
18-447-S24-L14-S1, James C. Hoe, CMU/ECE/CALCM, ©2024

18-447 Lecture 14:
Memory Hierarchy

James C. Hoe
Department of ECE

Carnegie Mellon University

18-447-S24-L14-S2, James C. Hoe, CMU/ECE/CALCM, ©2024

Housekeeping
• Your goal today

– understand memory system and memory
hierarchy design in big pictures

• Notices
– Lab 3 started, due week 10
– HW 3, due Wed, solution posted
– HW 4, out on week 10
– Midterm 1, Wed 3/13, covers up to Lec 12

• Readings
– P&H Ch5 for the next many lectures

18-447-S24-L14-S3, James C. Hoe, CMU/ECE/CALCM, ©2024

Wishful Memory

• So far we imagined
– a program owns contiguous 4GB private memory

16 ExaByte if RV64I
– a program can access anywhere in 1 proc. cycle

• We are in good company

---- Burks, Goldstein, von Neumann, 1946

18-447-S24-L14-S4, James C. Hoe, CMU/ECE/CALCM, ©2024

The Reality
• Can’t afford/don’t need as much memory as

size of address space
RV32I said 4GB addr “space” not 4GB memory

• Can’t find memory technology that is affordable
in GByte and also cycle in GHz

• Most systems multi-task several programs
• But, “magic” memory is nevertheless a useful

approximation of reality due to
– memory hierarchy: appear large and fast
– virtual memory: appear contiguous and private

cover this
part first

cover this
part later

18-447-S24-L14-S5, James C. Hoe, CMU/ECE/CALCM, ©2024

Memory Hierarchy:
The Principles at Work

18-447-S24-L14-S6, James C. Hoe, CMU/ECE/CALCM, ©2024

The Law of Storage
• Bigger is slower

– SRAM 512 Bytes @ sub-nsec
– SRAM KByte~MByte @ nsec
– DRAM GByte @ ~50 nsec
– SSD TByte @ msec
– Hard Disk TByte @ ~10 msec

• Faster is more expensive (dollars and chip area)
– SRAM ~$10K per GByte
– DRAM ~$10 per GByte
– “Drives” ~$0.1 per GByte

How to make memory bigger, faster and cheaper?

18-447-S24-L14-S7, James C. Hoe, CMU/ECE/CALCM, ©2024

Memory Locality

• “Typical” programs have strong locality in
memory referencesinstruction and data
we put them there ... loops, arrays, and structs ...

• Temporal: after accessing A, how many other
distinct addresses before accessing A again

• Spatial: after accessing A, how many other
distinct addresses before accessing a “near-by” B

• Corollary: a program with strong temporal and
spatial locality must be accessing only a compact
“working set” at a time

18-447-S24-L14-S8, James C. Hoe, CMU/ECE/CALCM, ©2024

Memoization
• If something is costly to compute, save the result

to be reused

• With poor reuse
– storing a large number of different results that are

rarely or never reused
– locating the needed result from a large number of

stored ones can itself become as expensive as
computing

• With strong reuse
– storing just a small number of frequently used

results can avoid most recomputations

18-447-S24-L14-S9, James C. Hoe, CMU/ECE/CALCM, ©2024

Cost Amortization

• overhead: one-time cost to set up
• unit-cost: cost for each unit of work
• total cost = overhead + unit-cost x N
• average cost = total cost / N

= (overhead / N) + unit-cost

With memoization, high up-front cost to compute
once is no problem if results reused many times

Converse: if overhead is small, just recompute

the essence of amortization

18-447-S24-L14-S10, James C. Hoe, CMU/ECE/CALCM, ©2024

Putting the principles to work

18-447-S24-L14-S11, James C. Hoe, CMU/ECE/CALCM, ©2024

Memory Hierarchy Concept

fast
small

big but slow

keep what you use
actively here

hold what isn’t
being used

with strong locality
• effectively as fast as
• and as large as

fa
st

er
 a

nd
 s

m
al

le
r

ch
ea

pe
r p

er
 b

yt
e

18-447-S24-L14-S12, James C. Hoe, CMU/ECE/CALCM, ©2024

Managing Memory Hierarchy
• Copy data between levels explicitly and manually

– vacuum tubes vs Selectron (von Neumann paper)
– “core” vs “drum” memory in the 50’s
– “scratchpad” SRAM used on modern embedded and DSP

Register file is a level of storage hierarchy

• Single address space, automatic management
– as early as ATLAS, 1962
– common in today’s fast processor with slow DRAM
– programmers don’t need to know about it for typical

programs to be both fast and correct
What about atypical programs?

18-447-S24-L14-S13, James C. Hoe, CMU/ECE/CALCM, ©2024

Modern Storage Hierarchy
regfile

(10~100 words, sub-nsec)

L1 cache
~32KB, ~nsec

L2 cache
~512KB~1MB, many nsec

L3 cache
.

