18-447 Lecture 11:
Interrupt and Exception

James C. Hoe
Department of ECE
Carnegie Mellon University

18-447-524-111-S1, James C. Hoe, CMU/ECE/CALCM, ©2024



Housekeeping

e Your goal today

— understand the simplicity of interrupt mechanisms
in HW and appreciate its powerful uses by SW

— first peek outside of the “user-level” abstraction
e Notices

— Lab 2, status check this week, due next week

— HW 3, due **Wed** 3/13 (Handout #8)

— Midterm 1, Wed 3/13, covers up to Lec 4312
e Readings

— P&H Ch 4

18-447-524-111-S2, James C. Hoe, CMU/ECE/CALCM, ©2024



CarnegieMellon

Format of the Midterm

e Covers lectures (L1~L3312), HW, labs, assigned
readings (from textbooks and papers)

e Types of questions

— freebies: remember the materials

— >> probing: understand the materials <<

— applied: apply the materials in original interpretation
e **90 minutes, 90 points**

— point values calibrated to time needed

— closed-book, one 8%x11-in2 hand-written cribsheet

— no electronics

— use pencil or black/blue ink only

18-447-524-111-S3, James C. Hoe, CMU/ECE/CALCM, ©2024



CarnegieMellon

Interrupt Control Transfer

e Basic Part: an “unplanned” fxn call
to a “third-party” routine; and later
return control back to point of
interruption

e Tricky Part: interrupted thread
cannot anticipate/prepare for this
control transfer

— must be 100% transparent

— not enough to impose all callee-
save convention (return address??)

e Puzzling Part: why is there a hidden
routine running invisibly?

18-447-524-111-54, James C. Hoe, CMU/ECE/CALCM, ©2024



3 Steps to Understanding Interrupts

e |sit Animal, Vegetable, Mineral?

e Architectural Support

e Microarchitectural Realization

18-447-524-111-S5, James C. Hoe, CMU/ECE/CALCM, ©2024



CarnegieMellon

Use #1: Interrupts

e How to handle rare events with unpredictable
arrival time and must be acted upon quickly?
E.g., keystroke, in-bound network, disk 1/0

e Option 1: write every program with periodic calls
to a service routine (i.e., polling)
— polling frequency affects worst-case response time
— expensive for rare events needing fast response
What if a programmer does it wrong or forgets?

e Option 2: normal programs blissfully unaware
— event triggers an interrupt on-demand
— forcefully and transparently transfer control to the
service routine and back

18-447-524-111-S6, James C. Hoe, CMU/ECE/CALCM, ©2024



Use #2: Exceptions

e How to handle rare exceptional conditions in a
program itself, e.g., arithmetic overflow, divide-

by-0, page fault, TLB miss, etc.

e Option 1: write program with explicit checks at
every potential site
— do you want to check for O before every divide?

— check valid address before memory access?
What if a programmer does it wrong or forgets?

e Option 2: write program for common case
— detect exceptional conditions in HW

— transparently transfer control to an exception
handler that works out how to fix things up

18-447-524-111-S7, James C. Hoe, CMU/ECE/CALCM, ©2024



CarnegieMellon

Use #3: Multitasking Preemption

e Many programs time-multiplex a processor

e Option 1: write programs to voluntarily give up
the processor after running for a while

What if a programmer does it wrong or forgets?

e Option 2: normal programs blissfully unaware

— a timer interrupts process A

— handler returns to an earlier
interrupted process B

— a timer interrupts process B

— hander returns to process A

— Neither A nor B aware anything funny happened!!
Really just a clever use of #1

18-447-524-111-S8, James C. Hoe, CMU/ECE/CALCM, ©2024



Terminology: Interrupt vs Exception

e [nterrupt is the more general concept

 Synchronous interrupt (a.k.a “exception”)
— exceptional conditions tied to a particular instruction
— a faulting instruction cannot be finished
— must be handled immediately
e Asynchronous interrupt (a.k.a. “interrupt”)
— events not tied to instruction execution
— some flexibility on when to handle it
— cannot postpone forever
e System Call
— an instruction to trigger exception on purpose
If intentional, why not just called the handler with JAL?

