18-447 Lecture 13:
Bus, Protocol, and I/O

James C. Hoe
Department of ECE
Carnegie Mellon University

18-447-524-113-S1, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Housekeeping

e Your goal today
— see how components in a system hang together
— see how decoupled units interoperate by “protocol”
e Notices
— Lab 2, due this week
— Lab 3 posted but starts after break
— HW 3, due **Wed** 3/13 (Handout #8)
— Midterm 1, Wed 3/13, covers up to Lec 4312
e Readings
— start reading P&H Ch5
— http://en.wikipedia.org/wiki/Conventional PClI
— http://en.wikipedia.org/wiki/PCl_Express

18-447-524-113-S2, James C. Hoe, CMU/ECE/CALCM, ©2024

Interfaces So Far: Direct and Immediate

S | Read
=S| "EC
register 1 Read .
5 Read data 1
: register 2
-> > Registers
o =3, | write
register Read ‘
; data 2 "
—| Write
data
‘ MemWrite
. Instruction
address
=—p| Address Read
data ’ :
Instruction fr— '
Instruction \cllvrtite mlgit(a)r t"hlnk
memery . y interfaces
: not
MemRead modules

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED]
mes C. Hoe, CMU/ECE/CALCM, ©2024

Classic View of Computer System
CPU CPU

Memory Bus

/0 /O Bus
Main Memory Bridge ! I I I
(DRAM) _
Disk | Mideo I\K/Ik:)is&e xs:k

18-447-524-113-S4, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

T I>~—T | Broadcast (True) Bus

Al |Bl |C] |D] |E

e Common wires connecting multiple devices

— multiple drivers and multiple receivers, but one
driver at a time broadcast

— time-multiplexed shared usage by “transactions”
As opposed to point-to-point
e Good idea if |>0—|>°
— limited device pin-out and board traces
— low individual bandwidth requirement
— low aggregate bandwidth requirement

e Standardized connections and protocol for
system expansion

18-447-524-113-S5, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Bus Transaction

e Device types
— initiators: devices that can initiate transactions
— targets: devices that only respond
— arbiter: a special device that manages sharing
e Memory-like paradigm
— “address”, “data”, “reading vs. writing”
— initiator issues read/write request to an address

— each target assigned an address range to respond
for, by returning or accepting data

To start, visualize processor as initiator and memory
as target device; trxn’s stem from program’s LW/SW

18-447-524-113-S6, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Bus Transaction Phases

1. Arbitration Phase B bl [€
— 1 or more initiators request ownership
— arbiter grants ownership to 1 initiator

2. Address Phase
— initiator drives address and command for all to see
— 1 target claims transaction

3. Data Phase
— initiator (or target) drives write (or read) data for

all to see

4. Termination Phase:

— initiator terminates bus ownership

“Bus Protocol” defines exact signals and rules of conduct

18-447-524-113-S7, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Basic Bus Signals

e CLK: all devices synchronized by a common clock

e Per-initiator point-to-point signals to/from arbiter

— REQ (initiator—arbiter): assert to request
ownership; de-assert to signal end of transaction

— GNT (arbiter—initiator): ownership is granted

e “Broadcast” signals shared by all devices

— AD[] (address/data bus, bi-directional): initiator
drives address during address phase, initiator or
target drives data during data phase

— R/W (bi-directional): commands, e.g., read vs. write

18-447-524-113-S8, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Bus Configuration

a compound device
arbiter contains both request
— and response elements
CLK
/

1 _1 | — o B

= [=8

Oc Oc :

initiator |eeeeei| injtiator target |ieeeee | target

RIW 4

18-447-524-113-S9, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Simple Read Transaction

CLK
REQ, |6
GNT, \7
R/W { read)
initiator-drv a4 target-drv
AD { addr) { data)
3 5
1. initiator, requests bus 4. bus-turnaround cycle
2. arbiter grants bus 5. target drives data
3. initiator, drives address/command, 6. initiator, signals final cycle
to be sampled on clock-edge 7. arbiter acknowledges

