
18-447-S24-L12-S1, James C. Hoe, CMU/ECE/CALCM, ©2024

18-447 Lecture 12:
Energy and Power

James C. Hoe
Department of ECE

Carnegie Mellon University

18-447-S24-L12-S2, James C. Hoe, CMU/ECE/CALCM, ©2024

Housekeeping
• Your goal today

– a working understanding of energy and power
– appreciate their significance in comp arch today

• Notices
– Lab 2, due this week
– Lab 3 posted but starts after break
– HW 3, due **Wed** 3/13 (Handout #8)
– Midterm 1, Wed 3/13, covers up to Lec 1312

• Readings
– Design challenges of technology scaling, Borkar, 1999.
– Synthesis Lectures (advanced optional): Power-

Efficient Comp Arch: Recent Advances, 2014

18-447-S24-L12-S3, James C. Hoe, CMU/ECE/CALCM, ©2024

First some intuitions

18-447-S24-L12-S4, James C. Hoe, CMU/ECE/CALCM, ©2024

Energy and Power

• CMOS logic transitions involve charging and
discharging of parasitic capacitances

• Energy (Joule) dissipated as resistive heat when
“charges” flow from VDD to GND
– take a certain amount of energy per operation

(e.g., addition, reg read/write, (dis)charge a node)
– to the first order, energy amount of compute

• Power (Watt=Joule/s) is rate of energy dissipation
– more op/sec then more Joules/sec
– to the first order, power performance
Power concerns usually more about heat removal

18-447-S24-L12-S5, James C. Hoe, CMU/ECE/CALCM, ©2024

Heat and Thermal Resistance
• Resistive heat in the circuit must be removed in

steadystate (www.youtube.com/watch?v=BSGcnRanYMM)

• Can summarize everything between circuit and
ambient by characteristic Rthermal=K/W
– convey power W in heat across temperature

difference K=TcircuitTambient

• To dissipate more power in circuit
1. let Tcircuit get hotter (to a point)
2. turn-up AC lower Tambient

3. better cooling lower R
• Economics/market driven choices circuit (hot)

Rthermal

ambient (cold)

he
at

 fl
ow

18-447-S24-L12-S6, James C. Hoe, CMU/ECE/CALCM, ©2024

Work and Perf. from Joules and Watt
• Fastest without energy/power awareness won’t

be fastest once constrained
– power bounds performance directly
– energy bounds work directly; want for lower J/op

bounds performance indirectly

• Consider in context
– mobile device: limited energy source, hard-to-cool

form factor
– desktop: cooler size, noise, complexity, cost
– data-center: electric bill, cooling capacity and cost

Ultimately driven by desirability and economics

recall that powerperf(a>1)

18-447-S24-L12-S7, James C. Hoe, CMU/ECE/CALCM, ©2024

[image from Wikipedia, “Overclocking”]

Cooler transistors also faster transistors

18-447-S24-L12-S8, James C. Hoe, CMU/ECE/CALCM, ©2024

Hot Transistors Leak More, Get Hotter

• Beyond a threshold,
stopping the clock
cannot arrest positive-
feedback runaway

• Modern processors have
temp sensors to slow the
clock before entering
runaway

Thermal runaway in integrated circuits,
[Vassighi and Sachdev, 2006]

18-447-S24-L12-S9, James C. Hoe, CMU/ECE/CALCM, ©2024

Some (first-order) nitty-gritty

18-447-S24-L12-S10, James C. Hoe, CMU/ECE/CALCM, ©2024

Work and Runtime

• Work
– scalar quantity for “amount of work” associated

with a task
– e.g., number of instructions to compute a SHA256

hash

• T = Work / kperf

– runtime to perform a task
– kperf is a scalar constant for the rate in which work

is performed, e.g., “instructions per second”

18-447-S24-L12-S11, James C. Hoe, CMU/ECE/CALCM, ©2024

Energy and Power

• Eswitch = kswitch·Work
– “switching” energy associated with task
– kswitch is a scalar constant for “energy per unit work”

• Estatic = kstatic·T = kstatic·Work / kperf

– “leakage” energy just to keep the chip powered on
– kstatic is the so called “leakage power”

Faster execution means lower leakage energy???

• Etotal = Eswitch+Estatic = (kswitch+ kstatic/kperf)·Work
• Ptotal = Etotal /T = kswitch·kperf + kstatic

18-447-S24-L12-S12, James C. Hoe, CMU/ECE/CALCM, ©2024

In Short
• T = Work / kperf

less work finishes faster
• E = Eswitch + Estatic = (kswitch + kstatic /kperf)·Work

less work use less energy
• P = Pswitch + Pstatic = kswitch·kperf + kstatic

power independent of amount of work
• Reality check

– Work not a simple scalar, inst mix, dependencies ...
– k’s are neither scalar nor constant

kperf: inst/sec
kswitch: J/inst
kstatic: J/sec

18-447-S24-L12-S13, James C. Hoe, CMU/ECE/CALCM, ©2024

kswitch, kstatic, kperf not independent

kswitch·kperf
+ kstatic

PowerPerf a > 1

kperf

To increase kperf : increase die area increases kswitch and kstatic
faster transistors increases kstatic

18-447-S24-L12-S14, James C. Hoe, CMU/ECE/CALCM, ©2024

Why so important now?

