
18-447-S24-L11-S1, James C. Hoe, CMU/ECE/CALCM, ©2024

18-447 Lecture 11:
Interrupt and Exception

James C. Hoe
Department of ECE

Carnegie Mellon University

18-447-S24-L11-S2, James C. Hoe, CMU/ECE/CALCM, ©2024

Housekeeping
• Your goal today

– understand the simplicity of interrupt mechanisms
in HW and appreciate its powerful uses by SW

– first peek outside of the “user-level” abstraction

• Notices
– Lab 2, status check this week, due next week
– HW 3, due **Wed** 3/13 (Handout #8)
– Midterm 1, Wed 3/13, covers up to Lec 1312

• Readings
– P&H Ch 4

18-447-S24-L11-S3, James C. Hoe, CMU/ECE/CALCM, ©2024

Format of the Midterm
• Covers lectures (L1~L1312), HW, labs, assigned

readings (from textbooks and papers)
• Types of questions

– freebies: remember the materials
– >> probing: understand the materials <<
– applied: apply the materials in original interpretation

• **90 minutes, 90 points**
– point values calibrated to time needed
– closed-book, one 8½x11-in2 hand-written cribsheet
– no electronics
– use pencil or black/blue ink only

18-447-S24-L11-S4, James C. Hoe, CMU/ECE/CALCM, ©2024

Interrupt Control Transfer
• Basic Part: an “unplanned” fxn call

to a “third-party” routine; and later
return control back to point of
interruption

• Tricky Part: interrupted thread
cannot anticipate/prepare for this
control transfer
– must be 100% transparent
– not enough to impose all callee-

save convention (return address??)

• Puzzling Part: why is there a hidden
routine running invisibly?

i1

i2

i3

ih2

ihN

…
.

ih1

18-447-S24-L11-S5, James C. Hoe, CMU/ECE/CALCM, ©2024

3 Steps to Understanding Interrupts

• Is it Animal, Vegetable, Mineral?

• Architectural Support

• Microarchitectural Realization

18-447-S24-L11-S6, James C. Hoe, CMU/ECE/CALCM, ©2024

Use #1: Interrupts
• How to handle rare events with unpredictable

arrival time and must be acted upon quickly?
E.g., keystroke, in-bound network, disk I/O

• Option 1: write every program with periodic calls
to a service routine (i.e., polling)
– polling frequency affects worst-case response time
– expensive for rare events needing fast response

What if a programmer does it wrong or forgets?

• Option 2: normal programs blissfully unaware
– event triggers an interrupt on-demand
– forcefully and transparently transfer control to the

service routine and back

…

18-447-S24-L11-S7, James C. Hoe, CMU/ECE/CALCM, ©2024

Use #2: Exceptions
• How to handle rare exceptional conditions in a

program itself, e.g., arithmetic overflow, divide-
by-0, page fault, TLB miss, etc.

• Option 1: write program with explicit checks at
every potential site
– do you want to check for 0 before every divide?
– check valid address before memory access?

What if a programmer does it wrong or forgets?

• Option 2: write program for common case
– detect exceptional conditions in HW
– transparently transfer control to an exception

handler that works out how to fix things up

…

18-447-S24-L11-S8, James C. Hoe, CMU/ECE/CALCM, ©2024

Use #3: Multitasking Preemption
• Many programs time-multiplex a processor
• Option 1: write programs to voluntarily give up

the processor after running for a while
What if a programmer does it wrong or forgets?

• Option 2: normal programs blissfully unaware
– a timer interrupts process A
– handler returns to an earlier

interrupted process B
– a timer interrupts process B
– hander returns to process A
– Neither A nor B aware anything funny happened!!

