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Housekeeping
• Your goal today

– understand the simplicity of interrupt mechanisms 
in HW and appreciate its powerful uses by SW

– first peek outside of the “user-level” abstraction 

• Notices
– Lab 2, status check this week, due next week
– HW 3, due **Wed** 3/13 (Handout #8)
– Midterm 1, Wed 3/13, covers up to Lec 1312

• Readings
– P&H Ch 4
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Format of the Midterm
• Covers lectures (L1~L1312), HW, labs, assigned 

readings (from textbooks and papers)
• Types of questions

– freebies: remember the materials
– >> probing: understand the materials <<
– applied: apply the materials in original interpretation

• **90 minutes, 90 points**
– point values calibrated to time needed
– closed-book, one 8½x11-in2 hand-written cribsheet
– no electronics
– use pencil or black/blue ink only
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Interrupt Control Transfer
• Basic Part: an “unplanned” fxn call 

to a “third-party” routine; and later 
return control back to point of 
interruption

• Tricky Part: interrupted thread 
cannot anticipate/prepare for this 
control transfer
– must be 100% transparent
– not enough to impose all callee-

save convention (return address??)

• Puzzling Part: why is there a hidden 
routine running invisibly?
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3 Steps to Understanding Interrupts 

• Is it Animal, Vegetable, Mineral?

• Architectural Support

• Microarchitectural Realization
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Use #1: Interrupts
• How to handle rare events with unpredictable 

arrival time and must be acted upon quickly? 
E.g., keystroke, in-bound network, disk I/O

• Option 1: write every program with periodic calls 
to a service routine (i.e., polling)
– polling frequency affects worst-case response time
– expensive for rare events needing fast response 

What if a programmer does it wrong or forgets?

• Option 2: normal programs blissfully unaware
– event triggers an interrupt on-demand
– forcefully and transparently transfer control to the 

service routine and back

…
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Use #2: Exceptions
• How to handle rare exceptional conditions in a 

program itself, e.g., arithmetic overflow, divide-
by-0, page fault, TLB miss, etc.

• Option 1: write program with explicit checks at 
every potential site
– do you want to check for 0 before every divide?
– check valid address before memory access?

What if a programmer does it wrong or forgets?

• Option 2: write program for common case
– detect exceptional conditions in HW
– transparently transfer control to an exception 

handler that works out how to fix things up

…
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Use #3: Multitasking Preemption
• Many programs time-multiplex a processor
• Option 1: write programs to voluntarily give up 

the processor after running for a while
What if a programmer does it wrong or forgets?

• Option 2: normal programs blissfully unaware
– a timer interrupts process A
– handler returns to an earlier 

interrupted process B
– a timer interrupts process B
– hander returns to process A
– Neither A nor B aware anything funny happened!!

Really just a clever use of #1

A

…

B

…
…
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Terminology: Interrupt vs Exception

• Interrupt is the more general concept
• Synchronous interrupt (a.k.a “exception”)

– exceptional conditions tied to a particular instruction
– a faulting instruction cannot be finished
– must be handled immediately

• Asynchronous interrupt (a.k.a. “interrupt”)
– events not tied to instruction execution
– some flexibility on when to handle it
– cannot postpone forever

• System Call
– an instruction to trigger exception on purpose
If intentional, why not just called the handler with JAL?
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Use #4: Privileged Systems
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User-Level Abstraction:
• Protected: a “user-level” process thinks it is alone

– private set of user-level architectural states 
– cannot (directly) see or manipulate state outside of 

abstraction
• Virtualized: UNIX user process sees a file system 

– corresponds to storage and non-storage devices
– all devices look like files; accessed through a 

common set of interface paradigms
• OS+HW support and enforce this abstraction

– enforce protection boundaries
– bridge between abstract and physical

OS must live beyond user-level abstractions 
and be more “powerful”
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Privilege Levels
• A level is a set of architectural state and 

instructions to manipulate them
• A more privileged level is a superset (usually) of 

the less privileged level
– lowest level has basic compute state and insts
– higher level has state and insts to control 

virtualization and protection of lower levels
– only highest-level sees “bare-metal” hardware

user level

kernel level

“hypervisor” level for
virtualizing multiple OSs
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Interrupt and Privilege Change
• Combine privilege level change 

with interrupt/exception transfer
– switch to next higher privilege 

level on interrupt
– privilege level restored on return 

from interrupt
• Interrupt control transfer is only 

gateway to privileged mode
– lower-level code can never escape 

into privileged mode
– lower-level code don’t even need 

to know there is a privileged 
mode
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MIPS Interrupt Architecture
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What does SW need to know and do?
• Nothing changes in the user-level 

ISA; it doesn’t know anything
--------------------
• Who decides to put a different 

address into PC after i1? Which 
address?

