18-447 Lecture 14:
Memory Hierarchy

James C. Hoe
Department of ECE
Carnegie Mellon University

18-447-524-114-51, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Housekeeping

e Your goal today

— understand memory system and memory
hierarchy design in big pictures

e Notices

— Lab 3 started, due week 10

— HW 3, due Wed, solution posted

— HW 4, out on week 10

— Midterm 1, Wed 3/13, covers up to Lec 12
e Readings

— P&H ChS5 for the next many lectures

18-447-524-114-S2, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Wishful Memory

e So far we imagined

— a program owns contiguous 4GB private memory
16 ExaByte if RV64l
— a program can access anywhere in 1 proc. cycle

e We are in good company

4.1. Ideally one would desire an indefinitely large memory c
pacity such that any particular aggregate of 40 binary digits.
word (cf. 2.3), would be immediatelv available—i.e. in a tin

---- Burks, Goldstein, von Neumann, 1946

18-447-524-114-S3, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

The Reality

e Can’t afford/don’t need as much memory as
size of address space

RV32l said 4GB addr “space” not 4GB memory

e Can’t find memory technology that is affordable
in GByte and also cycle in GHz

e Most systems multi-task several programs

e But, “magic” memory is nevertheless a useful
approximation of reality due to

— memory hierarchy: appear large and fast < O cov:;'thtis
part firs

— virtual memory: appear contiguous and private
cover this

part later

18-447-524-114-54, James C. Hoe, CMU/ECE/CALCM, ©2024

Memory Hierarchy:
The Principles at Work

18-447-524-114-S5, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

The Law of Storage

e Bigger is slower

— SRAM 512 Bytes @ sub-nsec
— SRAM KByte~MByte @ nsec
— DRAM GByte @ ~50 nsec
— SSD TByte @ msec
— Hard Disk TByte @ ~10 msec
e Faster is more expensive (dollars and chip area)
— SRAM ~S10K per GByte Note: orde:\—\:’);L
— DRAM ~$10 per GByte ma%ﬂ\mdefh e
— “Drives” ~S0.1 per GByte C‘naﬂ%es Wi

How to make memory bigger, faster and cheaper?

18-447-524-114-S6, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Memory Locality

e “Typical” programs have strong locality in
memory references—instruction and data

we put them there ... loops, arrays, and structs ...

e Temporal: after accessing A, how many other
distinct addresses before accessing A again

e Spatial: after accessing A, how many other
distinct addresses before accessing a “near-by” B

e Corollary: a program with strong temporal and
spatial locality must be accessing only a compact
“working set” at a time

18-447-524-114-S7, James C. Hoe, CMU/ECE/CALCM, ©2024

Memoization

e |f something is costly to compute, save the result
to be reused

e With poor reuse

— storing a large number of different results that are
rarely or never reused

— locating the needed result from a large number of
stored ones can itself become as expensive as
computing

e With strong reuse

— storing just a small number of frequently used o
results can avoid most recomputations ‘OQ’\(\

18-447-524-114-S8, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Cost Amortization

e overhead: one-time cost to set up

e unit-cost: cost for each unit of work
e total cost = overhead + unit-cost x N
e average cost = total cost / N

= (overhead / N) + unit-cost
|_'_l
AN

the essence of amortization

6 . L .
@f@/}@ With memoization, high up-front cost to compute
/(%Oz- Co&zgnce is no problem if results reused many times
7 . . .

® Converse: if overhead is small, just recompute

18-447-524-114-S9, James C. Hoe, CMU/ECE/CALCM, ©2024

Putting the principles to work

18-447-524-114-510, James C. Hoe, CMU/ECE/CALCM, ©2024

Memory Hierarchy Concept

keep what you use - N\ fast

actively here

with strong locality
e effectively as fast as

small

I

I

hold what isn’t
being used

* and as large as\

big but slow

p
9
©

&

(7))
©

c

(g0)

p

Q
o)

(7]

(C
[F it

| 4

cheaper per byte

18-447-524-114-511, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Managing Memory Hierarchy

e Copy data between levels explicitly and manually

— vacuum tubes vs Selectron (von Neumann paper)

— “core” vs “drum” memory in the 50’s

— “scratchpad” SRAM used on modern embedded and DSP

Register file is a level of storage hierarchy

e Single address space, automatic management

— as early as ATLAS, 1962

— common in today’s fast processor with slow DRAM

— programmers don’t need to know about it for typical
programs to be both fast and correct

What about atypical programs?

