
18-447-S23-L10-S1, James C. Hoe, CMU/ECE/CALCM, ©2024

18-447 Lecture 10:
Branch Prediction

James C. Hoe
Department of ECE

Carnegie Mellon University

18-447-S23-L10-S2, James C. Hoe, CMU/ECE/CALCM, ©2024

Housekeeping

• Your goal today
– understand how to guess your way through control

flow and why it works so well

• Notices
– Lab 2, status check this week, due next week
– HW 3, due **Wed** 3/13 (Handout #8)

• Readings
– P&H Ch 4

18-447-S23-L10-S3, James C. Hoe, CMU/ECE/CALCM, ©2024

Branch Prediction 101: PC+4

Insth is a taken branch

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Insth ID ALU
ID

IFPC+8

ALU
ID

IFtarget

MEM
In general as long as

1. prediction is always
checked

2. correct target is fetched
after a misprediction

3. wrong path instructions
removed

ANY predictor will
work, including RNG, PC-4

18-447-S23-L10-S4, James C. Hoe, CMU/ECE/CALCM, ©2024

Prediction and Resolution in General
• “Trust (1), but verify (2)”
• When wrong, (3) clean up mistake and (4) update

predictor to improve next guess

“ANY”
branch

predictorPC

I-mem

pred. taken?

pred. target

Inst
fetched PC

nextPC

kill killkill

rewind

??update

compute
actual

outcome

actual target

mispredict?1
2

3

3
4

no irreversible arch. state changes

history

18-447-S23-L10-S5, James C. Hoe, CMU/ECE/CALCM, ©2024

Tagged BTB (from last lecture)

BTB

BTB idx

tag
table

1 0

PC+4

nextPC

=

tag

IPC = 1 / [1 + (0.20*0.3) * 2] = 0.89

~30% not taken

targets of control-flow
instructions (in effect,
predicting always taken)

Only add control-flow inst to
BTB; non-control-flow always
miss, always PC+4

18-447-S23-L10-S6, James C. Hoe, CMU/ECE/CALCM, ©2024

Sum Up So Far

• Given current PC, speculate most likely next PC
• The easy part: target

– same PC always same instruction
– nextPC always PC+4 for non-control-flow inst
– target of PC-offset control-flow always same

BTB from last slide works very well

• The not so easy part: taken?
– branch decision is dynamically data dependent
– so far, either 1. always-predict-not-taken (PC+4) or

2. always-predict-taken (BTB)

18-447-S23-L10-S7, James C. Hoe, CMU/ECE/CALCM, ©2024

Branch Direction Prediction

• Already 100% correct on non-control-flow inst
• Improve on always-predict-taken (70% correct)?

– ~90% correct on backward branch (dynamic)
– only ~50% correct on forward branch (dynamic)

What pattern to leverage on forward branches?

• A given static branch instruction is likely to be
biased in one direction (either taken or not taken)
– 80~90% correct (forward+backward) if guessed to

repeat the outcome last time
– IPC = 1 / [1 + (0.20*0.15) * 2] = 0.94

if not repeat

18-447-S23-L10-S8, James C. Hoe, CMU/ECE/CALCM, ©2024

“Adaptive” History-Based Prediction

BTB

BTB idx

tag
table

1 0

PC+4

nextPC

=

Branch History Table entry (1 bit)
is updated with actual outcome
after branch is executed

tag

BHT

taken?

18-447-S23-L10-S9, James C. Hoe, CMU/ECE/CALCM, ©2024

Branch History State Machine

predict
taken

predict
not

taken

actually
not taken

actually
taken

actually
taken

actually
not taken

Predict same as last outcome

18-447-S23-L10-S10, James C. Hoe, CMU/ECE/CALCM, ©2024

2-Bit Saturation Counter

pred
taken

11

pred
taken

10

pred
!taken

01

pred
!taken

00

actually
taken

actually
taken

actually
!taken

actually
!taken

actually
!taken

actually
!taken

actually
taken

actually
taken

“weakly
taken”

“strongly
taken”

“weakly
!taken”

“strongly
!taken”

How is this better?

