
18-447-S24-L15-S1, James C. Hoe, CMU/ECE/CALCM, ©2024

18-447 Lecture 15:
Caching in Concept

James C. Hoe
Department of ECE

Carnegie Mellon University

18-447-S24-L15-S2, James C. Hoe, CMU/ECE/CALCM, ©2024

Midterm Class Distribution

18-447-S24-L15-S3, James C. Hoe, CMU/ECE/CALCM, ©2024

Housekeeping

• Your goal today
– understand caching (“aBC” and “3 C’s”) in the

abstract and in isolationwhere performance
means hit vs miss, one cache by itself

• Notices
– HW 4, out next week
– Lab 3, due next week
– Final Exam, Fri, May 3rd, 1pm

• Readings
– P&H Ch 5

18-447-S24-L15-S4, James C. Hoe, CMU/ECE/CALCM, ©2024

Last Lecture: Memory Hierarchy Design

speed

capacity

fa
st

er
 a

nd
 s

m
al

le
r

ch
ea

pe
r p

er
 b

yt
e

how fast, how large is
Level 1 memory? (must
be faster than required)

Support
processor core

at this speed
and capacity

how fast, how large is Last
Level memory ? (must be
at least as large)

Intermediate levels?

18-447-S24-L15-S5, James C. Hoe, CMU/ECE/CALCM, ©2024

Today: A Cache

fast
small

big but slow

keep what you use
actively here

hold what isn’t
being used

with strong locality
• effectively as fast as
• and as large as

M=2m bytes

C=2c bytes

use index of M
to look up in

both C and M

18-447-S24-L15-S6, James C. Hoe, CMU/ECE/CALCM, ©2024

Bottomline Issues

• Potentially M=2m bytes of memory, how to keep
“copies” of most frequently used locations in C
bytes of fast storage where C << M

• Basic issues (intertwined)
(1) when to cache a “copy” of a memory location
(2) where in fast storage to keep the “copy”
(3) how to find the “copy” later on (LW and SW only

give indices into M)

• Viable solutions must be fast and efficient

18-447-S24-L15-S7, James C. Hoe, CMU/ECE/CALCM, ©2024

Basic Operation
Ans (1): demand-driven

hit?

cache
lookup

return
data

data

M address

yes

evict old
to Li+1

yesoccupied?

no

fetch new
from Li+1

update
cache

(3)
how?

choose
locationno

(2) how?

(1)

(1’)

Can cache decide to prefetch an addr
without a miss first? when and which?

18-447-S24-L15-S8, James C. Hoe, CMU/ECE/CALCM, ©2024

Basic Cache Parameters

• M = 2m : size of address space in bytes
example values: 232, 264

• G=2g : cache access granularity in bytes
example values: 4, 8

• C : “capacity” of cache in bytes
example values: 16 KByte (L1), 1 MByte (L2)

• B = 2b: “block size” in bytes
example values: 16 (L1), >64 (L2)

• a: “associativity” of the cache
example values: 1, 2, 4, 5(?),... “C/B”

IS
A

Im
pl

em
en

ta
tio

n

C/a should be a 2-power

18-447-S24-L15-S9, James C. Hoe, CMU/ECE/CALCM, ©2024

Direct-Mapped Placement (first try)

Data Array

C/G rows
by

G bytes

let t= lg2Mlg2C

tag idx g

G bytes

data

=

Tag Array

C/G rows
by

t bits

hit?

t bits

t bits

lg2(C/G)
bits

What about writes?

lg2M-bit address

va
lid

18-447-S24-L15-S10, James C. Hoe, CMU/ECE/CALCM, ©2024

Storage Overhead and Block Size
• For each cache block of G bytes, also storing “t+1”

bits of tag (where t=lg2Mlg2C)
– if M=232, G=4, C=16K=214

 t=18 bits for each 4-byte block
60% overhead; 16KB cache actually 25.5KB SRAM

• Solution: “amortize” tag over larger B-byte block
– manage B/G consecutive words as indivisible unit
– if M=232, B=16, G=4, C=16K
 t=18 bits for each 16-byte block

15% overhead; 16KB cache actually 18.4KB SRAM
– spatial locality also says this is good (Q1: when)