18-447-524-111-S9, James C. Hoe, CMU/ECE/CALCM, ©2024



Use #4: Privileged Systems

18-447-524-111-510, James C. Hoe, CMU/ECE/CALCM, ©2024



User-Level Abstraction:

e Protected: a “user-level” process thinks it is alone
— private set of user-level architectural states

— cannot (directly) see or manipulate state outside of
abstraction

e Virtualized: UNIX user process sees a file system
— corresponds to storage and non-storage devices

— all devices look like files; accessed through a
common set of interface paradigms

e OS+HW support and enforce this abstraction
— enforce protection boundaries
— bridge between abstract and physical
OS must live beyond user-level abstractions
and be more “powerful”

18-447-524-111-511, James C. Hoe, CMU/ECE/CALCM, ©2024



Privilege Levels

e A levelis a set of architectural state and
instructions to manipulate them

e A more privileged level is a superset (usually) of
the less privileged level
— lowest level has basic compute state and insts

— higher level has state and insts to control
virtualization and protection of lower levels
— only highest-level sees “bare-metal” hardware
user level

kernel Ievelz

“hypervisor” level for
virtualizing multiple OSs

18-447-524-111-512, James C. Hoe, CMU/ECE/CALCM, ©2024




CarnegieMellon

Interrupt and Privilege Change

e Combine privilege level change
with interrupt/exception transfer
— switch to next higher privilege
level on interrupt
— privilege level restored on return
from interrupt
e |nterrupt control transfer is only
gateway to privileged mode
— lower-level code can never escape
into privileged mode
— lower-level code don’t even need
to know there is a privileged
mode

18-447-524-111-513, James C. Hoe, CMU/ECE/CALCM, ©2024



MIPS Interrupt Architecture

18-447-524-111-5S14, James C. Hoe, CMU/ECE/CALCM, ©2024



CarnegieMellon

What does SW need to know and do?

e Nothing changes in the user-level
ISA; it doesn’t know anything

e Who decides to put a different
address into PC after i,? Which
address?

e \What can the handler do?

e How does the handler return (set i,
address into PC)

e How does the handler know where
to go back to?

Expect: new “privileged” state and inst’s;
HW behind-the-scene action must be involved

18-447-524-111-515, James C. Hoe, CMU/ECE/CALCM, ©202



CarnegieMellon

MIPS Interrupt Architecture

e Privileged system control registers; loaded
automatically on interrupt transfer events

— EPC (CR14): exception program counter, which
instruction location to go back to

— Cause (CR 13): what caused the interrupt

31 15 8 6 2
Branch
delay

Pending Exception
interrupts code

— Status (CR 12): enable/disable interrupts, set
privilege modes
Interrupt

15
mask

e Accessed by “move from/to co-processor” instructions

18-447-524-111-S16, James C. Hoe, CMU/ECE/CALCM, ©2024

Exception

level
Interrupt

User
mode
enable

0]
S
-
o

Figures from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



Who decides to alter PC and when

K%
O
C
205
2o
g
e ¥
CPU |interrupt| S =
control 3 =
ocic | T <
ogic |, =S
A E D
datapath O =
Exceptions, a.k.a. Interrupts, a.k.a.
synchronous interrupts asynchronous interrupts
- failed instructions external interrupts

- system call instructions

18-447-524-111-S17, James C. Hoe, CMU/ECE/CALCM, ©2024



CarnegieMellon

Where to go on an interrupt?

e Option 1: control transfers to default handler

— default handler examines CR12 & CR13 to select
specialized handler 15 g 5 2

Branch Pending Exception
delay interrupts code

e Option 2: vectored interrupt

— separate specialized handler addresses registered
with hardware

— hardware transfer control directly to appropriate
handler to reduce interrupt processing time

Note: handler in address region/space protected
from user so user can’t just branch to it
unprivileged user also can’t imitate handler code