18-447-S23-L10-S11, James C. Hoe, CMU/ECE/CALCM, ©2024

2-Bit “Hysteresis” Counter

pred
taken

pred
taken

pred
!taken

pred
!taken

actually
taken

actually
taken actually

!taken

actually
!taken

actually
!taken

actually
!taken

actually
taken

actually
taken

Change prediction after 2 consecutive mistakes

18-447-S23-L10-S12, James C. Hoe, CMU/ECE/CALCM, ©2024

Per-Branch Counter-Based BP
• 2-bit counter can get >90% correct

– IPC = 1 / [1 + (0.20*0.10) * 2] = 0.96
– any “reasonable” 2-bit counter works
– adding more bits to counter does not help much

• Major branch behaviors exploited
– almost always repeat the same (>80%)

• 1-bit and 2-bit counters equally effective
– occasionally do the opposite once (5~10%)

• 2 misprediction with a 1-bit counter
• 1 misprediction with a 2-bit counter

• Need more elaborate predictors for other behaviors
Is it worth the cost? Will it slow down the clock?

18-447-S23-L10-S13, James C. Hoe, CMU/ECE/CALCM, ©2024

The cost of misprediction
• Misprediction penalty increases with

– number of pipeline stages
– width of superscalarity
– number of nested predictions (fxn of BB size)
– rewind cost

[“The microarchitecture of the Pentium 4 processor,” Intel Technology Journal, 2001.]

18-447-S23-L10-S14, James C. Hoe, CMU/ECE/CALCM, ©2024

Multiple shots at better predictions

instruction
cache BHT BTAC +2 +4

FA
R

Prediction Logic
(4 instructions)

Target Seq Addr

Prediction Logic
(4 instructions)

Target Seq Addr

Prediction Logic
(4 instructions)

Target Seq Addr

Exception Logic

PC

Target

+

fetch

decode

dispatch

branch
execute

complete

-m
or

e
tim

e
&

 in
fo

 in
 la

te
r s

ta
ge

s
-e

ar
ly

“c
or

re
ct

io
n”

 b
as

ed
 o

n
be

tt
er

 g
ue

ss
es

[PowerPC 604]

Why is this
“PC” and not

18-447-S23-L10-S15, James C. Hoe, CMU/ECE/CALCM, ©2024

Beyond Counters:
Two-level Prediction [Yeh & Patt]

BHT idx

tag
table

=

tag

m

isBranch?
2m

cntrs

taken?

e.g., if m=6
000000
111111
111110
000001
101010
010101
110001

what happened
for a pattern?
(adaptive)

what a
branch did
last m times

m-bit
“local” branch

history

18-447-S23-L10-S16, James C. Hoe, CMU/ECE/CALCM, ©2024

Beyond Local History: Path History
• Branch outcome may be correlated to other

branches
• Equntott, SPEC92

if (aa==2) ;; B1
aa=0;

if (bb==2) ;; B2
bb=0;

if (aa!=bb) ;; B3
{ …. }

• If B1 is not taken (i.e. aa==0@B3) and B2 is not
taken (i.e. bb=0@B3) then B3 is certainly taken

How to capture this information?

18-447-S23-L10-S17, James C. Hoe, CMU/ECE/CALCM, ©2024

Gshare Branch Prediction [McFarling]

BTB

BTB idx

N-bit

tag
table

1 0

PC+4

nextPC

=

Global Branch History Shift Register tracks the outcomes
of the last M (<N) branch instructions (dynamic)

tag

BHT

taken?

xor

M-bit

global BHSR

Bigger table used: multiple
entries for same branch

N-bit

18-447-S23-L10-S18, James C. Hoe, CMU/ECE/CALCM, ©2024

Return Address Stack
• A register-indirect jump can have different target

– same target only if fxn called repeatedly from
same call-site

– but, function call and return behavior easily
tracked by a last-in-first-out queue

• Return Address Stack
– return address is pushed when a link instruction

(i.e., JAL x1...) is executed
– when encountering PC of a return instruction (i.e.,

JALR ...x1) predict nPC from top of stack and pop
What happens when the stack overflows?

