Carnegie Mellon

18-447 Lecture 9:
Control Hazard and Resolution

James C. Hoe
Department of ECE
Carnegie Mellon University

18-447-524-L09-S1, James C. Hoe, CMU/ECE/CALCM, ©2024

Carnegie Mellon

2-Cycle Synchronous Mem Read/Write

CLK

ADDR XXXXaddrOXaddri) addr2

RDATA XXX /Jd;{z%d/a{% data ZX XXX X new

WDATA / XXX / 7new X / XXX

/

RE—/ \
W L

this read sees

S —this write

18-447-524-L09-S2, James C. Hoe, CMU/ECE/CALCM, ©2024

200p

S

2024 Lab 2 with 7 stages

200ps

100ps

200ps

IF: Instruction fetgh ID: Instruction decode/ EX: Execute/ MEM: Memory access
register file read address calculation
p—p-{ ()
M
u
X
1
Add &
4
Read
— PC Address register 1 Read
Read data 1 e
Instrudi registek 2 st ALL Zero
nstructiol egisters
Write d;gag 0 reétkj Address %e?d
Instrgftion register ’\Lﬁl a ata
merfiory | Write X meinory
data 1
Write
data
16 /\ 32
A Sign |\

F1

F2

\@\

Carnegie Mellon

100ps
WB: Write back

ignore
......... for today

D

18-447-524-1L09-S3, James C. Hoe, CMU/ECE/CALCM, ©2024

EX

M1

M2

WB

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Carnegie Mellon

Housekeeping

e Your goal today

— “simple” control flow resolution in in-order pipelines

— there is more fun to come on this
e Notices

— HW 2, due Mon 2/19

— Lab 2, status check wk6, due wk7 (Handout #7)

Look (with your brain!!!) at the counter values

e Readings

— P&H Ch 4

18-447-524-L09-54, James C. Hoe, CMU/ECE/CALCM, ©2024

Carnegie Mellon

Control Dependence
Assembly Code

Control Flow Graph

e C-Code (linearized)

code A code A

{code A} if XeoY i Xe=

if X==Y then Tru/ wlse code C
{code B} code B code C :

s E goto

else code B
{code C} \/ :

{code D} code D code D

At ISA-level, control dependence == “data dependence on PC”

18-447-524-1L09-S5, James C. Hoe, CMU/ECE/CALCM, ©2024

Carnegie Mellon

Applying Hazard Analysis on PC

R/I-Type LW SW Bxx Jal Jalr
IF use use use use use use
ID produce | produce | produce
EX produce | produce | produce
MEM
WB

e Allinstructions read and write PC

e PC dependence distance is exactly 1

e PC hazard distance in 5-stage is at least 1
= Yes, there is RAW hazard

—> Can’t eliminate by forwarding; so must stall

18-447-524-L09-S6, James C. Hoe, CMU/ECE/CALCM, ©2024

Carnegie Mellon

Resolve Control Hazard by Stalling

To 5 2! G Ly U5 | —-
nst, |F ID J| ALU [[MEM]| WB

nst. /H/\IF ID_J[ALU [[MEM]| wB
nst, e IS F LD J AL
Inst, /H/\IF

Note: this is if decoding to non-control-flow; BR resolves in EX

18-447-524-L09-S7, James C. Hoe, CMU/ECE/CALCM, ©2024

Carnegie Mellon

Only 1 way to beat “true” dependence

To 5 2! G Ly U —-
nst, |F ID <] ALU ||MEM|| WB
nst, |F ID 4 ALU ||MEMI|[WB || WB
nst; ALU |[MEM|[_WB
nst, D [ALU |[MEM][WB
|F ID || ALU |[MEM

18-447-524-1L09-S8, James C. Hoe, CMU/ECE/CALCM, ©2024

Carnegie Mellon

Resolve Control Hazard by Guessing

nst, | IF \Ll

nst. 599 What is your best guess?

nst! """ Whatis known at this point?
J

nst,

Inst,

18-447-524-1L09-S9, James C. Hoe, CMU/ECE/CALCM, ©2024

Control Speculation for Dummies

e Guess nextPC = PC+4 to keep fetching every cycle
Is this a good guess?
e ~20% of the instruction mix is control flow
— ~50 % of “forward” control flow taken (if-then-else)
— ~90% of “backward” control flow taken (end-of-loop)
Over all, typically ~70% taken and ~30% not taken
[Lee and Smith, 1984]

e Expect “nextPC = PC+4” ~86% of the time, but what
about the remaining 14%?