Really just a clever use of #1

A

…

B

…
…

18-447-S24-L11-S9, James C. Hoe, CMU/ECE/CALCM, ©2024

Terminology: Interrupt vs Exception

• Interrupt is the more general concept
• Synchronous interrupt (a.k.a “exception”)

– exceptional conditions tied to a particular instruction
– a faulting instruction cannot be finished
– must be handled immediately

• Asynchronous interrupt (a.k.a. “interrupt”)
– events not tied to instruction execution
– some flexibility on when to handle it
– cannot postpone forever

• System Call
– an instruction to trigger exception on purpose
If intentional, why not just called the handler with JAL?

18-447-S24-L11-S10, James C. Hoe, CMU/ECE/CALCM, ©2024

Use #4: Privileged Systems

18-447-S24-L11-S11, James C. Hoe, CMU/ECE/CALCM, ©2024

User-Level Abstraction:
• Protected: a “user-level” process thinks it is alone

– private set of user-level architectural states
– cannot (directly) see or manipulate state outside of

abstraction
• Virtualized: UNIX user process sees a file system

– corresponds to storage and non-storage devices
– all devices look like files; accessed through a

common set of interface paradigms
• OS+HW support and enforce this abstraction

– enforce protection boundaries
– bridge between abstract and physical

OS must live beyond user-level abstractions
and be more “powerful”

18-447-S24-L11-S12, James C. Hoe, CMU/ECE/CALCM, ©2024

Privilege Levels
• A level is a set of architectural state and

instructions to manipulate them
• A more privileged level is a superset (usually) of

the less privileged level
– lowest level has basic compute state and insts
– higher level has state and insts to control

virtualization and protection of lower levels
– only highest-level sees “bare-metal” hardware

user level

kernel level

“hypervisor” level for
virtualizing multiple OSs

18-447-S24-L11-S13, James C. Hoe, CMU/ECE/CALCM, ©2024

Interrupt and Privilege Change
• Combine privilege level change

with interrupt/exception transfer
– switch to next higher privilege

level on interrupt
– privilege level restored on return

from interrupt
• Interrupt control transfer is only

gateway to privileged mode
– lower-level code can never escape

into privileged mode
– lower-level code don’t even need

to know there is a privileged
mode

i1

i2

i3

ih2

ihN

…
.

ih1

18-447-S24-L11-S14, James C. Hoe, CMU/ECE/CALCM, ©2024

MIPS Interrupt Architecture

18-447-S24-L11-S15, James C. Hoe, CMU/ECE/CALCM, ©2024

What does SW need to know and do?
• Nothing changes in the user-level

ISA; it doesn’t know anything

• Who decides to put a different

address into PC after i1? Which
address?

• What can the handler do?
• How does the handler return (set i2

address into PC)
• How does the handler know where

to go back to?

i1

i2

i3

ih2

ihN

…
.

ih1

Expect: new “privileged” state and inst’s;
HW behind-the-scene action must be involved

18-447-S24-L11-S16, James C. Hoe, CMU/ECE/CALCM, ©2024

MIPS Interrupt Architecture
• Privileged system control registers; loaded

automatically on interrupt transfer events
– EPC (CR14): exception program counter, which

instruction location to go back to
– Cause (CR 13): what caused the interrupt

– Status (CR 12): enable/disable interrupts, set
privilege modes

• Accessed by “move from/to co-processor” instructions
Figures from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

18-447-S24-L11-S17, James C. Hoe, CMU/ECE/CALCM, ©2024

Who decides to alter PC and when

interrupt
control

logic

Ex
te

rn
al

 d
ev

ic
e

IR
Q

 si
gn

al
s

(I/
O

, D
M

A,
 ti

m
er

s,
 e

tc
.)

