
18-447-S24-L13-S1, James C. Hoe, CMU/ECE/CALCM, ©2024

18-447 Lecture 13:
Bus, Protocol, and I/O

James C. Hoe
Department of ECE

Carnegie Mellon University

18-447-S24-L13-S2, James C. Hoe, CMU/ECE/CALCM, ©2024

Housekeeping
• Your goal today

– see how components in a system hang together
– see how decoupled units interoperate by “protocol”

• Notices
– Lab 2, due this week
– Lab 3 posted but starts after break
– HW 3, due **Wed** 3/13 (Handout #8)
– Midterm 1, Wed 3/13, covers up to Lec 1312

• Readings
– start reading P&H Ch5 . . .
– http://en.wikipedia.org/wiki/Conventional_PCI
– http://en.wikipedia.org/wiki/PCI_Express

18-447-S24-L13-S3, James C. Hoe, CMU/ECE/CALCM, ©2024

Interfaces So Far: Direct and Immediate

PC

Instruction
memory

Instruction
address

Instruction

MemRead

MemWrite

Data
memory

Write
data

Read
data

Address

RegWrite

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

5

5

5

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

RFWrite

think
interfaces
not
modules

18-447-S24-L13-S4, James C. Hoe, CMU/ECE/CALCM, ©2024

DiskDiskDisk

I/O Bus

Classic View of Computer System
CPU

core

cache

Memory Bus

Main Memory
(DRAM)

I/O
Bridge

Disk Video Kbd &
Mouse

CPU

cache

Net-
work

core

18-447-S24-L13-S5, James C. Hoe, CMU/ECE/CALCM, ©2024

Broadcast (True) Bus

• Common wires connecting multiple devices
– multiple drivers and multiple receivers, but one

driver at a time broadcast
– time-multiplexed shared usage by “transactions”

As opposed to point-to-point
• Good idea if

– limited device pin-out and board traces
– low individual bandwidth requirement
– low aggregate bandwidth requirement

• Standardized connections and protocol for
system expansion

A B C D E

18-447-S24-L13-S6, James C. Hoe, CMU/ECE/CALCM, ©2024

Bus Transaction
• Device types

– initiators: devices that can initiate transactions
– targets: devices that only respond
– arbiter: a special device that manages sharing

• Memory-like paradigm
– “address”, “data”, “reading vs. writing”
– initiator issues read/write request to an address
– each target assigned an address range to respond

for, by returning or accepting data

To start, visualize processor as initiator and memory
as target device; trxn’s stem from program’s LW/SW

18-447-S24-L13-S7, James C. Hoe, CMU/ECE/CALCM, ©2024

Bus Transaction Phases
1. Arbitration Phase

– 1 or more initiators request ownership
– arbiter grants ownership to 1 initiator

2. Address Phase
– initiator drives address and command for all to see
– 1 target claims transaction

3. Data Phase
– initiator (or target) drives write (or read) data for

all to see
4. Termination Phase:

– initiator terminates bus ownership

“Bus Protocol” defines exact signals and rules of conduct

A B C D E

18-447-S24-L13-S8, James C. Hoe, CMU/ECE/CALCM, ©2024

Basic Bus Signals
• CLK: all devices synchronized by a common clock

• Per-initiator point-to-point signals to/from arbiter
– REQ (initiatorarbiter): assert to request

ownership; de-assert to signal end of transaction
– GNT (arbiterinitiator): ownership is granted

• “Broadcast” signals shared by all devices
– AD[] (address/data bus, bi-directional): initiator

drives address during address phase, initiator or
target drives data during data phase

– R/W (bi-directional): commands, e.g., read vs. write

18-447-S24-L13-S9, James C. Hoe, CMU/ECE/CALCM, ©2024

Bus Configuration

initiator initiator target target

AD

R/W

a compound device
contains both request
and response elements

arbiter
RE

Q
G

N
T

RE
Q

G
N

T

CLK

18-447-S24-L13-S10, James C. Hoe, CMU/ECE/CALCM, ©2024

Simple Read Transaction
CLK

addr data

read

REQx

GNTx

R/W

AD

1

2

3

4

5

6

1. initiatorx requests bus
2. arbiter grants bus
3. initiatorx drives address/command,

to be sampled on clock-edge

4. bus-turnaround cycle
5. target drives data
6. initiatorx signals final cycle
7. arbiter acknowledges

7

initiator-drv target-drv

18-447-S24-L13-S11, James C. Hoe, CMU/ECE/CALCM, ©2024

Simple Write Transaction
CLK

addr data

write

REQx

GNTx

R/W

AD

1

2

3 4

5

1. initiatorx requests bus
2. arbiter grants bus
3. initiatorx drives address/command,

to be sampled on clock-edge

4. initiatorx drives data
5. initiatorx signals final cycle
6. arbiter acknowledges