What do you do when wrong?
What do you lose when wrong?

18-447-524-L09-510, James C. Hoe, CMU/ECE/CALCM, ©2024

Carnegie Mellon

Control Speculation: PC+4

nst, [IFsc ID || ALU [[MEIVI

1
nst | LLE e tt——ATU |
nst, \ - M
nst, — = == =F

control flow ___target
/reStitChed”

When inst, branch resolves

- branch target (Inst,) is fetched

- flush instructions fetched since
inst, (“wrong-path”)

18-447-524-L09-5S11, James C. Hoe, CMU/ECE/CALCM, ©2024

Inst,,

Inst,
Inst,

Inst, is a taken branch; Inst, and Inst, fetched but not executed

Carnegie Mellon

Pipeline Flush on Misprediction

tO t1 t2 t3 t4 t5
IF.. || ID || ALU [[MEM]| WB
IF..., || ID iKkilled
IF,... i killed
IFe |l 1D | ALU || WB
IF ID || ALU
IF ID
IF

Carnegie Mellon

Pipeline Flush on Misprediction

tO tl t2 t3 t4 t5 t6 t7 t8 t9 th

IF h|i|jJ|lk|l | m|n

\

S
ID h|ilbubl k| I [m| n

.

S
EX h lbubbubl k | | | m| n

A

MEM / h |bublbubl k | | | m| n
WB / h lbbublbubl k | | [m| n

/

branch resolved

18-447-524-109-513, James C. Hoe, CMU/ECE/CALCM, ©2024

Carnegie Mellon

Performance Impact

e Correct guess = no penalty most of the time!!
e |ncorrect guess = 2 bubbles
e Assume

— no data hazard stalls

— 20% control flow instructions

— 70% of control flow instructions are taken

—IPC=1/ [1+(0.20%0.7) * 2] =
=1/[1+0.14*2]1=1/1.28=0.78

—\

misprediction misprediction
rate penalty

How to reduce the two penalty terms?

18-447-524-.09-514, James C. Hoe, CMU/ECE/CALCM, ©2024

Carnegie Mellon

Reducing Mispredict Penalty

PCSre

ID/EX

r \ [W& LEX.'MEM
/ ‘ 1] e
|

—(Cum’/'_" M L i UEM/\NB
IF/ID _ > EX M] NB [
& / Branch
E; ALUSrc . =
g —/
L0 o«]
= o
nl.: PC Address 5 >/ Read E z;
L g register 1 5;‘;‘51 e = 2 %
Instruction E r%?;?&erZ) ALU :ilrJ B Read
. e] —1 Wiite Reg|sters§§gd2 > 6M resut S| Address data [Bl 1M
»| register Dat. u
P&H figure s 5T 1 :
. N Write
re S O Ive S I n Instruction /\ data
[31-0] [Imm _ - B
MEM, penalty=3 e\ P’ =
[30, 14-12] e ._(control)7
Instruction ALUOp
. (11-7] < i
Why not resolve in | | L a
ID so penalty=17?

18-447-524-L09-515, James C. Hoe, CMU/ECE/CALCM, ©2024 [P&H CO&D, COPYRIGHT 2020 Elsevier. ALL RIGHTS RESERVED.]

Carnegie Mellon

MIPS R2000 ISA Control Flow Design

e Simple address calculation based on IR only

— branch PC-offset: 16-bit full-addition

+ 14-bit half-addition

— jump PC-offset: concatenation only
e Simple branch condition based on RF

— one register relative (>, <, =) to 0

— equality between 2 registers

No addition/subtraction necessary!

Explicit ISA design choices to make possible
branch resolution in ID of a 5-stage pipeline

18-447-524-L09-S16, James C. Hoe, CMU/ECE/CALCM, ©2024

Branch Resolved in ID

Carnegie Mellon

what
about

_—~ this?

