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Housekeeping

e Your goal today

— “simple” control flow resolution in in-order pipelines

— there is more fun to come on this
e Notices

— HW 2, due Mon 2/19

— Lab 2, status check wk6, due wk7 (Handout #7)

Look (with your brain!!!) at the counter values

e Readings

— P&H Ch 4
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Control Dependence
Assembly Code

Control Flow Graph

e C-Code (linearized)

code A code A

{code A} if XeoY i Xe=

if X==Y then Tru/ wlse code C
{code B} code B code C :

s E goto

else code B
{code C} \/ :

{code D} code D code D

At ISA-level, control dependence == “data dependence on PC”
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Applying Hazard Analysis on PC

R/I-Type LW SW Bxx Jal Jalr
IF use use use use use use
ID produce | produce | produce
EX produce | produce | produce
MEM
WB

e Allinstructions read and write PC

e PC dependence distance is exactly 1

e PC hazard distance in 5-stage is at least 1
= Yes, there is RAW hazard

—> Can’t eliminate by forwarding; so must stall
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Resolve Control Hazard by Stalling

To 5 2! G Ly U5 | —-
nst, |F ID J| ALU [[MEM]| WB

nst. /H/\IF ID_J[ALU [[MEM]| wB
nst, e IS F LD J AL
Inst, /H/\IF

Note: this is if decoding to non-control-flow; BR resolves in EX
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Only 1 way to beat “true” dependence

To 5 2! G Ly U —-
nst, |F ID <] ALU ||MEM|| WB
nst, |F ID 4 ALU ||MEMI|[ WB || WB
nst; ALU |[MEM|[_WB
nst, D [ ALU |[MEM][ WB
|F ID || ALU |[MEM
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Resolve Control Hazard by Guessing

nst, | IF \Ll

nst. 599 What is your best guess?

nst! """ Whatis known at this point?
J

nst,

Inst,
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Control Speculation for Dummies

e Guess nextPC = PC+4 to keep fetching every cycle
Is this a good guess?
e ~20% of the instruction mix is control flow
— ~50 % of “forward” control flow taken (if-then-else)
— ~90% of “backward” control flow taken (end-of-loop)
Over all, typically ~70% taken and ~30% not taken
[Lee and Smith, 1984]

e Expect “nextPC = PC+4” ~86% of the time, but what
about the remaining 14%?

What do you do when wrong?
What do you lose when wrong?
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Control Speculation: PC+4

nst, [ IFsc ID || ALU [[MEIVI

1
nst | LLE e tt——ATU |
nst, \ - M
nst, — = == =F

control flow ___target
/reStitChed”

When inst, branch resolves

- branch target (Inst,) is fetched

- flush instructions fetched since
inst, (“wrong-path”)
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Inst,,

Inst,
Inst,

Inst, is a taken branch; Inst, and Inst, fetched but not executed
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Pipeline Flush on Misprediction

tO t1 t2 t3 t4 t5
IF.. || ID || ALU [[MEM]| WB
IF..., || ID iKkilled
IF,... i killed
IFe |l 1D | ALU || WB
IF ID || ALU
IF ID
IF
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Pipeline Flush on Misprediction

tO tl t2 t3 t4 t5 t6 t7 t8 t9 th

IF h|i|jJ|lk|l | m|n

\

S
ID h|ilbubl k| I [m| n

.

S
EX h lbubbubl k | | | m| n

A

MEM / h |bublbubl k | | | m| n
WB / h lbbublbubl k | | [ m| n

/

branch resolved
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Performance Impact

e Correct guess = no penalty  most of the time!!
e |ncorrect guess = 2 bubbles
e Assume

— no data hazard stalls

— 20% control flow instructions

— 70% of control flow instructions are taken

—IPC=1/ [1+(0.20%0.7) * 2] =
=1/[1+0.14*2]1=1/1.28=0.78

—\

misprediction misprediction
rate penalty

How to reduce the two penalty terms?
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Reducing Mispredict Penalty
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MIPS R2000 ISA Control Flow Design

e Simple address calculation based on IR only

— branch PC-offset: 16-bit full-addition

+ 14-bit half-addition

— jump PC-offset: concatenation only
e Simple branch condition based on RF

— one register relative (>, <, =) to 0

— equality between 2 registers

No addition/subtraction necessary!

Explicit ISA design choices to make possible
branch resolution in ID of a 5-stage pipeline
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Branch Resolved in ID
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what
about

_—~ this?

EEM/WB
WB

-

IF.Flush
( Hazard \
] detection [
k unit )
—| M IDIEX
u —
p— X WB
- EX/MEM
" _— —
Control | U M =
\/ L E |
IF'ID # + EX y
PH ) ] ]
4 Shift
left2 | [ =" N
M
—>{ u
_ X
Register: - N\
—| Instruction ALU Data
pC memory | ] —~ > memory
N M
—>| u
X
/\ \T/_
Sign
@
)
u
i | HAH i
{Forwarding\—

| unit

|
)

[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]
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Forwarding (v1): extend critical path

where to fetch next clock period (mux before PC reg)

IF IF/ID IDIEX EX/MEM
aka PC aka IR

— > —
Registers
A >ALU —
target - Inst - -
mem ” Data
M memory
[ g
ForwardB
o=
rdp ID/EX.RegisterRD | EX/MEM.F
ﬁlﬂ Forwarding
A4 &Zln unit
MEM/WB.F
+4
b
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Forwarding (v2): retiming hack

where to fetch this clock period (mux after PC reg)

