18-447 Lecture 15:
Caching in Concept

James C. Hoe
Department of ECE
Carnegie Mellon University

18-447-524-115-S1, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Midterm Class Distribution

Minimum Median Maximum Mean Std Dev @

19.0 59.0 85.0 57.38 15.7

18-447-S24-L15-S2, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Housekeeping

e Your goal today

— understand caching (“aBC” and “3 C’s”) in the
abstract and in isolation—where performance
means hit vs miss, one cache by itself

e Notices

— HW 4, out next week

— Lab 3, due next week

— Final Exam, Fri, May 3™, 1pm
e Readings

— P&H Ch 5

18-447-524-115-S3, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Last Lecture: Memory Hierarchy Design

how fast, how large is

speed Level 1 memory? (must
be faster than required)
Support
processor core Intermediate levels?

at this speed

and capacity
how fast, how large is Last

Level memory ? (must be
at least as large)

)
o
>
o
p
)
Q.
p
)
Q.
©
)
=
(@

p
@
TEB
(7))
©
c
(¢0)
p
Q
ofd
(7]
(C
[F it

.

\

capacity

18-447-524-115-54, James C. Hoe, CMU/ECE/CALCM, ©2024

Today: A Cache

use index of M
keep what you use to look up in
actively here both Cand M

with strong locality

fast | c=2¢
* effectively as fast as e— —> C=2°bytes

small
* and as large as =
hold what isn’t M=2" bytes
being usedé’ big but slow

18-447-524-115-S5, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Bottomline Issues

e Potentially M=2™ bytes of memory, how to keep
“copies” of most frequently used locations in C
bytes of fast storage where C << M

e Basic issues (intertwined)
(1) when to cache a “copy” of a memory location
(2) where in fast storage to keep the “copy”

(3) how to find the “copy” later on (LW and SW only
give indices into M)

e Viable solutions must be fast and efficient

18-447-524-115-S6, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Basic Operation
Ans (1): demand-driven

M address Can cache decide to prefetch an addr
l without a miss first? when and which?
(3) cache
lookup
how?
(2) how?
1
@) choqse ccupied yes
no location
yes no ,
(1)
return |, update | fetch new | evict old
data cache from L,,, to L,

|

data

18-447-524-115-S7, James C. Hoe, CMU/ECE/CALCM, ©2024

Basic Cache Parameters

e M =2™:size of address space in bytes
example values: 232, 264

ISA

e G=28: cache access granularity in bytes
example values: 4, 8

e C: “capacity” of cache in bytes

example values: 16 KByte (L1), 1 MByte (L2)
B = 2P: “block size” in bytes

example values: 16 (L1), >64 (L2)
e a: “associativity” of the cache

e
.\(\“oc\\’gﬂexample values: 1, 2, 4, 5(?),... “C/B”
X0

18-447-524-115-S8, James C. Hoe, CMU/ECE/CALCM, ©2024

Implementation
o

C/a should be a 2-power

Direct-Mapped Placement (first try)

lg,M-bit address

tag idx g

Tag Array Data Array

ng(C/G)/ ie)
bits " C/Grows |G| C/Grows

>

by by
1 bits t bits G bytes
t bits
What about writes?
+ G bytes
let t= I1g,M—Ig,C

hit? ¥ data

18-447-524-115-S9, James C. Hoe, CMU/ECE/CALCM, ©2024

Storage Overhead and Block size

e For each cache block of G bytes, also storing “t+1”
bits of tag (where t=Ig,M-lIg,C)
— if M=232, G=4, C=16K=214
—> t=18 bits for each 4-byte block
60% overhead; 16KB cache actually 25.5KB SRAM
e Solution: “amortize” tag over larger B-byte block
— manage B/G consecutive words as indivisible unit
— if M=232, B=16, G=4, C=16K
—> t=18 bits for each 16-byte block
15% overhead; 16KB cache actually 18.4KB SRAM
Q — spatial locality also says this is good (Q1: when)
e Larger caches wants even bigger blocks

18-447-524-115-510, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Direct-Mapped,, ; - “Flow Chart” (2)&(3)

lg,M-bit address

tag idx bo | g
Ig,(C/B)T Tag Array | | DataArray
bits ¢ T>o
C/B-by-t bits C/B-by-B bytes
4+t bits
+1g,(B/G]) :
bits 6blts 4+ B bytes

