU/ECE/CALCM, ©2023

Details and more details when
building a cache for real

18-447-S23-L16-S16, James C. Hoe, CMU/ECE/CALCM, ©2023

Basic Operation
Ans (1): demand-driven

hit?

cache
lookup

return
data

data

M address

yes

evict old
to Li+1

yesoccupied?

no

fetch new
from Li+1

update
cache

(3)
how?

choose
locationno

(2) how?

(1)

(1’)

Can cache decide to prefetch an addr
without a miss first? when and which?

18-447-S23-L16-S17, James C. Hoe, CMU/ECE/CALCM, ©2023

Write-Through Cache
• On write-hit in Li, should Li+1 be updated?
• If yes, Li is write-through

– simple management (discard on replacement)
– external agents (DMA and other proc’s) see up-to-

date values in Li+1 (e.g., DRAM)

• With write-through, on a write-miss, should a
cache block be allocated in Li (aka write-allocate)?

• Write-through to DRAM not viable today

3.0GHz, IPC=2, 10% SW, ~8byte/SW ~5GB/s/core
L1 (w. parity) write-through to L2 (w. ECC) is in use

18-447-S23-L16-S18, James C. Hoe, CMU/ECE/CALCM, ©2023

Write-Back Cache
• Hold changes in Li until block is displaced to Li+1

– on read or write miss, entire block is brought into Li

– LWs and SWs hit in Li until replacement
– on replacement, Li copy written back out to Li+1

adds latency to load miss stall
• “Dirty” bit optimization

– keep per-block status bit to track if a block has
been modified since brought into Li

– if not dirty, no write-back on replacement
• What if a DMA device wants to read a DRAM

location with a dirty cached copy?
How to find out? How to access?

18-447-S23-L16-S19, James C. Hoe, CMU/ECE/CALCM, ©2023

Write-Back Cache and DMA
• DRAM not always up-to-

date if write-back
• DMA should see up-to-date

value (aka, cache coherent)
• Option 1: SW flushes whole

cache or specific blocks
before programming DMA

• Option 2: cache monitors
bus for external requests
– ask request to a dirty

location to “retry”
– write out dirty copy before

request is repeated

Cache

DMA

Proc

DRAM

M[A]=X

c[A]={drty, X’}

18-447-S23-L16-S20, James C. Hoe, CMU/ECE/CALCM, ©2023

Idempotency and Side-effects
• Loading from real memory location M[A] should

return most recent value stored to M[A]
 writing M[A] once is the same as writing M[A] with

same value multiple times in a row
 reading M[A] multiple times returns same value

This is why memory caching works!!
• LW/SW to mmap locations can have side-effects

– reading/writing mmap location can imply
commands and other state changes

– e.g., a mmap device that is a FIFO
• SW to 0xffff0000 pushes value
• LW from 0xffff0000 returns popped value

FIFO

0xffff0000

What happens if 0xffff0000 is cached?

18-447-S23-L16-S21, James C. Hoe, CMU/ECE/CALCM, ©2023

Programmer-Visible State
(aka Architectural State)

PC

Instruction
memory

Instruction
address

Instruction

MemRead

MemWrite

Data
memory

Write
data

Read
data

Address

RegWrite

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

5

5

5

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

RFWrite

think
interfaces
not
modules

18-447-S23-L16-S22, James C. Hoe, CMU/ECE/CALCM, ©2023

Harvard vs Princeton Architecture
• Historically

– “Harvard” referred to Aiken’s Mark series with
separate instruction and data memory

– “Princeton” referred to von Neumann’s unified
instruction and data memory

• Contemporary usage: split vs unified “caches”
• L1 I/D caches commonly split and asymmetrical

– double bandwidth and no-cross pollution on
disjoint I and D footprints

– I-fetch smaller footprint, high-spatial locality and
read-only  I-cache smaller, simpler

what about self-modifying code?
• L2 and L3 are unified for simplicity

18-447-S23-L16-S23, James C. Hoe, CMU/ECE/CALCM, ©2023

Multi-Level Caches

L1-I L1-D

DRAM

- a few pclk latency
- many GB/sec on
random word accesses

- hundreds of pclk latency
- ~GB/sec on sequential

block accesses

L2-Unified

Intermediate cache levels
bridge latency and
bandwidth gap between
L1 and DRAM

On-chip or
off-chip?

18-447-S23-L16-S24, James C. Hoe, CMU/ECE/CALCM, ©2023

aBC of Multi-Level Cache Design
• Upper-level caches (L1)

– small C: upper-bound by SRAM access time
– smallish B: upper-bound by C/B effects
– a: required to counter C/B effects

• Lower-level caches (L2, L3, etc.)
– large C: upper-bound by chip area
– large B: to reduce tag storage overhead
– a: upper bound by complexity and speed

• New very large (10s MB) on-chip caches on are
distributed structures
– same basic notions of ways and sets
– but they don’t look or operate anything like

“textbook”

18-447-S23-L16-S25, James C. Hoe, CMU/ECE/CALCM, ©2023

Modern Last-Level Cache (LLC)