• What can the handler do?
• How does the handler return (set i2 

address into PC)
• How does the handler know where 

to go back to? 
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Expect: new “privileged” state and inst’s; 
HW behind-the-scene action must be involved
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MIPS Interrupt Architecture
• Privileged system control registers; loaded 

automatically on interrupt transfer events 
– EPC (CR14): exception program counter, which 

instruction location to go back to
– Cause (CR 13): what caused the interrupt

– Status (CR 12): enable/disable interrupts, set 
privilege modes 

• Accessed by “move from/to co-processor” instructions
Figures from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]
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Who decides to alter PC and when

interrupt
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Where to go on an interrupt?
• Option 1: control transfers to default handler 

– default handler examines CR12 & CR13 to select 
specialized handler

• Option 2: vectored interrupt
– separate specialized handler addresses registered 

with hardware
– hardware transfer control directly to appropriate 

handler to reduce interrupt processing time

Note: handler in address region/space protected 
from user so user can’t just branch to it 

unprivileged user also can’t imitate handler code
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Examples of Causes in MIPS

Figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]
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“In between” Actions by HW
• Some HW actions required to manipulate 

state “in between” user and hander instructions
• HW decides which PC to jump to
• HW must save interrupted address (to return to)  

in extra EPC state register (no where else to put it)
• HW must prepare CR12/13 control/status
• HW must raise privilege level (bit 4 of CR12)
• HW does not need to preserve GPR state

– handler SW use callee-saved convention
– MIPS convention reserves r26/27 for handler use

i1
ih1
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Handler Examples
• On asynchronous interrupt, device-specific 

handler invoked to service the device 
• On exception, kernel handler either 

– correct faulting condition then retry (e.g., update 
virtual memory management) or skip (e.g., 
emulate missing FP functionality) to continue, or  

– “signal” back to user process if a user-level 
handler function is registered, or

– kill the process if exception cannot be corrected

• “System call” is a special kind of fxn call from 
user process to kernel-level service routines 
(e.g., open, close, read, write, seek on  “files”)
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Returning from Interrupt
• Adjust EPC depending on situation

– return to faulting EPC to retry the instruction
– return to faulting EPC+4 to skip (e.g., if emulated)
– return to somewhere entirely different . . . .

• Undo what happened on the way in
– handler restores callee-saved state
– HW to undo the rest

• MIPS32 uses ERET to ***atomically***
– restore HW-saved processor states
– restore privilege level (to user or kernel?)
– jump to address in EPC
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An Extremely Short Handler
_handler_shortest:

# no prologue needed

. 

# epilogue
eret # restore privilege and jump to EPC

. . . short handler body . . . # can use only r26 and r27;
# must get the job done before
# anything else happens



18-447-S24-L11-S24, James C. Hoe, CMU/ECE/CALCM, ©2024

_reserved:
.space 4

_handler_short:
# prologue
la r26, _reserved: # point to reserved space
sw r8, 0x0(r26) # back-up r8 for use in body

# epilogue
la r26, _reserved: # point to reserved space
lw r8, 0x0(r26) # restore r8
eret # restore privilege and jump to EPC

. . . short handler body . . . # can use r26, r27, and r8
# must get the job done before
# anything else happens

A Short Handler

What happens to EPC if exception or interrupt in handler?
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Nesting Interrupts
• On interrupt transfer, further asynchronous 

interrupts are disabled (in-between HW action)
– if not, another interrupt would overwrite 

EPC/Cause/Status
– similarly, handler must not generate exceptions 

itself until prepared

• For long-running handlers, interrupt must be re-
enabled
– handler examines or save EPC/Cause/Status to 

memory before re-enabling interrupt
– once re-enabled, handler cannot rely on 

EPC/Cause/Status/r26/r27 contents anymore
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Interrupt Priority
• Interrupt sources assigned to priority levels

– higher-priority means more time critical
– if multiple interrupts triggered, should handle 

highest-priority interrupt first

• Different priority interrupts can be selectively 
disabled by interrupt mask in Status

• When servicing an interrupt, re-enables only 
higher-priority interrupts
– ensure higher-priority interrupts not delayed
– re-enabling same/lower-priority interrupts 

livelock and deadlock
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Nestable Handler (not perfect)
_handler_nest:

la r27, _reserved # point to reserved
mfc0 r26, epc # get EPC contents
sw r26, 0x0(r27) # backup EPC value
sw r8, 0x4(r27) # backup r8 for use
mfc0 r26, status # get status reg content
sw r26, 0x8(r27) # back up status value
ori r26, r26, 0x1 # set interrupt enable bit
mtc0 r26, status # write into status reg

la r8, _reserved # point to reserved
lw r8, 0x8(r8) # get saved status value
mtc0 r8, status # write into status reg
la r27, _reserved # point to reserved
ld r8, 0x4(r27) # restore r8
ld r26, 0x0(r27) # get saved EPC value
mtc0 r26, epc # restore EPC contents
eret # restore privilege and jump to EPC

. . . interruptible # could free-up more registers
longer handler body . . . # if needed  (cannot use r26 or r27)

in
te

rr
up

t 
re

en
ab

le
d

in
te

rr
up

t 
di

sa
bl

ed
up

on
 e

nt
ry

in
te

rr
up

t 
di

sa
bl

ed



18-447-S24-L11-S28, James C. Hoe, CMU/ECE/CALCM, ©2024

Implementing Interrupt in a Pipeline
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Precise Interrupt/Exception
Serialized ISA Semantics Overlapped Execution

Even with overlapped execution, interrupt must appear (to the 
handler) to have taken place in between two instructions

• older instructions finished completely
• younger instructions as if never happened
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“Flushing” a Pipeline

• Kill faulting and younger inst; drain older inst
• Don’t start handler until faulting inst. is oldest
• Better yet, don’t start handler until pipeline is empty

Better to be safe than to be fast
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Exception Sources in Different Stages

• IF: I-mem address/protection fault
• ID:

– illegal opcode
– trap to SW emulation of unimplemented 

instructions
– syscall instruction (a SW requested exception)

• EX: invalid results: overflow, divide by zero, etc.
• MEM: D-mem address/protection fault
• WB: nothing can stop an instruction now…

Okay to associate async interrupts (I/O) 
with any instruction/stage we like
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Pipeline Flush for Exceptions
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Figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]
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