18-447-S24-L12-S15, James C. Hoe, CMU/ECE/CALCM, ©2024

Ideal Technology Scaling
• Planned scaling occurs in discrete “nodes” where

each is ~0.7x of the previous in linear dimension
• Take the same design, reducing linear dimensions by

0.7x (aka “gate shrink”) leads to **ideally**
– die area = 0.5x
– delay = 0.7x; frequency=1.43x
– capacitance = 0.7x
– Vdd = 0.7x (constant field) or 1x (constant voltage)
– power = 0.5x (const. field) or 1x (const. voltage)

• Take the same area, then
– transistor count = 2x, transistor speed=1.43x
– power = 1x (const field) or 2x (const voltage)

18-447-S24-L12-S16, James C. Hoe, CMU/ECE/CALCM, ©2024

Moore’s Law Performance
• According to scaling theory

@constant complexity (“gate-shrink”):
1x transistors at 1.43x frequency

 1.43x performance at 0.5x power
@max complexity (“reticle limited”):

2x transistors at 1.43x frequency
 2.8x performance at constant power

• Historical (until 2005’ish), for high-perf CPUs
– ~2x transistors
– ~2x frequency (note: faster than scaling predicts)
– all together, ~2x performance at ~2x power

Why so far off?

18-447-S24-L12-S17, James C. Hoe, CMU/ECE/CALCM, ©2024

The Other Moore’s Law

18-447-S24-L12-S18, James C. Hoe, CMU/ECE/CALCM, ©2024

limit of
economical
cooling [ITRS]

Performance (In)efficiency
• To hit “expected” performance target

– push frequency harder by deepening pipelines
– used the 2x transistors to build more complicated

microarchitectures so fast/deep pipelines don’t stall
(i.e., caches, BP, superscalar, out-of-order)

• The consequence of performance inefficiency is

[Borkar, IEEE Micro, July 1999]

2005, Intel
P4 Tehas 150W

18-447-S24-L12-S19, James C. Hoe, CMU/ECE/CALCM, ©2024

0

1

10

100
logic density
VDD

>16x

2013 Intl. Technology Roadmap for Semiconductors

node “label” 14 10 7 5 3.5 2.5 1.8 ??
feature size

25%

Under fixed power ceiling, more ops/second
only achievable if less Joules/op?

Moore’s Law without Dennard Scaling

18-447-S24-L12-S20, James C. Hoe, CMU/ECE/CALCM, ©2024

What Moore's Law has come down to

[IEEE Spectrum, “The Nanosheet
Transistor is the Next (and Maybe
Last) Step in Moore’s Law”]

[Wikipedia, MOSFET]

18-447-S24-L12-S21, James C. Hoe, CMU/ECE/CALCM, ©2024

Frequency and Voltage Scaling:
run slower at lower energy-per-op

18-447-S24-L12-S22, James C. Hoe, CMU/ECE/CALCM, ©2024

Frequency and Voltage Scaling

• Switching energy per transition is

½CV2 (modeling parasitic capacitance)
• Switching power at f transitions-per-sec is

½CV2f
• To reduce power, slow down the clock
• If clock is slower (f’), reduce supply voltage (V’)

too since transistors don’t need to be as fast
– reduced switching energy, ½CV2 ½CV’2

– lower V’ also reduced leakage current/power

18-447-S24-L12-S23, James C. Hoe, CMU/ECE/CALCM, ©2024

Frequency Scaling (by itself)

• If Work / kperf < Tbound , we can derate
performance by frequency scaling by a factor sfreq

(Work/kperf)/Tbound < sfreq<1
s.t. kperf’=kperf sfreq

• T’ = Work / (kperf sfreq)
– 1/sfreq longer runtime

• P’ = kswitch·kperf sfreq + kstatic

– lower (switching) power due to longer runtime

• E’ = (kswitch + kstatic / (kperf sfreq))·Work
– higher (leakage) energy due to longer runtime

Not such a good idea

18-447-S24-L12-S24, James C. Hoe, CMU/ECE/CALCM, ©2024

0

20

40

60

80

100

0 1000 2000 3000 4000

po
w

er
 (W

at
t)

frequency (MHz)

measured

modeled

Intel P4 660 Frequency Scaling: FFT64K

kperf=145 FFT64K/sec; kswitching=0.24 J/FFT64K; kstatic=49.4J/sec

leakage
power

switching
power

circa 2005, 90nm

fitted

18-447-S24-L12-S25, James C. Hoe, CMU/ECE/CALCM, ©2024

0

500

1000

1500

2000

2500

3000

3500

0 1000 2000 3000 4000

en
er

gy
 (m

Jo
ul

e)

frequency (MHz)

measured

modeled

Intel P4 660 Frequency Scaling: FFT64K

more energy-per-fft
to run slower!!