• Disaggregated, asynchronous structure; shared by
all cores within a socket

• Hold, fast “coherent” copies of local and remote
DRAM locations

[h
tt

ps
:/

/s
of

tw
ar

e.
in

te
l.c

om
/e

n-
us

/a
rt

ic
le

s/
in

te
l-x

eo
n-

pr
oc

es
so

r-
sc

al
ab

le
-

fa
m

ily
-t

ec
hn

ic
al

-o
ve

rv
ie

w
]

Departure from classic uniproc. hierarchy

18-447-S23-L16-S26, James C. Hoe, CMU/ECE/CALCM, ©2023

Inclusion Principle

• Classically, Li contents is always a subset of Li+1

– if an address is important enough to be in Li, it
must be important enough to be in Li+1

– external agents (DMA and other proc’s) only have
to check the lowest level to know if an address is
cacheddo not need to consume L1 bandwidth

• Inclusion no longer taken as a given
– nontrivial to maintain if Li+1 has lower associativity
– too much redundant capacity in multicore with

many per-core Li and shared Li+1

– Last-level cache “directories” track cached addr

18-447-S23-L16-S27, James C. Hoe, CMU/ECE/CALCM, ©2023

Inclusion Violation Example

x yx

y

x,y,z have same L1 idx bits
y,z have the same L2 idx bits

x,{y,z} have different L2 idx bits

step 1: L1 miss on z

step 2: x selected
for eviction

2-way set asso. L1

direct mapped L2

step 3: must evict y from
L1 to replace y by z in L2

z

18-447-S23-L16-S28, James C. Hoe, CMU/ECE/CALCM, ©2023

Aside: Victim “Cache”
• High-associativity is an expensive solution to

avoid conflicts in a few sets only
• Augment a low-associative main cache with a

very small but fully associative victim cache
– blocks evicted from main cache is first held in

victim cache
– if an evicted block is referenced again soon, it is

returned to main cache
– if an evicted block doesn’t get referenced again, it

will eventually be displaced from victim cache to
next level Plays a different role outside of standard

memory hierarchy stacking

18-447-S23-L16-S29, James C. Hoe, CMU/ECE/CALCM, ©2023

Aside: Software-Assists
• Separate “temporal” vs “non-temporal” hierarchy

– exposed in the ISA (e.g., Intel IA64 below)
– load and store instructions include hints about where

to cache on a cache miss
– “hint” only so implementation could support a

subset or none of the levels and actions

L1 L2 L3

Main
Memory

NT
L1

NT
L2 NT L3

temporal

non-temporal-All

non-temporal-L1

non-temporal-L2

18-447-S23-L16-S30, James C. Hoe, CMU/ECE/CALCM, ©2023

Test yourself

Optional Reading: “Measuring Cache and
TLB Performance and Their Effect on
Benchmark Run Times,” Saavedra and
Smith, 1995.

18-447-S23-L16-S31, James C. Hoe, CMU/ECE/CALCM, ©2023

What cache is in your computer?

• How to figure out what cache configuration is in
your computer
– capacity (C), associativity (a), and block-size (B)
– number of levels

• The presence or lack of a cache should not be
detectable by functional behavior of software

• But you could tell if you measured execution time
to infer the number of cache misses

18-447-S23-L16-S32, James C. Hoe, CMU/ECE/CALCM, ©2023

Capacity Experiment: assume 2-power C

• For increasing Range = 1,2,4,8,16,…
– allocate a buffer of size R
– repeatedly {read every byte in buffer in sequence}
– measure average read time in steadystate

• Analysis
– for small R≤C, expect all reads to hit
– for large R>C, expect reads to miss and detect

corresponding jump in average memory access time

• If continuing to increase R, read time jumps again
when buffer size spills out to next cache level
Warning: timing won’t be perfect when you try this

18-447-S23-L16-S33, James C. Hoe, CMU/ECE/CALCM, ©2023

Block Size Experiment: knowing C

• Allocate a buffer of size R >> C
• For increasing S=1,2,4,8….,

– repeatedly {read every S’th byte in buffer in
sequence}

– measure average read time in steadystate

• Analysis
– since R>>C, expect first read to a block to miss

when revisiting a block
– reads to same block in same round should hit
– expect increasing average read time for increasing

S until S≥B (no reuse in block)

18-447-S23-L16-S34, James C. Hoe, CMU/ECE/CALCM, ©2023

Associativity Experiment: knowing C

• For increasing R, where R is a multiple of C
– allocate a buffer of size R
– repeatedly {read every C’th byte in buffer in

sequence}

• Analysis
– all R/C references map to the same set
– for small R s.t. (R/C)≤a, expect all reads to hit
– for large R s.t. (R/C)>a, expect some reads to miss

since touching more addresses than ways
note: 100% cache miss if LRU is used

How to detect associativity for lower-level caches?

18-447-S23-L16-S35, James C. Hoe, CMU/ECE/CALCM, ©2023

Know your cache

• What else can you tell?
– write-back vs write-through/write-allocate
– unified vs. split design
– I-cache C, B, a
– ti

– replacement policy of associative caches

• Same mental exercise is required to control cache
use in performance tuning

Caveat: experiments may not predict behaviors
exactly for modern CPUs with virtual memory,

complex hierarchies, and prefetchers