18-447-524-113-510, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Simple Write Transaction

{ write)
initiator-drv
(addﬂ(dataw/
3 4
1. initiator, requests bus 4. initiator, drives data
2. arbiter grants bus 5. initiator, signals final cycle
3. initiator, drives address/command, 6. arbiter acknowledges

to be sampled on clock-edge

18-447-524-113-511, James C. Hoe, CMU/ECE/CALCM, ©2024

Asynchronous Protocols

e “Synchronous” bus protocol has fixed timing
— targets must react fast enough
— bad when mixing slow and fast targets (e.g., on I/O
expansion bus)
e Asynchronous handshaking
— REQ/GNT is an example of asynchronous handshake
— elastic amount of time to respond
e Asynchronous bus protocols
— add IRDY and TRDY for initiator and target
— AD valid only when IRDY&&TRDY
e receiver pays attention only if driver is ready
e driver repeats value until receiver is ready
e both driver and receiver can delay arbitrarily

18-447-524-113-5S12, James C. Hoe, CMU/ECE/CALCM, ©2024

Async Read Transaction

AI/
K |

o1 €\>
"

L
_

target-drv

(read :}
initiator-drv
/ \
AD { addr)
fa) fa)
IRDY / vV vV
TRDY / / e \

4

18-447-524-113-513, James C. Hoe, CMU/ECE/CALCM, ©2024

A

J

Bus Performance: Latency

e Request/Grant latency depends on
— degree of bus contention
— arbitration strategy under contention
e statically prioritized by expansion slots

e FIFO, round-robin (and other so-called fair
arbitrations)

e Transaction latency depends
— target reaction time
— transfer size

Keep in mind, actual latency felt by program
LW/SW much longer than raw bus latency

18-447-524-113-5S14, James C. Hoe, CMU/ECE/CALCM, ©2024

Bus Performance: Bandwidth

e Peak Bandwidth
— assume w-byte AD bus at frequency f
o B\Npeak
e Effective BW deducts for overhead cycles

= w-f “guaranteed not to exceed”

— request and grant phases
— address and claim phases
— termination phase

e Best if overhead amortized over many data cycles
— burst access to successive consecutive addresses
— fixed-sized burst on synchronous protocols
— variable-sized burst on asynchronous protocols

18-447-524-113-515, James C. Hoe, CMU/ECE/CALCM, ©2024

Burst Read Transaction (async

GNT, / >> L
R/W (bust-r Vil yrra
AD (addr }——(data,__data, A\%@
)= e
TRDY [\ / \

18-447-524-113-S16, James C. Hoe, CMU/ECE/CALCM, ©2024

Effective Bandwidth Quantified

e Effective BW is fxn of number of “data beats”
— w = bus width in bytes;
— t = bus cycle time, 1/f
— v =# cycles in overhead; n = # data cycles
® BWittective = N'W [/ (vt+nt)
— if (n=1)<<v, BW ~w/(v-t)
—ifn>>v, BW eftective = BWpea= W/t

o E.g., f=33MHz, w=4, BW ,, = 133MB/s (PCI 1.0)

effective

— simple read, 3 AD cycles, v=2, n=1
BW = 44 MB/s

effective —
— burst read

BW = 66 MB/s; BW =118 MB/s

effective,n=2 — effective,n=16 —

18-447-524-113-5S17, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Advanced Bus Architectures

e Pipelined bus
— separate address and data bus
— overlap request/address/data phases of 3 trxn’s
e Qut-of-order (aka. split-phase) bus
— separate arbitration for address and data bus
— address-bus trxn is assigned an unique tag;
— target arbitrates for data bus when ready; use tag
to identify initiator; data phase out-of-order!

e Switched data bus

— split-phase bus with true address bus

— but crossbar for data bus to achieve high BW
e Point-to-point “bus”