18-447-524-114-512, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Modern Storage Hierarchy

regfile user SW

(10~100 words, sub-nsec) manual

""""""""""""""""""""""""""""" register
I\/Iemory_ L1 cache . gillin

Abstraction ~32KB, ~nsec PHINg

L2 cache _

~512KB~1MB, many nsec automatic (HW)

cache

L3 cache management

Main memory (DRAM) automatic

GB, ~100nsec (HW+OS)

swap disk demar\d

paging

100GB~TB, ~10msec

18-447-524-114-513, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Memory Hierarchy Design Problem

how fast, how large is

speed Level 1 memory? (must
1 be faster than required)
Support
processor core Intermediate levels?

at this speed

and capacity
how fast, how large is Last

Level memory ? (must be
at least as large)

p
@
TEB
(7))
©
c
(¢0)
p
Q
ofd
(7]
(C
[F it

.

\

capacity

18-447-524-114-5S14, James C. Hoe, CMU/ECE/CALCM, ©2024

)
o
>
o
p
)
Q.
p
)
Q.
©
)
=
(@

Memory Hierarchy Degrees of Freedom

e DRAM

— optimized for capacity-per-dollar (cost)

— Toram 1S €5sentially same regardless of capacity
e SRAM

— optimized for latency at given capacity

— tunable tradeoff between capacity and latency

possible, t = O(,/capacity)
e Memory hierarchy bridges the difference

between CPU speed and DRAM speed

— Toak® Tpram = NO hierarchy needed

— Toak << Tpram = ONe or more levels of increasingly
larger but slower SRAMs to minimize T,

18-447-524-114-515, James C. Hoe, CMU/ECE/CALCM, ©2024

Average Memory Access Time

e Memory hierarchy level L, has raw access time of t,
e Average access time T, is longer than t,
— a chance (hit-rate h,) you find what you want = t,
— a chance (miss-rate m,) you don’t find it = t,+T,
- T,=h;t; +my(t;+T,) and h; + m;=1.0
e |n general

T, =hyt; + me(t; + T, : :
— think of this as

=t +mpTy,, < “miss penalty”

Note: h, and m, are of references missed at L, ,
h =1.0

bottom-most
18-447-524-114-516, James C. Hoe, CMU/ECE/CALCM, ©2024

T,.=t, +m; T,

e Goal: achieve desired T, within allowed cost
T. = t, is not a goal
e Keep t.low = less capacity, more expensive
e Keep m;low
— increase capacity C, lowers m;, but increases t;
— lower m, by smarter management, e.g.,
e replacement: anticipate what you don’t need
e prefetching: anticipate what you will need
e KeepT,, low
— reduce t,,, with faster next level memory leads to
increased cost and/or reduced capacity

— Maybe better solved by adding intermediate levels

18-447-524-114-517, James C. Hoe, CMU/ECE/CALCM, ©2024

Intel P4 Example
(very fast, very deep pipeline)

e 90nm, 3.6 GHz if m;=0.1, m,=0.1

» 16KB L1 D-cache 1,=7.6,T,=36
— t, =4 cycint (9 cycle fp) if m,=0.01, m,=0.01

e 1024KB L2 D-cache 1,=4.2,T,=19.8
— t, =18 cycint (18 cyc fp) if m,=0.05, m_=0.01

* Main memory T,=5.00, T,=19.8
— t;="50ns or 180 cyc

if m,=0.01, m,=0.50
T,=5.08, T,=108

* Notice:
— L1is very small
— best case latency is not 1 cycle

— worst case access latency is actually 300+ cycles
depending on exactly what happens

18-447-524-114-518, James C. Hoe, CMU/ECE/CALCM, ©2024

Working Set/Locality/Miss Rate

100% AL I LD

oo

ooo
.

What is m, and m,?
(check definition)

hit rate

C, C, cache cépacity

18-447-524-114-519, James C. Hoe, CMU/ECE/CALCM, ©2024

Don’t Forget Bandwidth and Energy

e Assume RISC pipeline 1GHz and IPC=1
— 4GB/sec of instruction fetch bandwidth

— 1GB/sec load and 0.6GB/sec store (if 25% LW and
15% SW, Agerwala&Cocke)

— multiply by number of cores if multicore

e DDR4 ~20GB/sec/channel (under best-case access
pattern) and ~10 Watt at full blast

e With memory hierarchy
BW,,, = BW, - [1j m;
Critical for multicore and GPU

18-447-524-114-520, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Aside: Why is DRAM slow?

e DRAM fabrication at forefront of VLSI, but scaled
with Moore’s law in capacity and cost not speed

e Between 1980 ~ 2004
— 64K bit 2 1024M bit (exponential ~55% annual)
— 250ns = 50ns (linear)

e A deliberate engineering choice

— memory capacity needs to grow linearly with
processing speed in a balanced system

— DRAM/processor speed difference reconcilable by
SRAM cache hierarchies (L1, L2, L3,)

Pareto-optimal faster/smaller/more-costly DRAM do exist

18-447-524-114-S21, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Now we can talk about caches. ..

