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Housekeeping

e Your goal today

— understand memory system and memory
hierarchy design in big pictures

e Notices

— Lab 3 started, due week 10

— HW 3, due Wed, solution posted

— HW 4, out on week 10

— Midterm 1, Wed 3/13, covers up to Lec 12
e Readings

— P&H ChS5 for the next many lectures
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Wishful Memory

e So far we imagined

— a program owns contiguous 4GB private memory
16 ExaByte if RV64l
— a program can access anywhere in 1 proc. cycle

e We are in good company

4.1. Ideally one would desire an indefinitely large memory c
pacity such that any particular aggregate of 40 binary digits.
word (cf. 2.3), would be immediatelv available—i.e. in a tin

---- Burks, Goldstein, von Neumann, 1946
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The Reality

e Can’t afford/don’t need as much memory as
size of address space

RV32l said 4GB addr “space” not 4GB memory

e Can’t find memory technology that is affordable
in GByte and also cycle in GHz

e Most systems multi-task several programs

e But, “magic” memory is nevertheless a useful
approximation of reality due to

— memory hierarchy: appear large and fast < O cov:;'thtis
part firs

— virtual memory: appear contiguous and private
cover this

part later
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Memory Hierarchy:
The Principles at Work
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The Law of Storage

e Bigger is slower

— SRAM 512 Bytes @ sub-nsec
— SRAM KByte~MByte @ nsec
— DRAM GByte @ ~50 nsec
— SSD TByte @ msec
— Hard Disk TByte @ ~10 msec
e Faster is more expensive (dollars and chip area)
— SRAM ~S10K per GByte Note: orde:\—\:’);L
— DRAM ~$10 per GByte ma%ﬂ\mdefh e
— “Drives” ~S0.1 per GByte C‘naﬂ%es Wi

How to make memory bigger, faster and cheaper?
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Memory Locality

e “Typical” programs have strong locality in
memory references—instruction and data

we put them there ... loops, arrays, and structs ...

e Temporal: after accessing A, how many other
distinct addresses before accessing A again

e Spatial: after accessing A, how many other
distinct addresses before accessing a “near-by” B

e Corollary: a program with strong temporal and
spatial locality must be accessing only a compact
“working set” at a time
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Memoization

e |f something is costly to compute, save the result
to be reused

e With poor reuse

— storing a large number of different results that are
rarely or never reused

— locating the needed result from a large number of
stored ones can itself become as expensive as
computing

e With strong reuse

— storing just a small number of frequently used o
results can avoid most recomputations ‘OQ’\(\
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Cost Amortization

e overhead: one-time cost to set up

e unit-cost: cost for each unit of work
e total cost = overhead + unit-cost x N
e average cost = total cost / N

= ( overhead / N ) + unit-cost
|_'_l
AN

the essence of amortization

6 . L .
@f@/}@ With memoization, high up-front cost to compute
/(%Oz- Co&zgnce is no problem if results reused many times
7 . . .

®  Converse: if overhead is small, just recompute
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Putting the principles to work
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Memory Hierarchy Concept

keep what you use - N\ fast

actively here

with strong locality
e effectively as fast as

small

I

I

hold what isn’t
being used

* and as large as\

big but slow
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cheaper per byte
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Managing Memory Hierarchy

e Copy data between levels explicitly and manually

— vacuum tubes vs Selectron (von Neumann paper)

— “core” vs “drum” memory in the 50’s

— “scratchpad” SRAM used on modern embedded and DSP

Register file is a level of storage hierarchy

e Single address space, automatic management

— as early as ATLAS, 1962

— common in today’s fast processor with slow DRAM

— programmers don’t need to know about it for typical
programs to be both fast and correct

What about atypical programs?
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Modern Storage Hierarchy

regfile user SW

(10~100 words, sub-nsec) manual

""""""""""""""""""""""""""""" register
I\/Iemory_ L1 cache . gillin

Abstraction ~32KB, ~nsec PHINg

L2 cache _

~512KB~1MB, many nsec automatic (HW)

cache

L3 cache management

Main memory (DRAM) automatic

GB, ~100nsec (HW+OS)

swap disk demar\d

paging

100GB~TB, ~10msec
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Memory Hierarchy Design Problem

how fast, how large is

speed Level 1 memory? (must
1 be faster than required)
Support
processor core Intermediate levels?