How do you know when to follow RAS vs BTB?

18-447-S23-L10-S19, James C. Hoe, CMU/ECE/CALCM, ©2024

Alpha 21264 Tournament Predictor

• Make separate predictions using local history (per
branch) and global history (correlating all branches) to
capture different branch behaviors

• A meta-predictor decides which predictor to believe
Better than 97% correct

[Fig 4, Kessler, IEEE Micro 1999]

18-447-S23-L10-S20, James C. Hoe, CMU/ECE/CALCM, ©2024

Superscalar Complications

• “Superscalar” processors need to fetch multiple
instructions per cycle

• Consider 2-way superscalar fetch scenario
(case 1) both instructions are not taken control-flow
– nPC = PC + 8
(case 2) one inst is a taken control-flow inst
– nPC = predicted target addr

note: both instructions could be control-flow;
target is for younger of predicted taken

– if 1st instruction is predicted taken, nullify 2nd

instruction fetched

18-447-S23-L10-S21, James C. Hoe, CMU/ECE/CALCM, ©2024

cache block offset

2-way Branch Predictor Sketch

Branch
History
Table
(BHT)

Branch
Target
Buffer
(BTB)

tag BTBidx

Tag
Table

=
ta

ke
n?

PC+4 PC+8

predPC

1 0

1 0

last inst in cache block?

fir
st

?
hit

18-447-S23-L10-S22, James C. Hoe, CMU/ECE/CALCM, ©2024

Trace Caching

A

B
C

D

F

G

E

10% static
90% dynamic

static 90%
dynamic 10%

A
B
C

D

E

F
G i-c

ac
he

 b
lo

ck
 b

ou
nd

ar
ie

s

A
B
C

D

F
G

tr
ac

e
ca

ch
e

bl
oc

k
bo

un
da

rie
s

compiler
static

hardware
dynamic

18-447-S23-L10-S23, James C. Hoe, CMU/ECE/CALCM, ©2024

Intel P4 Trace Cache
• A 12K-uop trace cache in place of L1 I-cache
• 6-uop per trace block, can include branches
• Trace cache returns 3-uop per cycle
• IA-32 decoder can be simpler and slower <<<

Front End BTB
4K Entries

ITLB &
Prefetcher L2 Interface

IA32 Decoder

Trace Cache
12K uop’s

Trace Cache BTB
512 Entries

18-447-S23-L10-S24, James C. Hoe, CMU/ECE/CALCM, ©2024

Ways SW can Help

• Associate static branch “hints” with opcodes
– taken vs. not-taken
– whether to allocate entry in dynamic BP hardware

• Give SW and HW joint control of BP hardware
– Intel Itanium BRP (branch prediction) instruction

issued ahead of branch to preset BTB state
• TAR (Target Address Register, Itanium)

– a small, fully-associative BTB
– controlled entirely by BRP instructions
– a hit in TAR overrides all other predictors

Relieves “urgency” by not wait to compute branch
condition and target as last inst in basic block

18-447-S23-L10-S25, James C. Hoe, CMU/ECE/CALCM, ©2024

cmp

Predicated Execution
• Intel Itanium example

– predicate register file (64 by 1-bit)
– each instruction has a predicate reg argument
– instruction is NOP if predicate is false at runtime

• Converting control flow into dataflow

br
else1
else2

br
then1
then2
join1
join2

p1 p2 cmp

join1

join2

else1p2

then2p1
else2p2

then1p1

Make sense if processors have lots of
spare resources and BP is hard

a “basic block”

18-447-S23-L10-S26, James C. Hoe, CMU/ECE/CALCM, ©2024

Interrupt Control Transfer
• Basic Part: an “unplanned” fxn call

to a “third-party” routine; and later
return control back to point of
interruption

• Tricky Part: interrupted thread
cannot anticipate/prepare for this
control transfer
– must be 100% transparent
– not enough to impose all callee-

save convention (return address??)

• Puzzling Part: why is there a hidden
routine running invisibly?

i1

i2

i3

ih2

ih3

…
.

ih1