• Larger caches wants even bigger blocks

18-447-S24-L15-S11, James C. Hoe, CMU/ECE/CALCM, ©2024

Direct-MappedM,G,C,B “Flow Chart” (2)&(3)

Data Array

C/B-by-B bytes

let t= lg2Mlg2C

tag idx bo g

B bytes

G bytes

data

=

Tag Array

C/B-by-t bits

hit?

t bits

t bitslg2(B/G)
bits

lg2(C/B)
bits va

lid

lg2M-bit address

18-447-S24-L15-S12, James C. Hoe, CMU/ECE/CALCM, ©2024

Is this the same placement policy?

Data Array

2kC/B-by-
B/2k bytes

let t= lg2Mlg2C

tag idx bo g

B/2k

bytes

G bytes

data

=

Tag Array
C/B-by-t bits

hit?

t bits

t bits
lg2(B/G)-k

bits

lg2(C/B)+k
bits

va
lid

Same hit/miss on same addr trace?

18-447-S24-L15-S13, James C. Hoe, CMU/ECE/CALCM, ©2024

Is this Direct-MappedM,G,C,B? Is it Valid?

Data Array

C/B-by-B bytes

idxbo g

B bytes

G bytes

data

=

Tag Array

C/B-by-t bits

hit?

t bits

t bitslg2(B/G)
bits

lg2(C/B)
bits

va
lid

tag

Same hit/miss on same addr trace?
 bit selection also parameterization

18-447-S24-L15-S14, James C. Hoe, CMU/ECE/CALCM, ©2024

Matching Placement to Atypical Locality
• Suppose hypothetical GPU

N-by- N G-byte pixels per frame
– row-major layout

• N>>C/G
– spatial locality in B-by- B tiles
– working set is consecutive columns

• Cache indexing given same B, C


N

0 N0.5-1
N0.5 2N0.5-1
2N0.5 3N0.5-1

. N

B

. . . . i N+j
(row-major)

row-major 2D array

frame# row column g

tag idx b g

tag idx b gidx b tag

textbook

domain-specialized

18-447-S24-L15-S15, James C. Hoe, CMU/ECE/CALCM, ©2024

Also the other way:
match data layout to placement

N

B

18-447-S24-L15-S16, James C. Hoe, CMU/ECE/CALCM, ©2024

Direct-Mapped Policy in Essence
• C-byte storage array managed as C/B cache blocks
• A given block address directly maps to exactly one

choice of cache block (by block index field)
• Block addresses with same block index field map to

same cache block
– of 2t such addresses, hold only one at a time
– even if C > working set size, conflict is possible

(“working set” is not one continuous region)
– probability 2 random addresses

conflict is 1/(C/B); likelihood
for conflict increases with
decreasing number of blocks hi

t r
at

e
working
set size (W)

C

18-447-S24-L15-S17, James C. Hoe, CMU/ECE/CALCM, ©2024

Set Associative Placement “Flow Chart”:
a generalization

Data

C/a/B
by

B bytes

t= lg2Mlg2(C/a)

tag idx bo g

data

=

Tag

C/a/B
by

t bits
va

lid

Data

C/a/B
by

B bytes

=

Tag

C/a/B
by

t bits

va
lid

C/a byte
direct-mapped

a Arrays

hit?

some kind of “mux”

18-447-S24-L15-S18, James C. Hoe, CMU/ECE/CALCM, ©2024

a-way Set-Associative Placement Policy
• C bytes of storage divided into a direct-mapped

arrays (aka “ways” and sometimes “banks”)
– each “way” has (C/a)/B cache blocks
– a given block address maps to exactly one choice

per “way”; a choices constitute the “set”
direct-mapped is special case a=1

– overhead: a comparators and a-to-1 multiplexer
• Block addresses with same index map to same set

– 2t such addresses; hold a different ones at a time
– if C > working set size

higher-degree of associativity  fewer conflicts
What if C < working set size?