6

initiator-drv

18-447-S24-L13-S12, James C. Hoe, CMU/ECE/CALCM, ©2024

Asynchronous Protocols
• “Synchronous” bus protocol has fixed timing

– targets must react fast enough
– bad when mixing slow and fast targets (e.g., on I/O

expansion bus)
• Asynchronous handshaking

– REQ/GNT is an example of asynchronous handshake
– elastic amount of time to respond

• Asynchronous bus protocols
– add IRDY and TRDY for initiator and target
– AD valid only when IRDY&&TRDY

• receiver pays attention only if driver is ready
• driver repeats value until receiver is ready
• both driver and receiver can delay arbitrarily

18-447-S24-L13-S13, James C. Hoe, CMU/ECE/CALCM, ©2024

Async Read Transaction
CLK

read

REQx

GNTx

R/W

AD data

IRDY

TRDY

addr
initiator-drv target-drv

18-447-S24-L13-S14, James C. Hoe, CMU/ECE/CALCM, ©2024

Bus Performance: Latency
• Request/Grant latency depends on

– degree of bus contention
– arbitration strategy under contention

• statically prioritized by expansion slots
• FIFO, round-robin (and other so-called fair

arbitrations)

• Transaction latency depends
– target reaction time
– transfer size

Keep in mind, actual latency felt by program
LW/SW much longer than raw bus latency

18-447-S24-L13-S15, James C. Hoe, CMU/ECE/CALCM, ©2024

Bus Performance: Bandwidth
• Peak Bandwidth

– assume w-byte AD bus at frequency f
– BWpeak = wf “guaranteed not to exceed”

• Effective BW deducts for overhead cycles
– request and grant phases
– address and claim phases
– termination phase

• Best if overhead amortized over many data cycles
– burst access to successive consecutive addresses
– fixed-sized burst on synchronous protocols
– variable-sized burst on asynchronous protocols

18-447-S24-L13-S16, James C. Hoe, CMU/ECE/CALCM, ©2024

Burst Read Transaction (async)
CLK

REQx

GNTx

R/W

AD data0

IRDY

TRDY

addr data1 datan

bust-r last
cycle

18-447-S24-L13-S17, James C. Hoe, CMU/ECE/CALCM, ©2024

Effective Bandwidth Quantified
• Effective BW is fxn of number of “data beats”

– w = bus width in bytes;
– t = bus cycle time, 1/f
– v = # cycles in overhead; n = # data cycles

• BWeffective = nw / (vt + nt)
– if (n=1)<<v, BWeffective w/(vt)
– if n >> v, BWeffective BWpeak= w/t

 E.g., f=33MHz, w=4, BWpeak = 133MB/s (PCI 1.0)
– simple read, 3 AD cycles, v=2, n=1

BWeffective = 44 MB/s
– burst read

BWeffective,n=2 = 66 MB/s; BWeffective,n=16 = 118 MB/s

18-447-S24-L13-S18, James C. Hoe, CMU/ECE/CALCM, ©2024

Advanced Bus Architectures
• Pipelined bus

– separate address and data bus
– overlap request/address/data phases of 3 trxn’s

• Out-of-order (aka. split-phase) bus
– separate arbitration for address and data bus
– address-bus trxn is assigned an unique tag;
– target arbitrates for data bus when ready; use tag

to identify initiator; data phase out-of-order!
• Switched data bus

– split-phase bus with true address bus
– but crossbar for data bus to achieve high BW

• Point-to-point “bus”

18-447-S24-L13-S19, James C. Hoe, CMU/ECE/CALCM, ©2024

target
somewhere

out there

Point-to-Point “Bus”

• Same memory-like read and write transactions, but
• Split-phase transactions via message passing

– initiator sends read/write request message
– request routed to target based on “bus” address
– target sends data/ack message
– reply message routed back to initiator

addr

r/w/cmd
data_w data_r

tag tag
push pop

empty?full?

No arbitration or claim

initiator
send queue initiator

recv queue

18-447-S24-L13-S20, James C. Hoe, CMU/ECE/CALCM, ©2024

Intel Xeon e5345 (Clovertown)

[Figure from P&H CO&D, COPYRIGHT 2009 Elsevier. ALL RIGHTS RESERVED.]

Busses no longer monolithic

18-447-S24-L13-S21, James C. Hoe, CMU/ECE/CALCM, ©2024

AMD Opteron X4 2356 (Barcelona)

[Figure from P&H CO&D, COPYRIGHT 2009 Elsevier. ALL RIGHTS RESERVED.]

There is no arbitrated broadcast “bus” anywhere
but interactions still based on initiator/target and

read/write transactions to addresses

18-447-S24-L13-S22, James C. Hoe, CMU/ECE/CALCM, ©2024

Intel “Uncore” Architecture

[https://software.intel.com/en-us/articles/intel-xeon-processor-
scalable-family-technical-overview]

18-447-S24-L13-S23, James C. Hoe, CMU/ECE/CALCM, ©2024

DiskDiskDisk

I/O Bus

How do processors talk to I/O?

