18-447 Lecture 8:
Data Hazard and Resolution

James C. Hoe
Department of ECE
Carnegie Mellon University

18-447-524-1.08-S1, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Housekeeping

e Your goal today

— detect and resolve data hazards in in-order
instruction pipelines

— control dependence next time
e Notices

— HW 2, due Mon 2/19

— Lab 2, status check wk6, due wk7 (Handout #7)
e Readings

— P&H Ch 4

18-447-524-1L08-S2, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Instruction Pipeline Reality

e Not identical tasks

— coalescing instruction types into one “multi-
function” pipe

— external fragmentation (some idle stages)
e Not uniform suboperations

— group or sub-divide steps into stages to minimize
variance

— internal fragmentation (some too-fast stages)

e Not independent tasks

— dependency detection and resolution

— next lecture(s)
Even more messy if not RISC

mes C. Hoe, CMU/ECE/CALCM, ©2024

Data Dependence

Data dependence
X3 < x1 op x2 Read-after-Write (RAW)

X5 < "x3 op x4

—Anti-dependence
X3 < x1 op x2 Write-after-Read (WAR)

X1Z X4 op x5
Output-dependence
<x3 < x1 op x2 Write-after-Write (WAW)

false deplendence

X3 < X6 op X7/
Don’t forget memory instructions

18-447-524-1.08-54, James C. Hoe, CMU/ECE/CALCM, ©2024

addi

addi

addi

addi

addi
addi

,x0,0

x4\ x1,0
x3ix1, 0
x4\x1, 0
x5,x1,0

x6, x1,0

Dependence vs Hazard: e.g. RAW

tO t5
IF
B
MEM
EX
IF_|[®ID
IF

18-447-524-108-S5, James C. Hoe, CMU/ECE/CALCM, ©2024

Dependence is property of program;
hazards specific to microarchitecture

Register Data Hazard Analysis

R/I-Type LW SW Bxx Jal Jalr
IF
ID read RF | read RF | read RF | read RF read RF
EX
MEM
WB write RF | write RF write RF | write RF

e For a given pipeline, when is there a register data
hazard between 2 dependent instructions?
— dependence type: RAW, WAR, WAW?
— instruction types involved?
— distance between the two instructions?

18-447-524-1L08-S6, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Hazard in In-order Pipeline

younger
o o o
° l stage X ° l * l
jo €1, RF Read joré—_ | RF Write joré—_ RF Write
: l : l : l
® ® ® ® ® ®
(((
0 . 0 . 0 .
[@ [
l stage Y l l
i:n<_ | RFWrite i:_<r, | RFRead i:n<_ | RF Write
o @ o
D o D
older RAW Hazard WAR Hazard WAW Hazard

distyependencelid) < disty,,arq(X,Y) = Hazard!!
distyependencelid) > disty,,.4(X,Y) = Safe

18-447-524-1.08-S7, James C. Hoe, CMU/ECE/CALCM, ©2024

RAW Hazard Analysis Example

R/I-Type LW SW Bxx Jal Jalr
IF
ID read RF | read RF | read RF | read RF read RF
EX
MEM
WB write RF | write RF write RF | write RF

e Older I, and younger I; have RAW hazard iff

— Iy (R/I, LW, SW, Bxx or JALR) reads a register written
by 1, (R/I, LW, or JAL/R)
— dist(l,, 1) < dist(ID, WB) = 3
What about WAW and WAR hazard?
What about memory data hazard?

18-447-524-1.08-S8, James C. Hoe, CMU/ECE/CALCM, ©2024

Pipeline Stall:
universal hazard resolution

L% t t, t; t, . -
nst, |F ID || ALU ||[MEM|| WB
nst. i IF ID || ALU ||IMEM]| WB 4&
nst, j F [e e][10][ALuS
nst, F L= F || D3
X1«
O Stall==make younger instruction
oubble . |
hubble wait until hazard passes
j: <« x1 dist(i,j)=4 1. stop all up-stream stages

2. drain all down-stream stages

CarnegieMellon

Pipeline Stall

t, [t [t |t |t |t |t |]ty |ty ty
IF i j k| k| k| k]I
ID h | i | j|jlililk]|]I
EX h | i |bubbublpubl j | k | |
MEM h | i |bublbubbubl j | k | |
WB h ilbubbubbubj k | |
It X1«

[]
: X1
18-447-524-1L08-S10, James C. Hoe, CMU/ECE/CALCM, ©2024 'l p—

Pop Quiz: What happens in this case?

L% L8] 5 £ L L ——
nst, [IF _|[ID |[ALU [[MEM|| WB
nst. i IF || ID || ALU ||MEM]| WB
nst; J I5 1D B
Inst, k IF_ T ID |[ALU |[MEM][WB<
Inst, IF || ID || ALU ||MEMR
e IF [ID [[ALUZ
j: X3 ¢X2 IF || ID <
ki _<«x1 dist(i,k)=2 F 2

18-447-524-1.08-5S11, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Stall

PCSrc

Control M | WB LNlEM/WB

EX M WB

“xcZ©

B EX/MEM

—
-

—

Branch

ALUSrc D

Zero -
ALU ALU
result

RegWrite

MemWrite

Read
register 1 Read

Read data 1
register 2

Instruction .
> Registers Read
PC memory Write data 2 fo
M
u
X
1

PC Address

MemtoReg

l Instruction

Address Readl |,

data
Data
memory

l

Oxecz ™

register

Write
data b— |

Write
data

Instruction
16 32 6
[15-0] \ Sign
N Tlextend N

MemRead

Instruction
[20-16]

Instruction
[15-11]

I R RegDst

“xc=Z2©°

— disable PC and IR latching
— set =0 and =0

18-447-524-1L08-512, James C. Hoe, CMU/ECE/CALCM, ©2024 Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

When to Stall

e Older I, and younger I; have RAW hazard iff

— Ig (R/I, LW, SW, Bxx or JALR) reads a register
written by 1, (R/I, LW, or JAL/R)

— dist(l,, 1) < dist(ID, WB) = 3
Above is about existence of hazard

e Operationally, to detect hazard in time to
prevent:

— before I; in ID reads a register, Iz needs to check if
any |, in EX, MEM or WB is going to update it

(if so, value in RF is “stale”)

Watch out for x0!!

