
18-447-S24-L09-S1, James C. Hoe, CMU/ECE/CALCM, ©2024

18-447 Lecture 9:
Control Hazard and Resolution

James C. Hoe
Department of ECE

Carnegie Mellon University

18-447-S24-L09-S2, James C. Hoe, CMU/ECE/CALCM, ©2024

2-Cycle Synchronous Mem Read/Write
CLK

ADDR XXX addr0 addr1 addr2

RDATA XXX data0 data1 data2 new

WDATA XXX new XXX

RE

WE

XXX

this read sees
this write

18-447-S24-L09-S3, James C. Hoe, CMU/ECE/CALCM, ©2024

2024 Lab 2 with 7 stages

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

RF
write

ignore
for today

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
dataAddress

Data
memory

1

ALU
result

M
u
x

ALU
Zero

200ps 100ps 200ps 200ps 100ps
IF: Instruction fetch ID: Instruction decode/

register file read
EX: Execute/

address calculation
MEM: Memory access WB: Write back

F1 F2 D EX M1 M2 WB

18-447-S24-L09-S4, James C. Hoe, CMU/ECE/CALCM, ©2024

Housekeeping

• Your goal today
– “simple” control flow resolution in in-order pipelines
– there is more fun to come on this

• Notices
– HW 2, due Mon 2/19
– Lab 2, status check wk6, due wk7 (Handout #7)

Look (with your brain!!!) at the counter values

• Readings
– P&H Ch 4

18-447-S24-L09-S5, James C. Hoe, CMU/ECE/CALCM, ©2024

Control Dependence

• C-Code

{ code A }
if X==Y then

{ code B }
else

{ code C }
{ code D }

Control Flow Graph

code A

if X==Y

code B code C

code D

True False

Assembly Code
(linearized)

code A

if X==Y
goto

code C

goto
code B

code D

At ISA-level, control dependence == “data dependence on PC”

18-447-S24-L09-S6, James C. Hoe, CMU/ECE/CALCM, ©2024

R/I-Type LW SW Bxx Jal Jalr

IF use use use use use use

ID

EX

MEM

WB

Applying Hazard Analysis on PC

• All instructions read and write PC
• PC dependence distance is exactly 1
• PC hazard distance in 5-stage is at least 1
 Yes, there is RAW hazard
 Can’t eliminate by forwarding; so must stall

R/I-Type LW SW Bxx Jal Jalr

IF use use use use use use

ID produce produce produce

EX produce produce produce

MEM

WB

18-447-S24-L09-S7, James C. Hoe, CMU/ECE/CALCM, ©2024

IF
t0 t1 t2 t3 t4 t5

Insth

Resolve Control Hazard by Stalling

IF
ID MEM

ID
IF

MEM
ID
IF

Instj

WB
ALU

IF
IF
ID

??
ALU

IFInsti IF
IF
t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Insth ID ALU
IF

MEM
ID
IF

WB
ALU

IF
MEM

ID
IF

WB
ALU

IF

Note: this is if decoding to non-control-flow; BR resolves in EX

18-447-S24-L09-S8, James C. Hoe, CMU/ECE/CALCM, ©2024

IF IF ID
IF

ALU
IF

MEM
ID
IF

WB
ALU

IF

IF
t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Insth ID ALU MEM WB
IF ID ALU MEM WB

Only 1 way to beat “true” dependence

IF ID ALU MEM WB
IF ID ALU MEM WB

IF ID ALU MEM

future

18-447-S24-L09-S9, James C. Hoe, CMU/ECE/CALCM, ©2024

Insti

Instj

Instk

Instl

Insth IF
t0 t1 t2 t3 t4 t5

???

Resolve Control Hazard by Guessing

PC

What is your best guess?
What is known at this point?

+4

18-447-S24-L09-S10, James C. Hoe, CMU/ECE/CALCM, ©2024

Control Speculation for Dummies
• Guess nextPC = PC+4 to keep fetching every cycle

Is this a good guess?
• ~20% of the instruction mix is control flow

– ~50 % of “forward” control flow taken (if-then-else)
– ~90% of “backward” control flow taken (end-of-loop)

Over all, typically ~70% taken and ~30% not taken
[Lee and Smith, 1984]

• Expect “nextPC = PC+4” ~86% of the time, but what
about the remaining 14%?

What do you do when wrong?
What do you lose when wrong?

18-447-S24-L09-S11, James C. Hoe, CMU/ECE/CALCM, ©2024

IFPC

t0 t1 t2 t3 t4 t5

Insth

IFPC+4Insti

ID

Instj

ALU
ID

IFPC+8

Control Speculation: PC+4

Insth branch condition and target
evaluated in ALU

first opportunity to decode Insth
as a branch; should we correct now?