18-447-524-111-518, James C. Hoe, CMU/ECE/CALCM, ©2024



CarnegieMellon

Examples of Causes in MIPS

0 Int interrupt (hardware)
4 AdEL address error exception (load or instruction fetch)
5 AdES address error exception (store)
§) IBE bus error on instruction fetch
T DBE bus error on data load or store
8 Sys syscall exception
9 Bp breakpoint exception
40 RI reserved instruction exception
11 CpU coprocessor unimplemented
12 Ov arithmetic overflow exception
13 Tr trap
15 FRE floating point

18-447-524-111-519, James C. Hoe, CMU/ECE/CALCM, ©2024

Figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



CarnegieMellon

S
“In between” Actions by HW G{) &
&

e Some HW actions required to manipulate
state “in between” user and hander instructions
e HW decides which PC to jump to

e HW must save interrupted address (to return to)
in extra EPC state register (no where else to put it)

e HW must prepare CR12/13 control/status
e HW must raise privilege level (bit 4 of CR12)

e HW does not need to preserve GPR state
— handler SW use callee-saved convention
— MIPS convention reserves r26/27 for handler use

18-447-524-111-520, James C. Hoe, CMU/ECE/CALCM, ©2024



Handler Examples

e On asynchronous interrupt, device-specific
handler invoked to service the device

e On exception, kernel handler either

— correct faulting condition then retry (e.g., update
virtual memory management) or skip (e.g., @
emulate missing FP functionality) to continue, or

III

— “signal” back to user process if a user-level
handler function is registered, or

— kill the process if exception cannot be corrected
e “System call” is a special kind of fxn call from

user process to kernel-level service routines
(e.g., open, close, read, write, seek on “files”)

18-447-524-111-S21, James C. Hoe, CMU/ECE/CALCM, ©2024



CarnegieMellon

Returning from Interrupt

e Adjust EPC depending on situation
— return to faulting EPC to retry the instruction
— return to faulting EPC+4 to skip (e.g., if emulated)
— return to somewhere entirely different. . ..

e Undo what happened on the way in
— handler restores callee-saved state
— HW to undo the rest

e MIPS32 uses ERET to ***atomically***
— restore HW-saved processor states

— restore privilege level (to user or kernel?)

— jump to address in EPC

18-447-524-111-S22, James C. Hoe, CMU/ECE/CALCM, ©2024



CarnegieMellon

An Extremely Short Handler

__handler_shortest:
# no prologue needed

# epilogue
eret # restore privilege and jump to EPC

18-447-524-111-523, James C. Hoe, CMU/ECE/CALCM, ©2024



CarnegieMellon

A Short Handler

_reserved: Hoy, doe
S
.space 4 RbOOtStrap M//?./SCV
Qs . Ith

_handler_short: S_‘mp“ﬂed',. ang Zvlng r26 oyt

# prologue more t© s 7?

la r26, _reserve(f.; # point to reserved space

sw r8, 0x0(r26) # back-up r8 for use in body

# epilogue

la r26, reserved: # point to reserved space

lw r8, 0x0(r26) # restore r8

eret

# restore privilege and jump to EPC

What happens to EPC if exception or interrupt in handler?

18-447-524-111-S24, James C. Hoe, CMU/ECE/CALCM, ©2024



CarnegieMellon

Nesting Interrupts

e On interrupt transfer, further asynchronous
interrupts are disabled (in-between HW action)

— if not, another interrupt would overwrite
EPC/Cause/Status

— similarly, handler must not generate exceptions
itself until prepared

e For long-running handlers, interrupt must be re-
enabled

— handler examines or save EPC/Cause/Status to
memory before re-enabling interrupt

— once re-enabled, handler cannot rely on
EPC/Cause/Status/r26/r27 contents anymore