CPU
ALU RF

cache

Memory Bus

Main Memory
(DRAM)

I/O
Bridge

Disk Video Kbd &
Mouse

CPU
ALU RF

cache

Net-
work

18-447-S24-L13-S24, James C. Hoe, CMU/ECE/CALCM, ©2024

The Easiest: I/O Port Registers

• I/O registers as ISA programmer-visible state
– output: write value appear on output pins
– input: reading returns values on input pins

• Common scheme on microcontrollers
– easy to use, low latency
– can be specialized for application

• Not general
– predetermined number of I/O
– specialized for whose application?

Is there a general I/O scheme?

CPU

ALU

RF

I

O

18-447-S24-L13-S25, James C. Hoe, CMU/ECE/CALCM, ©2024

Generalized Memory-Mapped I/O
• Memory load/store is a kind of I/O

– address identifies a specific memory location
– read/write convey data from/to memory

• “Map” unused memory addresses (e.g., the high
ones) to registers of external devices
– LW from “mmap” address means moving data

from the corresponding register
– similarly, SW means moving to

CPU
ALU

RF

DRAM Flash
I/O
or

Device

Common Bus

memory and I/O
devices respond to their
assigned address ranges

18-447-S24-L13-S26, James C. Hoe, CMU/ECE/CALCM, ©2024

Idempotency and Side-effects
• Loading from real memory location M[A] should

return most recent value stored to M[A]
 writing M[A] once is the same as writing M[A] with

same value multiple times in a row
 reading M[A] multiple times returns same value

This is why memory caching works!!
• LW/SW to mmap locations can have side-effects

– reading/writing mmap location can imply
commands and other state changes

– e.g., a mmap device that is a FIFO
• SW to 0xffff0000 pushes value
• LW from 0xffff0000 returns popped value

FIFO

0xffff0000

What happens if 0xffff0000 is cached?

18-447-S24-L13-S27, James C. Hoe, CMU/ECE/CALCM, ©2024

Direct Memory Access
• mmap I/O is slow and consumes processor cycles

How slow?
• Why not let I/O devices access memory directly
• Processor program DMA device by mmio

– e.g., “read (or write) 1024 KBytes starting from
location 0x54100”

– DMA device read/write memory directly
– only makes sense for moving large data blocks

Does DMA device see cached values?
• How does the processor know when a DMA

transfer is finished?

18-447-S24-L13-S28, James C. Hoe, CMU/ECE/CALCM, ©2024

Use #1: Interrupts
• How to handle rare events with unpredictable

arrival time and must be acted upon quickly?
E.g., keystroke, in-bound network, disk I/O

• Option 1: write every program with periodic calls
to a service routine (i.e., polling)
– polling frequency affects worst-case response time
– expensive for rare events needing fast response

What if a programmer does it wrong or forgets?

• Option 2: normal programs blissfully unaware
– event triggers an interrupt on-demand
– forcefully and transparently transfer control to the

service routine and back

…

18-447-S24-L13-S29, James C. Hoe, CMU/ECE/CALCM, ©2024

Polling I/O
• Option 1 but done by kernel in loop or timer interrupt
• Consider a keyboard with 2 read-only registers

– READY: returns true if a new character is available
– DATA: returns next character in kbd buffer;

and **resets** READY if no more characters

• Polling-based service routine
_checkkbd: LW r16 _READY

BEQ r16 r0 _end

LW r3 _DATA

JAL _handle_keystroke

J _checkkbd

_end: JR r31

mmap load

18-447-S24-L13-S30, James C. Hoe, CMU/ECE/CALCM, ©2024

Interrupt-Driven I/O

• How frequently to poll?
– how many char/sec do you type? Max vs average?
– how fast can you see what you type?

Polling is expensive when above very different
• Give keyboard (or an I/O class) an interrupt line

– keyboard raise interrupt on new keystroke
– interrupt handler triage and call _checkkbd

• Interrupt best suited for infrequent/irregular events
with tight service latency requirement

Polling okay for keyboard but not
network, what about DMA?

18-447-S24-L13-S31, James C. Hoe, CMU/ECE/CALCM, ©2024

Polling vs Interrupt
• Consider for an I/O device

– average interarrival time ta between events
– max reaction time tr to service event

• Must poll faster than 1/tr to keep deadline
– ta<< tr: could poll upto 1/ta and be productive
– ta >>tr: polling at 1/tr very wasteful

• ta regular or predictable: poll when expected
• unpredictable: good use case for interrupt

– except stay with polling if
• processor has nothing else to do anyways
• tr so large polling overhead negligible
• tr so tight interrupt handler already late at start

18-447-S24-L13-S32, James C. Hoe, CMU/ECE/CALCM, ©2024

Which I/O Mechanism to use?

• First, depends on what you are doing
• Second, limited by what is available
• Performance considerations

– I/O Bandwidth = transfer size / transfer time
– Transfer time = overhead + (transfer size / BWraw)

• DMA: high bandwidth but large setup overhead
• mmio: low bandwidth but no overhead

• Processor considerations
– what fraction of processor time lost to I/O?
– does processor have other user tasks to do?
– how long can I/O wait?