CPU

datapath

- failed instructions
- system call instructions

Exceptions, a.k.a.
synchronous interrupts

Interrupts, a.k.a.
asynchronous interrupts
external interrupts

18-447-S24-L11-S18, James C. Hoe, CMU/ECE/CALCM, ©2024

Where to go on an interrupt?
• Option 1: control transfers to default handler

– default handler examines CR12 & CR13 to select
specialized handler

• Option 2: vectored interrupt
– separate specialized handler addresses registered

with hardware
– hardware transfer control directly to appropriate

handler to reduce interrupt processing time

Note: handler in address region/space protected
from user so user can’t just branch to it

unprivileged user also can’t imitate handler code

18-447-S24-L11-S19, James C. Hoe, CMU/ECE/CALCM, ©2024

Examples of Causes in MIPS

Figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

18-447-S24-L11-S20, James C. Hoe, CMU/ECE/CALCM, ©2024

“In between” Actions by HW
• Some HW actions required to manipulate

state “in between” user and hander instructions
• HW decides which PC to jump to
• HW must save interrupted address (to return to)

in extra EPC state register (no where else to put it)
• HW must prepare CR12/13 control/status
• HW must raise privilege level (bit 4 of CR12)
• HW does not need to preserve GPR state

– handler SW use callee-saved convention
– MIPS convention reserves r26/27 for handler use

i1
ih1

18-447-S24-L11-S21, James C. Hoe, CMU/ECE/CALCM, ©2024

Handler Examples
• On asynchronous interrupt, device-specific

handler invoked to service the device
• On exception, kernel handler either

– correct faulting condition then retry (e.g., update
virtual memory management) or skip (e.g.,
emulate missing FP functionality) to continue, or

– “signal” back to user process if a user-level
handler function is registered, or

– kill the process if exception cannot be corrected

• “System call” is a special kind of fxn call from
user process to kernel-level service routines
(e.g., open, close, read, write, seek on “files”)

ih2

ihN

…
.

ih1

18-447-S24-L11-S22, James C. Hoe, CMU/ECE/CALCM, ©2024

Returning from Interrupt
• Adjust EPC depending on situation

– return to faulting EPC to retry the instruction
– return to faulting EPC+4 to skip (e.g., if emulated)
– return to somewhere entirely different

• Undo what happened on the way in
– handler restores callee-saved state
– HW to undo the rest

• MIPS32 uses ERET to ***atomically***
– restore HW-saved processor states
– restore privilege level (to user or kernel?)
– jump to address in EPC

i2

ihN

…
.

18-447-S24-L11-S23, James C. Hoe, CMU/ECE/CALCM, ©2024

An Extremely Short Handler
_handler_shortest:

no prologue needed

.

epilogue
eret # restore privilege and jump to EPC

. . . short handler body . . . # can use only r26 and r27;
must get the job done before
anything else happens

18-447-S24-L11-S24, James C. Hoe, CMU/ECE/CALCM, ©2024

_reserved:
.space 4

_handler_short:
prologue
la r26, _reserved: # point to reserved space
sw r8, 0x0(r26) # back-up r8 for use in body

epilogue
la r26, _reserved: # point to reserved space
lw r8, 0x0(r26) # restore r8
eret # restore privilege and jump to EPC

. . . short handler body . . . # can use r26, r27, and r8
must get the job done before
anything else happens

A Short Handler

What happens to EPC if exception or interrupt in handler?

18-447-S24-L11-S25, James C. Hoe, CMU/ECE/CALCM, ©2024

Nesting Interrupts
• On interrupt transfer, further asynchronous

interrupts are disabled (in-between HW action)
– if not, another interrupt would overwrite

EPC/Cause/Status
– similarly, handler must not generate exceptions

itself until prepared

• For long-running handlers, interrupt must be re-
enabled
– handler examines or save EPC/Cause/Status to

memory before re-enabling interrupt
– once re-enabled, handler cannot rely on

EPC/Cause/Status/r26/r27 contents anymore

18-447-S24-L11-S26, James C. Hoe, CMU/ECE/CALCM, ©2024

Interrupt Priority
• Interrupt sources assigned to priority levels

– higher-priority means more time critical
– if multiple interrupts triggered, should handle

highest-priority interrupt first

• Different priority interrupts can be selectively
disabled by interrupt mask in Status