? T G bytes
let t= Ig,M—Ig,C hit? data

18-447-524-115-511, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Is this the same placement policy?

tag idx bo | g
— I Tag Array | B
" C/B-by-t bits | 3 Data Array
Ig,(C/B)+kT
bits ZkC/B-by-
| B/2Xbytes
+1 bits
lgz(B/G)'k/ .
bits 1t bits 1 B/2¢
}@7 bytes
let t= Ig,M~-Ig,C \ v /

G bytes
Same hit/miss on same addr trace? it

18-447-524-115-512, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Is this Direct-Mapped,, ; . z? Is it Valid?

bo idx tag
4 Tag Array - Data Array
Ic
ng(Ct{:.Z, C/B-by-t bits | ~ | C/B-by-B bytes
4t bits
11g,(B/G) ;

e t bits 1B bytes
Same hit/miss on same addr trace? G bytes
= bit selection also parameterization |, .

hit? data

18-447-524-115-513, James C. Hoe, CMU/ECE/CALCM, ©2024

Matching Placement to Atypical Locality

YN
e Suppose hypothetical GPU ~ :B — ~
- vN-by-VN G-byte pixels per frame - o
— row-major layout oy-major 20 array |nes. [anesa
2NOs b 3N0->-1
frame# row column | g
. N>>C/G o N4
(row-major)
— spatial locality in vB-by-v/B tiles
— working set is consecutive columns | N

e Cache indexing given same B, C

tag idx b |g| textbook

tag idx« |b|tag|idx|[b|g| domain-specialized

18-447-524-115-514, James C. Hoe, CMU/ECE/CALCM, ©2024

Also the other way:

match data layout to placement
VN

r N\

il

18-447-524-115-515, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Direct-Mapped Policy in Essence

e C-byte storage array managed as C/B cache blocks

e A given block address directly maps to exactly one
choice of cache block (by block index field)

e Block addresses with same block index field map to
same cache block
— of 2t such addresses, hold only one at a time
— even if C > working set size, conflict is possible
(“working set” is not one continuous region)

— probability 2 random addresses
conflict is 1/(C/B); likelihood
for conflict increases with

|
|
| working
|
|

ﬁ size (W)
| »C

hit rate

decreasing number of blocks

18-447-524-115-516, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Set Associative Placement “Flow Chart”:

Y

a generalization C/a byte
:) ,]
ag |idx| bo| g dlrectjrrlapped
(I
Tag Data Tag Data
O ©
» C/a/B|'s| C/a/B EEEEE C/a/B|<| C/a/B
by |~ by by |~ by
t bits B bytes a Arrays t bits B bytes

%

—/

A 4

some kind of “mux”

A 4

it +

18-447-524-115-517, James C. Hoe, CMU/ECE/CALCM, ©2024

N

/

ldata t=I1g,M-lg,(C/a)

CarnegieMellon

d-way Set-Associative Placement Policy

e C bytes of storage divided into a direct-mapped
arrays (aka “ways” and sometimes “banks”)
— each “way” has (C/a)/B cache blocks

— a given block address maps to exactly one choice
per “way”; a choices constitute the “set”

direct-mapped is special case a=1
— overhead: a comparators and a-to-1 multiplexer
e Block addresses with same index map to same set
— 2tsuch addresses; hold a different ones at a time
— if C > working set size
| higher-degree of associativity = fewer conflicts
What if C < working set size?

18-447-524-115-518, James C. Hoe, CMU/ECE/CALCM, ©2024

Replacement Policy to Choose from a

e New block displaces an existing block from “set”
— pick the one that is least recently used (LRU)
exactly LRU expensive for a>2
— pick any one except the most recently used

— pick-the-most recently used one
— pickone-based-on-somepart of the address bits
— pick the one used again furthest in the future Be\ad\’
— pick a (pseudo) random one
e No real best choice; second-order impact only

— if actively using less than a blocks in a set, any
sensible replacement policy will quickly converge

— if actively using more than a blocks in a set, no
replacement policy can help you