Main memory (DRAM)
GB, ~100nsec

swap disk
100GB~TB, ~10msec

user SW
manual
register
spilling

automatic
(HW+OS)
demand

paging

automatic (HW)
cache

management

Memory
Abstraction

18-447-S24-L14-S14, James C. Hoe, CMU/ECE/CALCM, ©2024

Memory Hierarchy Design Problem

speed

capacity

fa
st

er
 a

nd
 s

m
al

le
r

ch
ea

pe
r p

er
 b

yt
e

how fast, how large is
Level 1 memory? (must
be faster than required)

Support
processor core

at this speed
and capacity

how fast, how large is Last
Level memory ? (must be
at least as large)

Intermediate levels?

18-447-S24-L14-S15, James C. Hoe, CMU/ECE/CALCM, ©2024

Memory Hierarchy Degrees of Freedom
• DRAM

– optimized for capacity-per-dollar (cost)
– TDRAM is essentially same regardless of capacity

• SRAM
– optimized for latency at given capacity
– tunable tradeoff between capacity and latency

possible, t = O(capacity)
• Memory hierarchy bridges the difference

between CPU speed and DRAM speed
– Tpclk TDRAM no hierarchy needed
– Tpclk << TDRAM one or more levels of increasingly

larger but slower SRAMs to minimize T1

18-447-S24-L14-S16, James C. Hoe, CMU/ECE/CALCM, ©2024

think of this as
“miss penalty”

• Memory hierarchy level L1 has raw access time of t1

• Average access time T1 is longer than t1

– a chance (hit-rate h1) you find what you want  t1

– a chance (miss-rate m1) you don’t find it  t1+T2

– T1 = h1·t1 + m1·(t1 + T2) and h1 + m1=1.0

• In general

Ti = hi·ti + mi·(ti + Ti+1)
Ti = ti + mi·Ti+1

Note: hi and mi are of references missed at Li-1

hbottom-most=1.0

Average Memory Access Time

18-447-S24-L14-S17, James C. Hoe, CMU/ECE/CALCM, ©2024

Ti = ti + mi ·Ti+1

• Goal: achieve desired T1 within allowed cost
Ti  ti is not a goal

• Keep ti low  less capacity, more expensive
• Keep mi low

– increase capacity Ci lowers mi, but increases ti

– lower mi by smarter management, e.g.,
• replacement: anticipate what you don’t need
• prefetching: anticipate what you will need

• Keep Ti+1 low
– reduce ti+1 with faster next level memory leads to

increased cost and/or reduced capacity
– Maybe better solved by adding intermediate levels

18-447-S24-L14-S18, James C. Hoe, CMU/ECE/CALCM, ©2024

Intel P4 Example
(very fast, very deep pipeline)

• 90nm, 3.6 GHz
• 16KB L1 D-cache

– t1 = 4 cyc int (9 cycle fp)
• 1024KB L2 D-cache

– t2 = 18 cyc int (18 cyc fp)
• Main memory

– t3 = ~ 50ns or 180 cyc
• Notice:

– L1 is very small
– best case latency is not 1 cycle
– worst case access latency is actually 300+ cycles

depending on exactly what happens

if m1=0.1, m2=0.1
T1=7.6, T2=36

if m1=0.01, m2=0.01
T1=4.2, T2=19.8

if m1=0.05, m2=0.01
T1=5.00, T2=19.8

if m1=0.01, m2=0.50
T1=5.08, T2=108

18-447-S24-L14-S19, James C. Hoe, CMU/ECE/CALCM, ©2024

Working Set/Locality/Miss Rate
hi

t r
at

e

100%

C1 C2

What is m1 and m2?
(check definition)

cache capacity

18-447-S24-L14-S20, James C. Hoe, CMU/ECE/CALCM, ©2024

Don’t Forget Bandwidth and Energy

• Assume RISC pipeline 1GHz and IPC=1
– 4GB/sec of instruction fetch bandwidth
– 1GB/sec load and 0.6GB/sec store (if 25% LW and

15% SW, Agerwala&Cocke)
– multiply by number of cores if multicore

• DDR4 ~20GB/sec/channel (under best-case access
pattern) and ~10 Watt at full blast

• With memory hierarchy

BWi+1 = BW1

Critical for multicore and GPU

18-447-S24-L14-S21, James C. Hoe, CMU/ECE/CALCM, ©2024

Aside: Why is DRAM slow?
• DRAM fabrication at forefront of VLSI, but scaled

with Moore’s law in capacity and cost not speed
• Between 1980 ~ 2004

– 64K bit  1024M bit (exponential ~55% annual)
– 250ns  50ns (linear)

• A deliberate engineering choice
– memory capacity needs to grow linearly with

processing speed in a balanced system
– DRAM/processor speed difference reconcilable by

SRAM cache hierarchies (L1, L2, L3,)
Pareto-optimal faster/smaller/more-costly DRAM do exist

18-447-S24-L14-S22, James C. Hoe, CMU/ECE/CALCM, ©2024

Now we can talk about caches . . .