kperf=145 FFT64K/sec; kswitching=0.24 J/FFT64K; kstatic=49.4J/sec

fitted

18-447-S24-L12-S26, James C. Hoe, CMU/ECE/CALCM, ©2024

Frequency + Voltage Scaling
• Frequency scaling by sfreq allows supply voltage to

be scaled by a corresponding factor svoltage

• E V2 thus kswitch’’=kswitch·svoltage
2

• kstatic’’=kstatic·svoltage
2~3 very gross approximation

of something complicated
• T’’ = Work / (kperf ·sfreq)

– 1/sfreq longer runtime

• E’’ = (kswitch·svoltage
2 + kstatic·svoltage

3/kperf·sfreq)·Work
• P’’ = kswitch·svoltage

2 kperf·sfreq + kstatic·svoltage
3

– superlinear reduction in power and energy to
performance degradation

18-447-S24-L12-S27, James C. Hoe, CMU/ECE/CALCM, ©2024

0

10

20

30

40

50

60

70

80

90

0 1000 2000 3000 4000

po
w

er
 (W

at
t)

frequency (MHz)

model freq. scaling only

model freq&volt scaling, x^2

model freq&volt scaling, fitted

model freq&volt scaling, x^3

Intel P4 660 F+V Scaling: FFT64K

circa 2005, 90nmmes C. Hoe, CMU/ECE/CALCM, ©2018

18-447-S24-L12-S28, James C. Hoe, CMU/ECE/CALCM, ©2024

0

500

1000

1500

2000

2500

3000

3500

0 1000 2000 3000 4000

en
er

gy
 (m

Jo
ul

e)

frequency (MHz)

model freq. scaling only

model freq&volt scaling, x^2

model freq&volt scaling, fitted

model freq&volt scaling, x^3

Intel P4 660 F+V Scaling: FFT64K

circa 2005, 90nm
mes C. Hoe, CMU/ECE/CALCM, ©2018

18-447-S24-L12-S29, James C. Hoe, CMU/ECE/CALCM, ©2024

Parallelization:

run faster at lower energy-per-op
by

running slower at lower energy-per-op

18-447-S24-L12-S30, James C. Hoe, CMU/ECE/CALCM, ©2024

Cost of Performance in Power

technology
normalized

performance
(op/sec)

technology
normalized

power
(Watt)

PowerPerf1.75

Better to replace 1 of this
by 2 of these;
Or N of
these

[Energy per Instruction Trends in Intel®
Microprocessors, Grochowski et al., 2006]

486

Pentium 4

18-447-S24-L12-S31, James C. Hoe, CMU/ECE/CALCM, ©2024

Parallelization
• Ideal parallelization over N CPUs (to go fast)

– T = Work / (kperf ·N)
– E = (kswitch + kstatic / kperf)·Work

N-times static power, but N-times faster runtime
– P = N (kswitch·kperf + kstatic)

• Alternatively, forfeit speedup for power and energy
reduction by sfreq=1/N (assume svoltagesfreq below)

– T = Work / kperf

– E’’ = (kswitch / N2 + kstatic / (kperf N))·Work
– P’’ = kswitch·kperf / N2 + kstatic / N

• Also works with using N slower-simpler CPUs
powerperf(a>1)

18-447-S24-L12-S32, James C. Hoe, CMU/ECE/CALCM, ©2024

So what is the problem?

• “Easy” to pack more cores on a die to stay on
Moore’s law for “aggregate” or “throughput”
performance

• How to use them?
– life is good if your N units of work are N

independent programs just run them
– what if your N units of work are N operations of

the same program? rewrite as parallel program
– what if your N units of work are N sequentially

dependent operations of the same program? ??
How many cores can you use up meaningfully?

18-447-S24-L12-S33, James C. Hoe, CMU/ECE/CALCM, ©2024

Moore’s Law Scaling with Cores

Big Corelittle
core

little
core

little
core little

core
little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

2005~??1970~2005

18-447-S24-L12-S34, James C. Hoe, CMU/ECE/CALCM, ©2024

Remember: it is all about
Perf/Watt and Ops/Joules

What will you choose
to put on it?
GPGPU

Big Core little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

little
core

FPGA

Custom
Logic

18-447-S24-L12-S35, James C. Hoe, CMU/ECE/CALCM, ©2024

Heterogenous System-on-Chip

[raw M1 die photo from apple.com]

cache

core core

corecore

cache

cache

core core

NPU

media
engine

DRAM interface

core core

GPU

rest of the SoC