18-447-524-115-519, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

set0 wayO
set0 wayl
set0 way2

setl way0
setl wayl
setl way2

18-447-524-115-520, James C. Hoe, CMU/ECE/CALCM, ©2024

Policy vs Realization

e Associativity is a placement policy

— it says a block address could be placed in one of
a different blocks

— it doesn’t say “ways” are parallel look-up banks
e “Pseudo” a-way associative cache

— given a direct-mapped array with C/B blocks

— logically partition into C/B/a sets

— given an address A, index into set and
sequentially search its ways

e Optimization: record the most recently used
way (MRU) to check first
e.g., used by MIPS R10K off-CPU L2

CarnegieMellon

Fully Associative Cache: a=C/B

tag oo (g
| :\
t bits + | 1-by-tbits | v | 1-by-B bytes :
: N :
E é >j_‘_§7 o ! u>).
I ' (C
|| 1-by-tbits | v | 1-by-B bytes : 2
: | S
(=) L:D—W | =
. i : | 3
| : | g
I | 1-by-tbits | v | 1-by-B bytes |
: | L v :
hlt? i ______ ' __é__________f __________________ q _EJ

let t=Ig,M—Ig,B data i

18-447-524-115-521, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

3C’s of Cache Misses

18-447-524-115-S22, James C. Hoe, CMU/ECE/CALCM, ©2024

Compulsory Miss

e First reference to a block address always misses
(if no prefetching)

e Dominates when locality is poor

— for example, in a “streaming” data access pattern
where many addresses are visited, but each is
used only once

e Main design factor: B and “prefetching”

hit rate

18-447-524-115-523, James C. Hoe, CMU/ECE/CALCM, ©2024 - B

CarnegieMellon

Capacity Miss

e Cache is too small to hold everything until reuse

e Defined as non-compulsory misses that would
occur in a fully-associative cache of the same C
and B using optimum (Belady) replacement

e Dominates when C<W

— for example, the L1 cache usually not big enough
due to cycle-time tradeoff

e Main design factor: C 100% |-~ - - o=—===

|

|
% | working
= :‘gt size (W)
c |

|

>C

18-447-524-115-S24, James C. Hoe, CMU/ECE/CALCM, ©2024

Conflict Miss

e Miss to a previously visited block address
displaced due to conflict under direct-mapped or
set-associative allocation

e Defined as “a miss that is neither compulsory nor
capacity”

e Dominates when C=W or when C/B is small
e Main design factor: a

-~V
I:
|
|
|
|

A Y
|
|
|
|
|
|

hit rate

18-447-524-115-S25, James C. Hoe, CMU/ECE/CALCM, ©2024 » a

CarnegieMellon

3’C worksheet: a=1, B=1, C=2, G=1

addr | set# | which C? set[2] F.A. + Belady
Ox0| O compulsory [-,-] = [0,-] {}— {0}
Ox2 | O

Ox0 | O

Ox2 | O

Ox1 | 1

Ox0 | O

Ox2 | O

Ox0 | O

18-447-524-115-526, James C. Hoe, CMU/ECE/CALCM, ©2024

3’C worksheet: a=1, B=1, C=2, G=1

addr | set# | which C? set[2] F.A. + Belady
Ox0| O compulsory -,-] > [0,-] {}— {0}

0x2 | O | compulsory | [0,-] > [2,] {0} > {0,2}
0x0 | O | conflict 2,-] = [0,-] 10,2}

0x2 | 0 | conflict 0,-] > [2,7] 10,2

0x1 | 1 | compulsory | [2,-] > [2,1] {0,2} - {0,1}
0x0 | 0 | conflict 2,1] = [0,1] {0,1};

Ox2 | O capacity 0,1] —> [2,1] {0,1} > {0,2}
OxO | O | conflict 2,1] > [0,1] {0,2};¢