18-447-524-113-518, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

initiator
send queue

Point-to-Point “Bus”

addr e
data w
r/w/cmd —>
tag >

push —>
full? €e—

target
somewhere
out there

A

initiator
recv queue

=P data r

........ > tag
< pop
—> empty?

e Same memory-like read and write transactions, but. ...
e Split-phase transactions via message passing

— initiator sends read/write request message

— request routed to target based on “bus” address

— target sends data/ack message

— reply message routed back to initiator
No arbitration or claim

18-447-524-113-519, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Intel Xeon e5345 (Clovertown)

Core | Core Core

Core

4MB | | 4MB
‘Shared L2

FSB

10.66 GB/s i

Core lCore

i 10.66 GB/s

21.33 GB/s(read)

Chipset (4x64 b controllers)

10.66 GB/s(write)

667 MHz FBDIMMs \

[Figure from P&H CO&D, COPYRIGHT 2009 Elsevier. ALL RIGHTS RESERVED.]

18-447-524-113-S20, James C. Hoe, CMU/ECE/CALCM, ©2024

Busses no longer monolithic

CarnegieMellon

AMD Opteron X4 2356 (Barcelona)

\
1
|
I

I

.' N
i i1
Qo _ (o]
a 5 o
w = 7]
© =
= w £ @
El|a2| |k
g 2| |58 |8
=~ B > \
/ SRl/crossbar LT il L SRl/crossbar
| [' Iy
\ 2x64 b memory controllers 2x64 b memory controllers !
\ A | w) l
— L B R — — -
Rl e dlia =/l — — =y y2085 GR/smm =
667 MHz DDR2 DIMMs 667 MHz DDR2 DIMMs

[Figure from P&H CO&D, COPYRIGHT 2009 Elsevier. ALL RIGHTS RESERVED.]

There is no arbitrated broadcast “bus” anywhere

but interactions still based on initiator/target and

st b e e) read/write transactions to addresses
-447-S24-113-S21, James C. Hoe, /ECE/CALCM, ©2024

CarnegieMellon

Intel “Uncore” Architecture

=25
s 4 o
LR L nRISC L L)
A o
< Sy
DDRE DIMMs,
s MM M 1
I,'JJ IJJJ a—p
e = | =
- e
- -
Oere L o jeom| |corel wel lue - -
— = =
conl % szl lus loon| [corl el s)
=
[-
Core| 2 o= |3 lcom| |Core| 3 ot |l 5 ™ m
-1
=
o we| |ue coe 2ee we | |uwe
Corel 0 sove| |3sve e [COMe| |Corel 1sve| 3w =
= =
. < < > Ceme < c
Core| UF Al o |com| |Core| T e [l w =
=l -
- =
ool sl [ue foom [oonl e [we = -
- =
pelloammiiicg - =
e = 1 g = -
- m|
E = -
[[4—p =
ome Agent e
ooa ooa | con = e = —p =
Mam Oy e S e

[https://software.intel.com/en-us/articles/intel-xeon-processor-
scalable-family-technical-overview]

18-447-S24-113-522, James C. Hoe, CMU/ECE/CALCM, ©2024

How do processors talk to 1/0?

Main Memory
(DRAM)

18-447-524-113-523, James C. Hoe, CMU/ECE/CALCM, ©2024

Memory Bus

/O
Bridge I

/O Bus

I

I

I

Disk

Video

Kbd &
Mouse

Net-
work

The Easiest: 1/O Port Registers

e |/O registers as ISA programmer-visible state
— output: write value appear on output pins
— input: reading returns values on input pins
e Common scheme on microcontrollers
— easy to use, low latency
— can be specialized for application

e Not general

PU

— predetermined number of I/0 &
— specialized for whose application? l \ ALU /

s there a general I/O scheme? : O RF

18-447-524-113-S24, James C. Hoe, CMU/ECE/CALCM, ©2024

Generalized Memory-Mapped 1/0O

e Memory load/store is a kind of I/O
— address identifies a specific memory location

— read/write convey data from/to memory

e “Map” unused memory addresses (e.g., the high
ones) to registers of external devices