at this speed

and capacity
how fast, how large is Last

Level memory ? (must be
at least as large)
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Memory Hierarchy Degrees of Freedom

e DRAM

— optimized for capacity-per-dollar (cost)

— Toram 1S €5sentially same regardless of capacity
e SRAM

— optimized for latency at given capacity

— tunable tradeoff between capacity and latency

possible, t = O( ,/capacity)
e Memory hierarchy bridges the difference

between CPU speed and DRAM speed

— Toak® Tpram = NO hierarchy needed

— Toak << Tpram = ONe or more levels of increasingly
larger but slower SRAMs to minimize T,
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Average Memory Access Time

e Memory hierarchy level L, has raw access time of t,
e Average access time T, is longer than t,
— a chance (hit-rate h,) you find what you want = t,
— a chance (miss-rate m,) you don’t find it = t,+T,
- T,=h;t; +my(t;+T,) and h; + m;=1.0
e |n general

T, =hyt; + me(t; + T, : :
— think of this as

=t +mpTy,, < “miss penalty”

Note: h, and m, are of references missed at L, ,
h =1.0

bottom-most
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T,.=t, +m; T,

e Goal: achieve desired T, within allowed cost
T. = t, is not a goal
e Keep t.low = less capacity, more expensive
e Keep m;low
— increase capacity C, lowers m;, but increases t;
— lower m, by smarter management, e.g.,
e replacement: anticipate what you don’t need
e prefetching: anticipate what you will need
e KeepT,, low
— reduce t,,, with faster next level memory leads to
increased cost and/or reduced capacity

— Maybe better solved by adding intermediate levels
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Intel P4 Example
(very fast, very deep pipeline)

e 90nm, 3.6 GHz if m;=0.1, m,=0.1

» 16KB L1 D-cache 1,=7.6,T,=36
— t, =4 cycint (9 cycle fp) if m,=0.01, m,=0.01

e 1024KB L2 D-cache 1,=4.2,T,=19.8
— t, =18 cycint (18 cyc fp) if m,=0.05, m_=0.01

* Main memory T,=5.00, T,=19.8
— t;="50ns or 180 cyc

if m,=0.01, m,=0.50
T,=5.08, T,=108

* Notice:
— L1is very small
— best case latency is not 1 cycle

— worst case access latency is actually 300+ cycles
depending on exactly what happens
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Working Set/Locality/Miss Rate

100% ................. ................................ AL I LD

oooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
.

What is m, and m,?
(check definition)

hit rate

C, C, cache cépacity
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Don’t Forget Bandwidth and Energy

e Assume RISC pipeline 1GHz and IPC=1
— 4GB/sec of instruction fetch bandwidth

— 1GB/sec load and 0.6GB/sec store (if 25% LW and
15% SW, Agerwala&Cocke)

— multiply by number of cores if multicore

e DDR4 ~20GB/sec/channel (under best-case access
pattern) and ~10 Watt at full blast

e With memory hierarchy
BW,,, = BW, - [1j m;
Critical for multicore and GPU
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Aside: Why is DRAM slow?

e DRAM fabrication at forefront of VLSI, but scaled
with Moore’s law in capacity and cost not speed

e Between 1980 ~ 2004
— 64K bit 2 1024M bit (exponential ~55% annual)
— 250ns = 50ns (linear)

e A deliberate engineering choice

— memory capacity needs to grow linearly with
processing speed in a balanced system

— DRAM/processor speed difference reconcilable by
SRAM cache hierarchies (L1, L2, L3, ...... )

Pareto-optimal faster/smaller/more-costly DRAM do exist
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Now we can talk about caches. ..