IF IF/ID ID/EX EX/MEM
aka PC akalR
I j LY
> = U
R X
Registers
mem | - M Data
— > )‘j memon
[ e
rsley ForwardB
rs2gy | oE—
rde, R EX/MEM.Reg
/ Forwarding | MEM/WB.Re
i <
+4 unit

[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]
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MIPS Branch Delay Slot

Bxx r- L1 |F 1D EX
PC+4 F_J[ 1D
L1 if taken else PC+8 \1‘ |F

e Throwing PC+4 away cost 1 bubble; letting PC+4
finish won’t hurt performance . ... ..

e R2000 jump/branch has 1 inst. architectural latency

— PC+4 after jump/branch always executed
no need for pipeline flush logic
— if delay slot always do useful work, effective IPC=1
— ~80% of “delay slots” can be filled by compilers  unfilled

17 nop

IPC=1/ [1+(0.2*0.2) *1]=0.96

18-447-524-L09-520, James C. Hoe, CMU/ECE/CALCM, ©2024



Carnegie Mellon

Also MIPS Load “Delay Slot”

l;: LW x1 --- IF ID EX MEIVI‘_H' WB
l,: addi r%xl,o IF ID ?Ex NMEM|| WB
l;:addi r3,x1,0 |F ID PEX MEM|| WB

e R2000 defined LW with arch. latency of 1 inst
— invalid for |, (in LW’s delay slot) to ask for LW’s result

— any dependence on LW at least distance 2

e Delay slot vs dynamic stalling
— fill with an independent instruction (no difference)
— if not, fill with a NOP (no difference)

e MIPS=Microproc. without Interlocked Pipeline Stages
Delay slots good idea? non-atomic, uarch specific
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Performance Impact

e Correct guess = no penalty  most of the time!!
e |ncorrect guess = 2 bubbles; 1 if resolve in ID
e Assume

— no data hazard stalls

— 20% control flow instructions

— 70% of control flow instructions are taken

—IPC=1/[1+(0.20%0.7) *2] =

=1/[1+0.14*2]1=1/1.28=0.78

So\\le ‘ ;\0‘.
N 0.87 1 0c ae\e
6 W\

Yl Mmisprediction misprediction 0.9
about? rate penalty
Need to do more?
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In case you needed motivation

Basic Pentium lll Processor Misprediction Pipeline

1 2 3 4 5 6 7 8 9 10
Fetch Fetch 4Decode Decode Decode Rename | ROB Rd‘RdyISch Dispatch Exec

Basic Pentium 4 Processor Misprediction Pipeline

19 20

1‘2‘3]4 5/6 7 8 9 10 11 12 13 14 15|16 17 |18
Br Ck Drive

TC letIP TC Fetch Drive|Alloc, Rename Que‘Sch Sch | Sch | Disp Disp | RF ' RF | Ex Flgs
1 | | | |

[The Microarchitecture of the Pentium 4 Processor,
Intel Technology Journal, 2001]
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Can we make better guesses?
(for when it is not MIPS or 5-stage)

e For control-flow instructions
— why not always guess taken since 70% correct
— need to know taken target to be helpful

e For non-control-flow instructions
— can’t do better than guessing nextPC=PC+4

— still tricky since must guess before knowing it is
control-flow or non-control-flow

e Guess nextPC from current PC alone, and fast!

e Fortunately
— instruction at same PC doesn’t change
— PC-offset target doesn’t changes
— okay to be wrong some of the time
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Branch Target Buffer (magic version)

e BTB

— a giant table indexed by PC
— returns the “guess” for nextPC

5 BTB e When seeing a PC first time, after
decoding, record in BTB.. ..

how big? — PC+4 if ALU/LD/ST
>1PC — PC+offset  if Branch or Jump

, — 77 if Jump Indirect
Instruction

é é
Memory

e Effectively guessing branches are
always taken (and where to)

IPC=1/ [1+(0.20%0.3) * 2]
LON
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Locality Principle to the Rescue

Temporal: after accessing A, how many other
distinct addresses before accessing A again? ¢oer

Spatial: after accessing A, how many other  js moOf€
distinct addresses before accessing B? “\ocal”

“Typical” programs have strong locality in
memory references—instruction and data

we put them there ... BB, loops, arrays, structs ...

Corollary: a program with strong temporal and
spatial locality access only a compact “working
set” at any point in time

—> just need BTB big enough for hot instructions
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S .
- A — Sapat/a/ Joe /
j
BTB idx o 1o WS inglgy Y
xmm " Wey bj With
U ~ A ~ J(________—‘ tS
unused
N—bit/ P
b 7 BTB with .
. Mpo,. -~ - 2N entries 7> nPC
e engp: 1y
Tougy, e

e “Hash” PCinto a 2Nentry table

e What happens when two “hot” instructions
collide? No problem, as long as infrequent
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Even Smaller BTB after Tagging

tag BTB idx
\ ' A\ "~ ~
// //
| 1e8 BTB
table
Add tag to tell
control-flow from T T [ PC+4
10

non-control flow G

Only hold control-flow instructions (save 80% storage)
Update tag and BTB for new branch after collision
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Final 5-stage RISC Datapath & Control
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»| register data 2 i | Data u
x
Wit x memory
[ | e L 4\ 2
Write
. il data
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[31-0] Imm
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[11-7] _ <
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