— LW from “mmap” address means moving data

from the corresponding register CPU

_ . ALU
— similarly, SW means moving to RF

Common Bus

memory and 1/O /0
devices respond to their | pram Flash or
assigned address ranges Device

18-447-524-113-S25, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Idempotency and Side-effects

e Loading from real memory location M[A] should
return most recent value stored to M[A]
= writing M[A] once is the same as writing M[A] with
same value multiple times in a row
= reading M[A] multiple times returns same value
This is why memory caching works!!
e LW/SW to mmap locations can have side-effects
— reading/writing mmap location can imply Oxffff0000
commands and other state changes
— e.g., a mmap device that is a FIFO
e SW to Oxffff0O000 pushes value FIFO
e LW from OxffffO000 returns popped value
What happens if OxffffO000 is cached?

18-447-524-113-526, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Direct Memory Access

e mmap I/0 is slow and consumes processor cycles
How slow?
e Why not let I/O devices access memory directly

e Processor program DMA device by mmio

— e.g., “read (or write) 1024 KBytes starting from
location 0x54100”

— DMA device read/write memory directly
— only makes sense for moving large data blocks

Does DMA device see cached values?

e How does the processor know when a DMA
transfer is finished?

18-447-524-113-S27, James C. Hoe, CMU/ECE/CALCM, ©2024

Use #1: Interrupts

e How to handle rare events with unpredictable
arrival time and must be acted upon quickly?
E.g., keystroke, in-bound network, disk 1/0

e Option 1: write every program with periodic calls
to a service routine (i.e., polling)
— polling frequency affects worst-case response time
— expensive for rare events needing fast response
What if a programmer does it wrong or forgets?

e Option 2: normal programs blissfully unaware
— event triggers an interrupt on-demand

— forcefully and transparently transfer control to the

service routine and back

18-447-524-113-528, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Polling 1/0

e Option 1 but done by kernel in loop or timer interrupt

e Consider a keyboard with 2 read-only registers
— READY: returns true if a new character is available
— DATA: returns next character in kbd buffer;
and **resets** READY if no more characters

e Polling-based service routine mmap load
_checkkbd: LW rlé6 _READ‘I(>

BEQ rl6é r0O en

LW r3 DATA
JAL handle keystroke
J _checkkbd

end: JR r31

18-447-524-113-S29, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Interrupt-Driven I/O

e How frequently to poll?
— how many char/sec do you type? Max vs average?
— how fast can you see what you type?
Polling is expensive when above very different

e Give keyboard (or an I/O class) an interrupt line

— keyboard raise interrupt on new keystroke
— interrupt handler triage and call _checkkbd

e Interrupt best suited for infrequent/irregular events
with tight service latency requirement

Polling okay for keyboard but not
network, what about DMA?

18-447-524-113-S30, James C. Hoe, CMU/ECE/CALCM, ©2024

Polling vs Interrupt

» Consider for an |I/O device
— average interarrival time t, between events
— max reaction time t_to service event
* Must poll faster than 1/t to keep deadline
— t_<<t.: could poll upto 1/t, and be productive
— t,>>t.: polling at 1/t, very wasteful
* t, regular or predictable: poll when expected
 unpredictable: good use case for interrupt
— except stay with polling if
 processor has nothing else to do anyways
* t. so large polling overhead negligible
* t.so tight interrupt handler already late at start

18-447-524-113-S31, James C. Hoe, CMU/ECE/CALCM, ©2024

Which I/O Mechanism to use?

e First, depends on what you are doing
e Second, limited by what is available
e Performance considerations
— |/O Bandwidth = transfer size / transfer time
— Transfer time = overhead + (transfer size / BWraw)
e DMA: high bandwidth but large setup overhead
e mmio: low bandwidth but no overhead
e Processor considerations
— what fraction of processor time lost to 1/0?
— does processor have other user tasks to do?
— how long can I/O wait?

18-447-524-113-S32, James C. Hoe, CMU/ECE/CALCM, ©2024