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Insth ID ALU
ID

IFPC+8

ALU
ID

IFtarget

MEM

When insth branch resolves
- branch target (Instk) is fetched
- flush instructions fetched since
insth (“wrong-path”)

18-447-S24-L09-S12, James C. Hoe, CMU/ECE/CALCM, ©2024

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU
ID

IFPC+8

IFtarget

MEM

ID
IF

WB

killed
killed

ALU
ID
IF

ALU
ID
IF

WB

Pipeline Flush on Misprediction

Insth is a taken branch; Insti and Instj fetched but not executed

18-447-S24-L09-S13, James C. Hoe, CMU/ECE/CALCM, ©2024

n

m

l

k

bub

n

m

l

k

n

m

l

n

m n

m

l

k

bub

bub

l

k

bub

bub

h

k

bub

bub

h

Pipeline Flush on Misprediction

branch resolved

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

IF h i j

ID h i

EX h

MEM

WB

18-447-S24-L09-S14, James C. Hoe, CMU/ECE/CALCM, ©2024

Performance Impact
• Correct guess  no penalty most of the time!!
• Incorrect guess  2 bubbles
• Assume

– no data hazard stalls
– 20% control flow instructions
– 70% of control flow instructions are taken
– IPC = 1 / [1 + (0.20*0.7) * 2] =

= 1 / [1 + 0.14 * 2] = 1 / 1.28 = 0.78

misprediction
penalty

misprediction
rate

How to reduce the two penalty terms?

18-447-S24-L09-S15, James C. Hoe, CMU/ECE/CALCM, ©2024

Reducing Mispredict Penalty

[P&H CO&D, COPYRIGHT 2020 Elsevier. ALL RIGHTS RESERVED.]

Why not resolve in
ID so penalty=1?

P&H figure
resolves in
MEM, penalty=3

18-447-S24-L09-S16, James C. Hoe, CMU/ECE/CALCM, ©2024

MIPS R2000 ISA Control Flow Design

• Simple address calculation based on IR only
– branch PC-offset: 16-bit full-addition

+ 14-bit half-addition
– jump PC-offset: concatenation only

• Simple branch condition based on RF
– one register relative (>, <, =) to 0
– equality between 2 registers

No addition/subtraction necessary!

Explicit ISA design choices to make possible
branch resolution in ID of a 5-stage pipeline

18-447-S24-L09-S17, James C. Hoe, CMU/ECE/CALCM, ©2024

Branch Resolved in ID

PC
Instruction

memory

4

Registers

M
u
x

M
u
x

M
u
x

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Data
memory

M
u
x

Hazard
detection

unit

Forwarding
unit

IF.Flush

IF/ID

Sign
extend

Control

M
u
x

=

Shift
left 2

M
u
x

IPC = 1 / [1 + (0.2*0.7) * 1] = 0.88

[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

what
about
this?

18-447-S24-L09-S18, James C. Hoe, CMU/ECE/CALCM, ©2024

Registers

M
u
x

ALU

ID/EX

Data

memory

M
u
x

Forwarding
unit

EX/MEM

b. With forwarding

ForwardB

Rd
EX/MEM.Regis

MEM/WB.Reg

Rt
Rt
Rs

ForwardA

M
u
x

EX/MEM.RegisterRD

MEM/WB.RegisterRD

ID/EX.RegisterRDrdID

rs1ID
rs2ID

Forwarding (v1): extend critical path

[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

ID/EX EX/MEM

br
 c

on
d?

where to fetch next clock period (mux before PC reg)
IF/ID

aka IR
IF

aka PC

Inst
mem

target

+4

18-447-S24-L09-S19, James C. Hoe, CMU/ECE/CALCM, ©2024

Registers

M
u
x

ALU

ID/EX

Data

memory

M
u
x

Forwarding
unit

EX/MEM

ForwardB

Rd
EX/MEM.Reg

MEM/WB.Reg

Rt
Rt
Rs

ForwardA

M
u
x

rdEX

Forwarding (v2): retiming hack

[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

br
 c

on
d?

rs1EX

rs2EX

IF/ID
aka IR

IF
aka PC

Inst
mem

target

where to fetch this clock period (mux after PC reg)

+4

18-447-S24-L09-S20, James C. Hoe, CMU/ECE/CALCM, ©2024

??

??

Bxx r- L1

??