18-447-S24-L15-S19, James C. Hoe, CMU/ECE/CALCM, ©2024

Replacement Policy to Choose from a
• New block displaces an existing block from “set”

– pick the one that is least recently used (LRU)
exactly LRU expensive for a>2

– pick any one except the most recently used
– pick the most recently used one
– pick one based on some part of the address bits
– pick the one used again furthest in the future
– pick a (pseudo) random one

• No real best choice; second-order impact only
– if actively using less than a blocks in a set, any

sensible replacement policy will quickly converge
– if actively using more than a blocks in a set, no

replacement policy can help you

18-447-S24-L15-S20, James C. Hoe, CMU/ECE/CALCM, ©2024

Policy vs Realization
• Associativity is a placement policy

– it says a block address could be placed in one of
a different blocks

– it doesn’t say “ways” are parallel look-up banks

• “Pseudo” a-way associative cache
– given a direct-mapped array with C/B blocks
– logically partition into C/B/a sets
– given an address A, index into set and

sequentially search its ways

• Optimization: record the most recently used
way (MRU) to check first

set0 way0
set0 way1
set0 way2

.

set1 way0
set1 way1
set1 way2

.

e.g., used by MIPS R10K off-CPU L2

18-447-S24-L15-S21, James C. Hoe, CMU/ECE/CALCM, ©2024

Fully Associative Cache: aC/B

1-by-B bytes

let t=lg2Mlg2B

tag bo g

data

1-by-t bitst bits v

=

1-by-B bytes1-by-t bits v

=

1-by-B bytes1-by-t bits v

=

1
se

t w
ith

 C
/B

 w
ay

s

hit?

18-447-S24-L15-S22, James C. Hoe, CMU/ECE/CALCM, ©2024

3C’s of Cache Misses

18-447-S24-L15-S23, James C. Hoe, CMU/ECE/CALCM, ©2024

Compulsory Miss

• First reference to a block address always misses
(if no prefetching)

• Dominates when locality is poor
– for example, in a “streaming” data access pattern

where many addresses are visited, but each is
used only once

• Main design factor: B and “prefetching”

hi
t r

at
e

B

18-447-S24-L15-S24, James C. Hoe, CMU/ECE/CALCM, ©2024

Capacity Miss

• Cache is too small to hold everything until reuse
• Defined as non-compulsory misses that would

occur in a fully-associative cache of the same C
and B using optimum (Belady) replacement

• Dominates when C < W
– for example, the L1 cache usually not big enough

due to cycle-time tradeoff

• Main design factor: C

hi
t r

at
e

100%

working
set size (W)

C

18-447-S24-L15-S25, James C. Hoe, CMU/ECE/CALCM, ©2024

Conflict Miss

• Miss to a previously visited block address
displaced due to conflict under direct-mapped or
set-associative allocation

• Defined as “a miss that is neither compulsory nor
capacity”

• Dominates when CW or when C/B is small
• Main design factor: a

hi
t r

at
e

?

a
~5

18-447-S24-L15-S26, James C. Hoe, CMU/ECE/CALCM, ©2024

3’C worksheet: a=1, B=1, C=2, G=1
F.A. + Beladyset[2]which C?set#addr

00x0

00x2

00x0

00x2

10x1

00x0

00x2

00x0

compulsory [-,-] [0,-] { }  {0}

18-447-S24-L15-S27, James C. Hoe, CMU/ECE/CALCM, ©2024

3’C worksheet: a=1, B=1, C=2, G=1
F.A. + Beladyset[2]which C?set#addr

00x0

00x2

00x0

00x2

10x1

00x0

00x2

00x0

compulsory [0,-] [2,-] {0}  {0,2}

conflict [2,-] [0,-] {0,2}hit

conflict [0,-] [2,-] {0,2}hit

compulsory [2,-] [2,1] {0,2}  {0,1}

conflict [2,1] [0,1] {0,1}hit

capacity [0,1] [2,1] {0,1} {0,2}

conflict [2,1] [0,1] {0,2}hit

compulsory [-,-] [0,-] { }  {0}

18-447-S24-L15-S28, James C. Hoe, CMU/ECE/CALCM, ©2024

Recap: Basic Cache Parameters

• M = 2m : size of address space in bytes
example values: 232, 264

• G=2g : cache access granularity in bytes
example values: 4, 8

• C : “capacity” of cache in bytes
example values: 16 KByte (L1), 1 MByte (L2)