EEM/WB
WB

-

IF.Flush
(Hazard \
] detection [
k unit)
—| M IDIEX
u —
p— X WB
- EX/MEM
" _— —
Control | U M =
\/ L E |
IF'ID # + EX y
PH)]]
4 Shift
left2 | [=" N
M
—>{ u
_ X
Register: - N\
—| Instruction ALU Data
pC memory |] —~ > memory
N M
—>| u
X
/\ \T/_
Sign
@
)
u
i | HAH i
{Forwarding\—

| unit

|
)

[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

18-447-524-L09-S17, James C. Hoe, CMU/ECE/CALCM, ©2024

IPC=1/ [1+(0.2*0.7) *1]=0.88

Carnegie Mellon

Forwarding (v1): extend critical path

where to fetch next clock period (mux before PC reg)

IF IF/ID IDIEX EX/MEM
aka PC aka IR

— > —
Registers
A >ALU —
target - Inst - -
mem ” Data
M memory
[g
ForwardB
o=
rdp ID/EX.RegisterRD | EX/MEM.F
ﬁlﬂ Forwarding
A4 &Zln unit
MEM/WB.F
+4
b

18-447-524-L09-518, James C. Hoe, CMU/ECE/CALCM, ©2024 [Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Carnegie Mellon

Forwarding (v2): retiming hack

where to fetch this clock period (mux after PC reg)

IF IF/ID ID/EX EX/MEM
aka PC akalR
I j LY
> = U
R X
Registers
mem | - M Data
— >)‘j memon
[e
rsley ForwardB
rs2gy | oE—
rde, R EX/MEM.Reg
/ Forwarding | MEM/WB.Re
i <
+4 unit

[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

18-447-524-L09-519, James C. Hoe, CMU/ECE

MIPS Branch Delay Slot

Bxx r- L1 |F 1D EX
PC+4 F_J[1D
L1 if taken else PC+8 \1‘ |F

e Throwing PC+4 away cost 1 bubble; letting PC+4
finish won’t hurt performance

e R2000 jump/branch has 1 inst. architectural latency

— PC+4 after jump/branch always executed
no need for pipeline flush logic
— if delay slot always do useful work, effective IPC=1
— ~80% of “delay slots” can be filled by compilers unfilled

17 nop

IPC=1/ [1+(0.2*0.2) *1]=0.96

18-447-524-L09-520, James C. Hoe, CMU/ECE/CALCM, ©2024

Carnegie Mellon

Also MIPS Load “Delay Slot”

l;: LW x1 --- IF ID EX MEIVI‘_H' WB
l,: addi r%xl,o IF ID ?Ex NMEM|| WB
l;:addi r3,x1,0 |F ID PEX MEM|| WB

e R2000 defined LW with arch. latency of 1 inst
— invalid for |, (in LW’s delay slot) to ask for LW’s result

— any dependence on LW at least distance 2

e Delay slot vs dynamic stalling
— fill with an independent instruction (no difference)
— if not, fill with a NOP (no difference)

e MIPS=Microproc. without Interlocked Pipeline Stages
Delay slots good idea? non-atomic, uarch specific

18-447-524-L09-S21, James C. Hoe, CMU/ECE/CALCM, ©2024

Carnegie Mellon

Performance Impact

e Correct guess = no penalty most of the time!!
e |ncorrect guess = 2 bubbles; 1 if resolve in ID
e Assume

— no data hazard stalls

— 20% control flow instructions

— 70% of control flow instructions are taken

—IPC=1/[1+(0.20%0.7) *2] =

=1/[1+0.14*2]1=1/1.28=0.78

So\\le ‘ ;\0‘.
N 0.87 1 0c ae\e
6 W\

Yl Mmisprediction misprediction 0.9
about? rate penalty
Need to do more?

18-447-524-L09-S22, James C. Hoe, CMU/ECE/CALCM, ©2024

Carnegie Mellon

In case you needed motivation

Basic Pentium lll Processor Misprediction Pipeline

1 2 3 4 5 6 7 8 9 10
Fetch Fetch 4Decode Decode Decode Rename | ROB Rd‘RdyISch Dispatch Exec

Basic Pentium 4 Processor Misprediction Pipeline

19 20

1‘2‘3]4 5/6 7 8 9 10 11 12 13 14 15|16 17 |18
Br Ck Drive

TC letIP TC Fetch Drive|Alloc, Rename Que‘Sch Sch | Sch | Disp Disp | RF ' RF | Ex Flgs
1 | | | |