18-447-524-111-S25, James C. Hoe, CMU/ECE/CALCM, ©2024



Interrupt Priority

e [nterrupt sources assigned to priority levels
— higher-priority means more time critical
— if multiple interrupts triggered, should handle

highest-priority interrupt first

e Different priority interrupts can be selectively
disabled by interrupt mask in Status

e \When servicing an interrupt, re-enables only
higher-priority interrupts
— ensure higher-priority interrupts not delayed

— re-enabling same/lower-priority interrupts
livelock and deadlock

Exception

mode
level
Interrupt
enable

User

Interrupt
15 mask 8

18-447-524-111-526, James C. Hoe, CMU/ECE/CALCM, ©2024 _

FaN
=
o




Nestable Handler (not perfect)

_handler_nest: Gmptified
lar27, _reserved‘s # point to reserved
mfcO r26, epc # get EPC contents
£ 5 ; sw r26, 0x0(r27) # backup EPC value
= % o swr8, 0x4(r27) # backup r8 for use
% g §_ mfcO r26, status # get status reg content
~ > Swr26, 0x8(r27) # back up status value
ori r26, r26, 0x1 # set interrupt enable bit
o f > mtc0r26,status  #writeintostatusreg
2%
S O
GtJ © la r8, reserved # point to reserved
9 lw r8, 0x8(r8) # get saved status value
. [lomtc0r8,status _ #writeintostatusreg
lar27, reserved # point to reserved
§' o |d r8, 0x4(r27) # restore r8
qt) % |d r26, 0x0(r27) # get saved EPC value
- % mtcO r26, epc # restore EPC contents
eret # restore privilege and jump to EPC

18-447-524-111-S27, James C. Hoe, CMU/ECE/CALCM, ©2024



Implementing Interrupt in a Pipeline

18-447-524-111-528, James C. Hoe, CMU/ECE/CALCM, ©2024



CarnegieMellon

Precise Interrupt/Exception

Serialized ISA Semantics Overlapped Execution

Even with overlapped execution, interrupt must appear (to the
handler) to have taken place in between two instructions

e older instructions finished completely

e younger instructions as if never happened

18-447-524-111-S29, James C. Hoe, CMU/ECE/CALCM, ©2024



“Flushing” a Pipeline

1 privileged mode

CarnegieMellon

L | 4L | L ||t |t | gty |t Ty
ETEER’

IF b (1L |1 | I ub |bub [buby 1,1, |1,

ID |0 |1 |2 |3 Tbub bub | bub ybub |h |h+1

EX I I IZ%Eub bub ybub |bub | |

MEM |0 |1 |2 bub bubIbub bub | bub

WB o l, l, bubIbub bub | bub

e Kill faulting and younger inst; drain older inst

e Don’t start handler until faulting inst. is oldest

e Better yet, don’t start handler until pipeline is empty

18-447-524-111-S30, James C. Hoe, CMU/ECE/CALCM, ©2024

Better to be safe than to be fast



CarnegieMellon

Exception Sources in Different Stages

e |F: I-mem address/protection fault
e |D:
— illegal opcode

— trap to SW emulation of unimplemented
instructions

— syscall instruction (a SW requested exception)
e EX:invalid results: overflow, divide by zero, etc.
e MEM: D-mem address/protection fault
e WB: nothing can stop an instruction now...

Okay to associate async interrupts (I/0)
with any instruction/stage we like

18-447-524-111-S31, James C. Hoe, CMU/ECE/CALCM, ©2024



Carr

Pipeline Flush for Exceptions

EX.Flush

MEM.Flush

1egie Mellon

IF.Flush ID.Flush
( Hazard \
detection { 1
it v
\ uni
M
40000040 u
X
M
Control u
L5
>+
+
4 = Shift
left 2
A
_I Registers
| pc Instruction

v

(4]

| O*U (

M
u
X

Cause

0 —»

memory

T_ ALU

\-EX/MEM

=
@

v

| =

)
A’U BEM/WB

@

UL

Data
memory

WB

Figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS REPERVED.]

unit

Forwarding

18-447-524-111-S32, James C. Hoe, CMU/ECE/CALCM, ©2024

Where is “the current instruction”?

x c