• B = 2b: “block size” in bytes
example values: 16 (L1), >64 (L2)

• a: “associativity” of the cache
example values: 1, 2, 4, 5(?),... “C/B”

• “map”: addr to idx

IS
A

Im
pl

em
en

ta
tio

n

C/a should be a 2-power

18-447-S24-L15-S29, James C. Hoe, CMU/ECE/CALCM, ©2024

Recap: Address Map for Typical Locality

lg2M -bit address

B.O.indextag

18-447-S24-L15-S30, James C. Hoe, CMU/ECE/CALCM, ©2024

Recap: aBC Rule of Thumb Cribsheet
hi

t r
at

e

100%

working
set size (W)

C

hi
t r

at
e

B

hi
t r

at
e

?

a
~5 when CW

For “typical” programs

available
spatial
locality

18-447-S24-L15-S31, James C. Hoe, CMU/ECE/CALCM, ©2024

Recap: M=232, G=_______,
C=_______, B=_______, a=_______M=232, a=2, C=1K, B=4, G=2

18-447-S24-L15-S32, James C. Hoe, CMU/ECE/CALCM, ©2024

M=232, a=2, C=1K, B=4, G=2: “textbook” solution

tag
PA[31:9] PA[0]

b.o.
PA[1]

idx
PA[8:2]

tag0

128
x

23-b

v0

“
x

1-b

tag1

128
x

23-b

v1

“
x

1-b

7

idx
7

idx

=
tag

23

hit0

=

hit1

data 0

128-rows
x

4-bytes

data 1

128-rows
x

4-bytes

7

idx
7

idx

2-1-mux 2-1-muxb.o.

HIT

hi
t0

hi
t1

2-1-muxd
hit0
hit1

DATA
16

18-447-S24-L15-S33, James C. Hoe, CMU/ECE/CALCM, ©2024Can you make the tag SRAMs taller/narrower also?

Same cache parameters
but tune for “narrower” data SRAM banks

data 0

256-rows
x

2-bytes

data 1

256-rows
x

2-bytes

tag0

128
x

23-b

v0

“
x

1-b

tag1

128
x

23-b

v1

“
x

1-b

tag
PA[31:9] PA[0]

b.o.
PA[1]

idx
PA[8:2]

7

idx
7

idx

8

{idx,bo}
8

{idx,bo}

=
tag

23

hit0

=

hit1

2-1-muxd
hit0
hit1

HIT DATA

hi
t0

hi
t1

16

this part is
unchanged

16 16

18-447-S24-L15-S34, James C. Hoe, CMU/ECE/CALCM, ©2024Can you make the tag SRAMs shorter/wider also?

Same cache parameters
but tune for “fatter” data SRAM banks

data 0

64-rows
x

8-bytes

data 1

64-rows
x

8-bytes

tag0

128
x

23-b

v0

“
x

1-b

tag1

128
x

23-b

v1

“
x

1-b

tag
PA[31:9] PA[0]

b.o.
PA[1]

idx
PA[8:2]

7

idx
7

idx 6

PA[8:3]

6

PA[8:3]

=
tag

23

hit0

=

hit1

4-1-mux 4-1-mux{PA[2],b.o.}

2-1-muxd
hit0
hit1

HIT DATA

hi
t0

hi
t1

16

this part is
unchanged

18-447-S24-L15-S35, James C. Hoe, CMU/ECE/CALCM, ©2024

Same cache parameters but each block frame
is interleaved over 2 SRAM banks

data 0

128-rows
x

4-bytes

data 1

128-rows
x

4-bytes

tag0

128
x

23-b

v0

“
x

1-b

tag1

128
x

23-b

v1

“
x

1-b

tag
PA[31:9] PA[0]

b.o.
PA[1]

idx
PA[8:2]

7

idx
7

idx
7

idx
7

idx

=
tag

23

h0

=

h1

2-1-mux 2-1-muxb.o.

2-1-muxd
h0•bo+h1•bo
h1•bo+h0•bo

HIT DATA

h0 h1

16

h0•boh0•bo h1•boh1•bo

this part is
unchanged

row-sel

col-sel