Generically in computing, any structure that
“memoizes” frequently repeated computation
results to save on the cost of reproducing the

results from scratch, e.g. a web cache

18-447-524-114-S22, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Cache in Computer Architecture

e Aninvisible, automatically-managed memory
hierarchy

e Program expects reading M[A] to return most-
recently written value, with or without cache

e Cache keeps “copies” of frequently accessed DRAM
memory locations in a small fast memory

— service load/store using fast memory copies if found
— transparent to program if memory idempotent (L13)

— funny things happen if mmap’ed or if memory can
change (e.g., by other cores or DMA)

18-447-524-114-523, James C. Hoe, CMU/ECE/CALCM, ©2024

Cache Interface for Dummies

read .

y MemWrite

' Instruction
address
—| Address Read|__
data
Instruction fr=—— —valid
, : Write Data
Instruction —valid = data memory

memory

[Based on figures from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] MemRead

e Like the magic memory

— present address, R/W command, etc

— result or update valid after a short/fixed latency
e Except occasionally, cache needs more time

— will become valid/ready eventually

— what to do with pipeline until then? Stall!!

18-447-524-114-S24, James C. Hoe, CMU/ECE/CALCM, ©2024

Memory Hierarchy in Concept

keep what you use - N\ fast

actively here

with strong locality
e effectively as fast as

small

.

hold what isn’t
being used

* and as large as\

big but slow

p
9
©

&

(7))
©

c

(g0)

p

Q
o)

(7]

(C
[F it

| 4

)
)
>
o
p
)
Q.
p
)
Q.
©
()
i«
(@

18-447-524-114-S25, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Bottomline Issues

e Potentially M=2™ bytes of memory, how to keep
“copies” of most frequently used locations in C
bytes of fast storage where C << M

e Basic issues (intertwined)
(1) when to cache a “copy” of a memory location
(2) where in fast storage to keep the “copy”

(3) how to find the “copy” later on (LW and SW only
give indices into M)

e Viable solutions must be fast and efficient

18-447-524-114-526, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Basic Operation
Ans (1): demand-driven

M address Can cache decide to prefetch an addr
l without a miss first? when and which?
(3) cache
lookup
how?
(2) how?
1
@) choqse ccupied yes
no location
yes no ,
(1)
return |, update | fetch new | evict old
data cache from L,,, to L,

|

data

18-447-524-114-S27, James C. Hoe, CMU/ECE/CALCM, ©2024

Basic Cache Parameters

e M =2™:size of address space in bytes
example values: 232, 264

e G=28: cache access granularity in bytes
example values: 4, 8

e C: “capacity” of cache in bytes
example values: 16 KByte (L1), 1 MByte (L2)
100% f -~~~ o====

|
|
| working
|
|

ﬁ size (W)
|
~C

hit rate

18-447-524-114-528, James C. Hoe, CMU/ECE/CALCM, ©2024

Direct-Mapped Placement (first try)

lg,M-bit address

tag idx g

Tag Array Data Array

ng(C/G)/ ie)
bits " C/Grows |G| C/Grows

>

by by
1 bits t bits G bytes
t bits
What about writes?
+ G bytes
let t= I1g,M—Ig,C

hit? ¥ data

18-447-524-114-S29, James C. Hoe, CMU/ECE/CALCM, ©2024

Storage Overhead and Block size

e For each cache block of G bytes, also storing “t+1”
bits of tag (where t=Ig,M-lIg,C)
— if M=232, G=4, C=16K=214
—> t=18 bits for each 4-byte block
60% overhead; 16KB cache actually 25.5KB SRAM
e Solution: “amortize” tag over larger B-byte block
— manage B/G consecutive words as indivisible unit
— if M=232, B=16, G=4, C=16K
—> t=18 bits for each 16-byte block
15% overhead; 16KB cache actually 18.4KB SRAM
Q — spatial locality also says this is good (Q1: when)
e Larger caches wants even bigger blocks

18-447-524-114-S30, James C. Hoe, CMU/ECE/CALCM, ©2024

Direct-Mapped Placement (final)

lg,M-bit address

tag idx bo | g
Ig,(C/B)T Tag Array | | DataArray
bits ¢ T>o
C/B-by-t bits C/B-by-B bytes
4+t bits
+1g,(B/G]) :
bits tbits 4+ B bytes

? T G bytes
let t= Ig,M—Ig,C hit? data

18-447-524-114-S31, James C. Hoe, CMU/ECE/CALCM, ©2024

Basic Cache Parameters

e M =2™:size of address space in bytes
example values: 232, 264

ISA

e G=28: cache access granularity in bytes
example values: 4, 8

e C: “capacity” of cache in bytes

example values: 16 KByte (L1), 1 MByte (L2)
B = 2P: “block size” in bytes

example values: 16 (L1), >64 (L2)
e a: “associativity” of the cache ve

‘Oeélc,i(f")\,Q “C/B”

Implementation
o

example values 1

C/a should be a 2-power

18-447-524-114-S32, James C. Hoe, CMU/ECE/CALCM, ©2024