Generically in computing, any structure that
“memoizes” frequently repeated computation
results to save on the cost of reproducing the

results from scratch, e.g. a web cache
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Cache in Computer Architecture

e Aninvisible, automatically-managed memory
hierarchy

e Program expects reading M[A] to return most-
recently written value, with or without cache

e Cache keeps “copies” of frequently accessed DRAM
memory locations in a small fast memory

— service load/store using fast memory copies if found
— transparent to program if memory idempotent (L13)

— funny things happen if mmap’ed or if memory can
change (e.g., by other cores or DMA)
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Cache Interface for Dummies

read .

y MemWrite

' Instruction
address
—| Address Read|__
data
Instruction fr=—— —valid
, : Write Data
Instruction —valid = data memory

memory

[Based on figures from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] MemRead

e Like the magic memory

— present address, R/W command, etc

— result or update valid after a short/fixed latency
e Except occasionally, cache needs more time

— will become valid/ready eventually

— what to do with pipeline until then? Stall!!
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Memory Hierarchy in Concept

keep what you use - N\ fast

actively here

with strong locality
e effectively as fast as

small

.

hold what isn’t
being used

* and as large as\

big but slow
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Bottomline Issues

e Potentially M=2™ bytes of memory, how to keep
“copies” of most frequently used locations in C
bytes of fast storage where C << M

e Basic issues (intertwined)
(1) when to cache a “copy” of a memory location
(2) where in fast storage to keep the “copy”

(3) how to find the “copy” later on (LW and SW only
give indices into M)

e Viable solutions must be fast and efficient
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Basic Operation
Ans (1): demand-driven

M address Can cache decide to prefetch an addr
l without a miss first? when and which?
(3) cache
lookup
how?
(2) how?
1
@ ) choqse ccupied yes
no location
yes no ,
(1)
return |, update | fetch new | evict old
data cache from L,,, to L,

|

data
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Basic Cache Parameters

e M =2™:size of address space in bytes
example values: 232, 264

e G=28: cache access granularity in bytes
example values: 4, 8

e C: “capacity” of cache in bytes
example values: 16 KByte (L1), 1 MByte (L2)
100% f -~~~ o====

|
|
| working
|
|

ﬁ size (W)
|
~C

hit rate
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Direct-Mapped Placement (first try)

lg,M-bit address

tag idx g

Tag Array Data Array

ng(C/G)/ ie)
bits " C/Grows |G| C/Grows

>

by by
1 bits t bits G bytes
t bits
What about writes?
+ G bytes
let t= I1g,M—Ig,C

hit? ¥ data
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Storage Overhead and Block size

e For each cache block of G bytes, also storing “t+1”
bits of tag (where t=Ig,M-lIg,C)
— if M=232, G=4, C=16K=214
—> t=18 bits for each 4-byte block
60% overhead; 16KB cache actually 25.5KB SRAM
e Solution: “amortize” tag over larger B-byte block
— manage B/G consecutive words as indivisible unit
— if M=232, B=16, G=4, C=16K
—> t=18 bits for each 16-byte block
15% overhead; 16KB cache actually 18.4KB SRAM
Q — spatial locality also says this is good (Q1: when)
e Larger caches wants even bigger blocks
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Direct-Mapped Placement (final)

lg,M-bit address

tag idx bo | g
Ig,(C/B)T Tag Array | | DataArray
bits ¢ T>o
C/B-by-t bits C/B-by-B bytes
4+t bits
+1g,(B/G]) :
bits tbits 4+ B bytes

? T G bytes
let t= Ig,M—Ig,C hit? data
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Basic Cache Parameters

e M =2™:size of address space in bytes
example values: 232, 264

ISA

e G=28: cache access granularity in bytes
example values: 4, 8

e C: “capacity” of cache in bytes

example values: 16 KByte (L1), 1 MByte (L2)
B = 2P: “block size” in bytes

example values: 16 (L1), >64 (L2)
e a: “associativity” of the cache ve

‘Oeélc,i(f")\,Q “C/B”

Implementation
o

example values 1

C/a should be a 2-power
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