[The Microarchitecture of the Pentium 4 Processor,
Intel Technology Journal, 2001]

18-447-524-.09-523, James C. Hoe, CMU/ECE/CALCM, ©2024

Can we make better guesses?
(for when it is not MIPS or 5-stage)

e For control-flow instructions
— why not always guess taken since 70% correct
— need to know taken target to be helpful

e For non-control-flow instructions
— can’t do better than guessing nextPC=PC+4

— still tricky since must guess before knowing it is
control-flow or non-control-flow

e Guess nextPC from current PC alone, and fast!

e Fortunately
— instruction at same PC doesn’t change
— PC-offset target doesn’t changes
— okay to be wrong some of the time

18-447-524-109-S24, James C. Hoe, CMU/ECE/CALCM, ©2024

Carnegie Mellon

Branch Target Buffer (magic version)

e BTB

— a giant table indexed by PC
— returns the “guess” for nextPC

5 BTB e When seeing a PC first time, after
decoding, record in BTB.. ..

how big? — PC+4 if ALU/LD/ST
>1PC — PC+offset if Branch or Jump

, — 77 if Jump Indirect
Instruction

é é
Memory

e Effectively guessing branches are
always taken (and where to)

IPC=1/ [1+(0.20%0.3) * 2]
LON

18-447-524-L09-525, James C. Hoe, CMU/ECE/CALCM, ©2024 - O ' 89 |f n Ot ta ke n

Carnegie Mellon

Locality Principle to the Rescue

Temporal: after accessing A, how many other
distinct addresses before accessing A again? ¢oer

Spatial: after accessing A, how many other js moOf€
distinct addresses before accessing B? “\ocal”

“Typical” programs have strong locality in
memory references—instruction and data

we put them there ... BB, loops, arrays, structs ...

Corollary: a program with strong temporal and
spatial locality access only a compact “working
set” at any point in time

—> just need BTB big enough for hot instructions

18-447-524-L09-526, James C. Hoe, CMU/ECE/CALCM, ©2024

Carnegie Mellon

S .
- A — Sapat/a/ Joe /
j
BTB idx o 1o WS inglgy Y
xmm " Wey bj With
U ~ A ~ J(________—‘ tS
unused
N—bit/ P
b 7 BTB with .
. Mpo,. -~ - 2N entries 7> nPC
e engp: 1y
Tougy, e

e “Hash” PCinto a 2Nentry table

e What happens when two “hot” instructions
collide? No problem, as long as infrequent

18-447-524-L09-S27, James C. Hoe, CMU/ECE/CALCM, ©2024

Carnegie Mellon

Even Smaller BTB after Tagging

tag BTB idx
\ ' A\ "~ ~
// //
| 1e8 BTB
table
Add tag to tell
control-flow from T T [PC+4
10

non-control flow G

Only hold control-flow instructions (save 80% storage)
Update tag and BTB for new branch after collision

18-447-524-.09-528, James C. Hoe, CMU/ECE/CALCM, ©2024

nextPC

Carnegie Mellon

Final 5-stage RISC Datapath & Control

PCSrc
update
speculate ID/EX
< e = e
BTB / \ WB LEX/MEM
o Contro \-a- WB |
\\ ontrc M ‘ MEM/WB
\ / e =
\ /—-—/ EX M | WB [
IF/ID - |
4 — |_‘ Add Sum|
L0 o
M g
u pC -] Address S »|Read -~ g %
g register 1 ad | = E
L1 g 0 data 1 = E
i ‘g - Readl 4 it Zero > = =
nstruction = register 2 - ALU Read
memory —a i ReglslersF«_}ad R L GM result »| Address data [T — 1M
»| register data 2 i | Data u
x
Wit x memory
[| e L 4\ 2
Write
. il data
Instruction
[31-0] Imm
| Gen o _' f\ MemRead
Instruction ALU
[30, 14-12) . _(‘ control
/
Instruction ALUOp
[11-7] _ <

18-447-524-109-529, James C. Hoe, CMU/ECE/CALCM, ©2024 [Based on Figure 4.53, P&H CO&D-RV, COPYRIGHT 2020 Elsevier Inc. ALL RIGHTS RESERVED.]