• When servicing an interrupt, re-enables only
higher-priority interrupts
– ensure higher-priority interrupts not delayed
– re-enabling same/lower-priority interrupts

livelock and deadlock

18-447-S24-L11-S27, James C. Hoe, CMU/ECE/CALCM, ©2024

Nestable Handler (not perfect)
_handler_nest:

la r27, _reserved # point to reserved
mfc0 r26, epc # get EPC contents
sw r26, 0x0(r27) # backup EPC value
sw r8, 0x4(r27) # backup r8 for use
mfc0 r26, status # get status reg content
sw r26, 0x8(r27) # back up status value
ori r26, r26, 0x1 # set interrupt enable bit
mtc0 r26, status # write into status reg

la r8, _reserved # point to reserved
lw r8, 0x8(r8) # get saved status value
mtc0 r8, status # write into status reg
la r27, _reserved # point to reserved
ld r8, 0x4(r27) # restore r8
ld r26, 0x0(r27) # get saved EPC value
mtc0 r26, epc # restore EPC contents
eret # restore privilege and jump to EPC

. . . interruptible # could free-up more registers
longer handler body . . . # if needed (cannot use r26 or r27)

in
te

rr
up

t
re

en
ab

le
d

in
te

rr
up

t
di

sa
bl

ed
up

on
 e

nt
ry

in
te

rr
up

t
di

sa
bl

ed

18-447-S24-L11-S28, James C. Hoe, CMU/ECE/CALCM, ©2024

Implementing Interrupt in a Pipeline

18-447-S24-L11-S29, James C. Hoe, CMU/ECE/CALCM, ©2024

Precise Interrupt/Exception
Serialized ISA Semantics Overlapped Execution

Even with overlapped execution, interrupt must appear (to the
handler) to have taken place in between two instructions

• older instructions finished completely
• younger instructions as if never happened

i1

i2

i3

i1:
i2:

i3:

18-447-S24-L11-S30, James C. Hoe, CMU/ECE/CALCM, ©2024

bub

bub

bub

bub

bub

“Flushing” a Pipeline

• Kill faulting and younger inst; drain older inst
• Don’t start handler until faulting inst. is oldest
• Better yet, don’t start handler until pipeline is empty

Better to be safe than to be fast

I0

I1

I0

I1

I2

I0

I1

I2

I3

bub

bub

Ih

bub

bub

bub

Ih

Ih+1

bub

bub

bub

Ih

Ih+1

Ih+2

bub

I0

I1

I2

I3

I4

I1

I2

I3

bub

bub

privileged mode

I2

bub

bub

bub

bubI0

t10t9t8t7t6t5t4t3t2t1t0

IF

ID

EX

MEM

WB

18-447-S24-L11-S31, James C. Hoe, CMU/ECE/CALCM, ©2024

Exception Sources in Different Stages

• IF: I-mem address/protection fault
• ID:

– illegal opcode
– trap to SW emulation of unimplemented

instructions
– syscall instruction (a SW requested exception)

• EX: invalid results: overflow, divide by zero, etc.
• MEM: D-mem address/protection fault
• WB: nothing can stop an instruction now…

Okay to associate async interrupts (I/O)
with any instruction/stage we like

18-447-S24-L11-S32, James C. Hoe, CMU/ECE/CALCM, ©2024

Pipeline Flush for Exceptions

PC Instruction

memory

4

Registers

Sign

extend

M
u
x

M
u
x

M
u
x

Control

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

M
u
x

Data

memory

M
u
x

Hazard
detection

unit

Forwarding

unit

IF.Flush

IF/ID

=

Except
PC

40000040

0

M
u
x

0

M
u
x

0

M
u
x

ID.Flush EX.Flush

Cause

Shift
left 2

Figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Where is “the current instruction”?

0

M
u
x

MEM.Flush