Generically in computing, any structure that
“memoizes” frequently repeated computation
results to save on the cost of reproducing the

results from scratch, e.g. a web cache

18-447-S24-L14-S23, James C. Hoe, CMU/ECE/CALCM, ©2024

Cache in Computer Architecture

• An invisible, automatically-managed memory
hierarchy

• Program expects reading M[A] to return most-
recently written value, with or without cache

• Cache keeps “copies” of frequently accessed DRAM
memory locations in a small fast memory
– service load/store using fast memory copies if found
– transparent to program if memory idempotent (L13)
– funny things happen if mmap’ed or if memory can

change (e.g., by other cores or DMA)

18-447-S24-L14-S24, James C. Hoe, CMU/ECE/CALCM, ©2024

Cache Interface for Dummies

Instruction
memory

Instruction
address

Instruction

MemRead

MemWrite

Data
memory

Write
data

Read
data

Address

[Based on figures from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

• Like the magic memory
– present address, R/W command, etc
– result or update valid after a short/fixed latency

• Except occasionally, cache needs more time
– will become valid/ready eventually
– what to do with pipeline until then? Stall!!

valid
valid

ready

18-447-S24-L14-S25, James C. Hoe, CMU/ECE/CALCM, ©2024

Memory Hierarchy in Concept

fast
small

big but slow

keep what you use
actively here

hold what isn’t
being used

with strong locality
• effectively as fast as
• and as large as

fa
st

er
 a

nd
 s

m
al

le
r

ch
ea

pe
r p

er
 b

yt
e

18-447-S24-L14-S26, James C. Hoe, CMU/ECE/CALCM, ©2024

Bottomline Issues

• Potentially M=2m bytes of memory, how to keep
“copies” of most frequently used locations in C
bytes of fast storage where C << M

• Basic issues (intertwined)
(1) when to cache a “copy” of a memory location
(2) where in fast storage to keep the “copy”
(3) how to find the “copy” later on (LW and SW only

give indices into M)

• Viable solutions must be fast and efficient

18-447-S24-L14-S27, James C. Hoe, CMU/ECE/CALCM, ©2024

Basic Operation
Ans (1): demand-driven

hit?

cache
lookup

return
data

data

M address

yes

evict old
to Li+1

yesoccupied?

no

fetch new
from Li+1

update
cache

(3)
how?

choose
locationno

(2) how?

(1)

(1’)

Can cache decide to prefetch an addr
without a miss first? when and which?

18-447-S24-L14-S28, James C. Hoe, CMU/ECE/CALCM, ©2024

Basic Cache Parameters

• M = 2m : size of address space in bytes
example values: 232, 264

• G=2g : cache access granularity in bytes
example values: 4, 8

• C : “capacity” of cache in bytes
example values: 16 KByte (L1), 1 MByte (L2)

hi
t r

at
e

100%

working
set size (W)

C

18-447-S24-L14-S29, James C. Hoe, CMU/ECE/CALCM, ©2024

Direct-Mapped Placement (first try)

Data Array

C/G rows
by

G bytes

let t= lg2Mlg2C

tag idx g

G bytes

data

=

Tag Array

C/G rows
by

t bits

hit?

t bits

t bits

lg2(C/G)
bits

What about writes?

lg2M-bit address

va
lid

18-447-S24-L14-S30, James C. Hoe, CMU/ECE/CALCM, ©2024

Storage Overhead and Block Size
• For each cache block of G bytes, also storing “t+1”

bits of tag (where t=lg2Mlg2C)
– if M=232, G=4, C=16K=214

 t=18 bits for each 4-byte block
60% overhead; 16KB cache actually 25.5KB SRAM

• Solution: “amortize” tag over larger B-byte block
– manage B/G consecutive words as indivisible unit
– if M=232, B=16, G=4, C=16K
 t=18 bits for each 16-byte block

15% overhead; 16KB cache actually 18.4KB SRAM
– spatial locality also says this is good (Q1: when)

• Larger caches wants even bigger blocks

18-447-S24-L14-S31, James C. Hoe, CMU/ECE/CALCM, ©2024

Direct-Mapped Placement (final)

Data Array

C/B-by-B bytes

let t= lg2Mlg2C

tag idx bo g

B bytes

G bytes

data

=

Tag Array

C/B-by-t bits

hit?

t bits

t bitslg2(B/G)
bits

lg2(C/B)
bits va

lid

lg2M-bit address

18-447-S24-L14-S32, James C. Hoe, CMU/ECE/CALCM, ©2024

Basic Cache Parameters

• M = 2m : size of address space in bytes
example values: 232, 264

• G=2g : cache access granularity in bytes
example values: 4, 8

• C : “capacity” of cache in bytes
example values: 16 KByte (L1), 1 MByte (L2)

• B = 2b: “block size” in bytes
example values: 16 (L1), >64 (L2)

• a: “associativity” of the cache
example values: 1, 2, 4, 5(?),... “C/B”

IS
A

Im
pl

em
en

ta
tio

n

C/a should be a 2-power