18-447-524-115-S27, James C. Hoe, CMU/ECE/CALCM, ©2024

Recap: Basic Cache Parameters

e M =2™:size of address space in bytes
example values: 232, 264

ISA

e G=28: cache access granularity in bytes
example values: 4, 8

e C: “capacity” of cache in bytes
example values: 16 KByte (L1), 1 MByte (L2)
B = 2P: “block size” in bytes
example values: 16 (L1), >64 (L2)
e a: “associativity” of the cache
example values: 1, 2, 4, 5(?),... “C/B”

e “map”: addr to idx C/a should be a 2-power

18-447-524-115-528, James C. Hoe, CMU/ECE/CALCM, ©2024

Implementation
o

Recap: Address Map for Typical Locality

Ig,M -bit address

e N
- N
tag index B.O.
\ AN A A J
e Y Y Y
& 1o} S
> 4 0 L
S > 9 &_ o O
°2 F ek T
\ > % ¥ % %
7 .~ 6. ¢ "/
&® =3, C % &
>/ 9 ~ v °6
c S, 6.
&

18-447-524-115-529, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Recap: aBC Rule of Thumb Cribsheet

100% } - - - - - - o
:
% . working t |
- . set size (W)
< !
S
|
C

r S e R . B

|

o /: tzavailable

© | spatial

p - : I .

= , ocality

< ~5 when CxW
|

For “typical” programs

18-447-524-115-S30, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

M=232, a=2, C=1K, B=4, G=2

18-447-524-115-S31, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

M=232, 3=2, C=1K, B=4, G=2: “textbook” solution

tag idx b.o.
PA[31:9] PA[8:2] | PA[1] | PA[O]
idx idx idx idx
{7 {7 {7 {7
tag0 | vO tagl | vl data O data 1
128 | “ 128 | “ 128-rows 128-rows
X X X X X X
23-b |1-b 23-b |1-b 4-bytes 4-bytes
=
tag -TIE b.o.—N 2-1-mux / \ 2-1-mux /
23
hitO__,
I:;:I hitl— 2‘1'?% /
16

hitO hitl HIT DATA

18-447-524-115-5S32, James C. Hoe, CMU/ECE/CALCM, ©2024

Same cache parameters

but tune for “narrower” data SRAM banks

tag idx b.o.
PA[31:9] PA[8:2] | PA[1] | PA[O]
idx idx i {idx,bo} {idx,bo}
%7 %7 : %8 %8
tag0 |vO | | tagl [vi| thispartis | g0 data 1
unchanged :
128 | “ 128 | © 256-rows 256-rows
X X X X X X
23-b |1-b| | 23-b |1-b 2-bytes 2-bytes
e
tag = e (LI
23 b
hit0___ " 3
I:;:I hit] ——__2-1-mux, /
16
hit0 hitl HIT D,;‘ljl'A

Can you make the tag SRAMs taller/narrower also?

CarnegieMellon

Same cache parameters
but tune for “fatter” data SRAM banks

tag idx b.o.
PA[31:9] PA[8:2] | PA[1] | PA[O] PA[8:3] PA[8:3]
idx idx ’1’6 '1'6
{7 {7
data O data 1
tag0 |vO | | tagl |v1| thispartis
unchan ge J 64-rows 64-rows
128 | “ 128 | “ X X
X X X X 8-bytes 8-bytes
23-b [1-b 23-b [1-b
9:.-: {PA[2] bo}—>\4 1- mux/ \4 1- mux/
tag e e
23 z
hitO___,~ -
hitl— 2'1'?de /
16
hit0 hitl HIT DATA

Can you make the tag SRAMs shorter/wider also?

Same cache parameters but each block frame
is interleaved over 2 SRAM banks

tag idx b.o.
PA[31:9] PA[8:2] | PA[1] | PA[O] row-sel

idx idx

idx idx , ,
i | p—
{7 {7 ! | |
. dataO0 |l data 1 I
tag0 | vO tagl | vl this part is : ! I
unchanged | 128-rows Il 128-rows ||
128 | “ 128 | “ : & I « I
| |
X X X X I| 4-bytes || 4-bytes !
23-b 11-b 23-b |1-b I| hosBo hiebo ||} hiBo hoebo ||
coLse/: I I
tag b.o. I\21 ux/|\21mux/|
1= =] 5 e nilonndnn

h00b0+h1-bo_. -
§h1-bo+ho-bo =N\ 21,’;‘1‘;"‘1 /

ﬂt n

m=
_|

18-447-524-115-S35, James C. Hoe, CMU/ECE/CALCM, ©2024 DATA