ID

IFPC+4

EX

ID
IFL1 if taken else PC+8

MIPS Branch Delay Slot

• Throwing PC+4 away cost 1 bubble; letting PC+4
finish won’t hurt performance

• R2000 jump/branch has 1 inst. architectural latency
– PC+4 after jump/branch always executed

no need for pipeline flush logic
– if delay slot always do useful work, effective IPC=1
– ~80% of “delay slots” can be filled by compilers

IF

IPC = 1 / [1 + (0.2*0.2) * 1] = 0.96

unfilled
nop

18-447-S24-L09-S21, James C. Hoe, CMU/ECE/CALCM, ©2024

Also MIPS Load “Delay Slot”

• R2000 defined LW with arch. latency of 1 inst
– invalid for I2 (in LW’s delay slot) to ask for LW’s result
– any dependence on LW at least distance 2

• Delay slot vs dynamic stalling
– fill with an independent instruction (no difference)
– if not, fill with a NOP (no difference)

• MIPS=Microproc. without Interlocked Pipeline Stages
Delay slots good idea? non-atomic, march specific

MEM

WBIF ID

IF

EX

ID

MEM

EX WB

I1: LW x1 ---

I2: addi r2, x1, 0

MEMIF ID EX WBI3: addi r3, x1, 0

18-447-S24-L09-S22, James C. Hoe, CMU/ECE/CALCM, ©2024

Performance Impact
• Correct guess  no penalty most of the time!!
• Incorrect guess  2 bubbles; 1 if resolve in ID
• Assume

– no data hazard stalls
– 20% control flow instructions
– 70% of control flow instructions are taken
– IPC = 1 / [1 + (0.20*0.7) * 2] =

= 1 / [1 + 0.14 * 2] = 1 / 1.28 = 0.78

misprediction
penalty

misprediction
rate

Need to do more?

how
about?

18-447-S24-L09-S23, James C. Hoe, CMU/ECE/CALCM, ©2024

In case you needed motivation

[The Microarchitecture of the Pentium 4 Processor,
Intel Technology Journal, 2001]

18-447-S24-L09-S24, James C. Hoe, CMU/ECE/CALCM, ©2024

Can we make better guesses?
(for when it is not MIPS or 5-stage)

• For control-flow instructions
– why not always guess taken since 70% correct
– need to know taken target to be helpful

• For non-control-flow instructions
– can’t do better than guessing nextPC=PC+4
– still tricky since must guess before knowing it is

control-flow or non-control-flow
• Guess nextPC from current PC alone, and fast!
• Fortunately

– instruction at same PC doesn’t change
– PC-offset target doesn’t changes
– okay to be wrong some of the time

18-447-S24-L09-S25, James C. Hoe, CMU/ECE/CALCM, ©2024

Branch Target Buffer (magic version)
• BTB

– a giant table indexed by PC
– returns the “guess” for nextPC

• When seeing a PC first time, after
decoding, record in BTB . . .
– PC + 4 if ALU/LD/ST
– PC+offset if Branch or Jump
– ?? if Jump Indirect

• Effectively guessing branches are
always taken (and where to)
IPC = 1 / [1 + (0.20*0.3) * 2]

= 0.89

Instruction
Memory

BTB

PC

If not taken

how big?

18-447-S24-L09-S26, James C. Hoe, CMU/ECE/CALCM, ©2024

Locality Principle to the Rescue

• Temporal: after accessing A, how many other
distinct addresses before accessing A again?

• Spatial: after accessing A, how many other
distinct addresses before accessing B?

• “Typical” programs have strong locality in
memory referencesinstruction and data

we put them there ... BB, loops, arrays, structs ...
• Corollary: a program with strong temporal and

spatial locality access only a compact “working
set” at any point in time

 just need BTB big enough for hot instructions

18-447-S24-L09-S27, James C. Hoe, CMU/ECE/CALCM, ©2024

Smaller BTB by Hashing

BTB with
2N entries

BTB idx

PC

unused

N-bit

• “Hash” PC into a 2N entry table
• What happens when two “hot” instructions

collide? No problem, as long as infrequent

nPC

18-447-S24-L09-S28, James C. Hoe, CMU/ECE/CALCM, ©2024

Even Smaller BTB after Tagging

BTB

BTB idx

tag
table

1 0

PC+4

nextPC

=

Only hold control-flow instructions (save 80% storage)
Update tag and BTB for new branch after collision

tag

Add tag to tell
control-flow from
non-control flow

18-447-S24-L09-S29, James C. Hoe, CMU/ECE/CALCM, ©2024

Final 5-stage RISC Datapath & Control

[Based on Figure 4.53, P&H CO&D-RV, COPYRIGHT 2020 Elsevier Inc. ALL RIGHTS RESERVED.]

BTB

speculate

update