18-447-524-1.08-513, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Stall Condition

e Helper function

(1) returns true if | uses rsl

e Stall IF and ID when

(
(
(rslp==rd,.) 8
(
(
(

18-447-524-1.08-514, James C. Hoe, CMU/ECE/CALCM, ©2024

8& (IRp) && = or
8& (IR,p) && I=x0 or
8& (IR,p) && |= or
&& (IR)p) && |= or
8& (IR,p) && 1=x0 or

8& (IR,p) && |=

It is crucial that EX, MEM and WB
continue to advance during stall

CarnegieMellon

Impact of Stall on Performance

e Each stall cycle corresponds to 1 lost ALU cycle
e A program with N instructions and S stall cycles:
average IPC=N/(N+S)
e Sdepends on
— frequency of hazard-causing dependencies
— distance between hazard-causing instruction pairs

— distance between hazard-causing dependencies

(suppose iy, i, andi, all depend on iy, once i,’s
hazard is resolved by stalling, i, and i, do not stall)

18-447-524-1.08-515, James C. Hoe, CMU/ECE/CALCM, ©2024

Sample Assembly [P&H]

for (j=i-1; j>=0 && v][j] > v[j+1]; j-=1) { }
addi $s1,5s0,-1 _ —3 stalls
for2tst: slti $t0,551,0 —a o018

exit2:

18-447-524-1.08-516, James C. Hoe, CMU/ECE/CALCM, ©2024

bne
sl
add
lw
lw

St0, Szero, exit2

ot1, 551,23 stalls
St2, Sa0, Stl
5t3, 0(5t2)
St4,4(5t2) 3 ¢talls
St0, St4, St3
St0, Szero, exit2

3 stalls

3 stalls

Ss1, Ss1, -1
for2tst

Data Forwarding (or Register Bypassing)

* What does “ADD r, r, r,” mean? Get inputs from
RF[r] and RF[r,] and put result in RF[r,]?

e But, RF is just a part of an abstraction
— a way to connect dataflow between instructions

“operands to ADD are resulting values of the last
instructions to assign to RF[ry] and RF[r,]”

— RF doesn’t have to exist/behave as a literal object!!!

e |f only dataflow matters, don’t wait for WB . ..

WB \

EX |[MEM]| WB

addi x1, x0, 0 IF ID EX*I\/IEI\/I
addi x2, x1,0 IF ID

18-447-524-.08-517, James C. Hoe, CMU/ECE/CALCM, ©2024

Resolving RAW Hazard by Forwarding

e Older I, and younger I; have RAW hazard iff

— I5 (R/I, LW, SW, Bxx or JALR) reads a register
written by I, (R/I, LW, or JAL/R)

— dist(l,, 1) < dist(ID, WB) = 3
e To detect hazard in time to prevent, before I3 in

ID reads a register, I; needs to check if any |, in
EX, MEM or WB is going to update it

e Before: Izneed to stall for I, to update RF

A hazard exits

e Now: Igneed to stall for 1, to produce result

— retrieve |, result from datapath when ready
— retrieve youngest if multiple “apparent” hazards

18-447-524-1.08-518, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

dist(i,j)=3

Forwarding Paths (v1)

ID/EX

1]

N

internal
forward?

dist(i,j)=3

rdp
rs1

| Forwarc A

v

>ALU

EX/MEM MEM/WB

dist(i,j)=2
dist(i,j)=1 Data ,
uh G (’J) memory 1M
u
X
ForwardB
ID/EX.RegisterRD EX/MEM.RegisterRD

Forwarding

rS2,, [unit

18-447-524-1.08-519, James C. Hoe, CMU/ECE/CALCM, ©2024

[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

CarnegieMellon

Forwarding Paths (v2)

ID/EX EX/MEM MEM/WB

dist(i,j)=3

ForwardA >ALU

dist(i,j)=2

] ' II

rsley ForwardB ‘
rs2ey »

dist(i,j)=1 Data | |

memory M

c

r xc Z |4 <=2)

»

rde, EX/MEM RegisterRd

Forwarding MEM/WB.RegisterRd _‘

better if EX is the fastest stage

18-447-524-1L08-520, James C. Hoe, CMU/ECE/CALCM, ©2024 [Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Forwarding Logic (for v1)

if (1=0) && (==rd,,) && then
forward writeback value from EX // dist=1
else if (1=0) && (==) && then
forward writeback value from MEM // dist=2
else if (1=0) && (==) && then
forward writeback value from WB // dist=3
else
use A // dist >3

Must prioritize young-to-old
Why doesn’t () appear?
Isn’t it bad to forward from LW in EX?

18-447-524-1.08-S21, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Data Hazard Analysis (with Forwarding)

R/I-Type LW SW Bxx Jal Jalr
IF
ID (produce)|(produce)
use use
EX produce use use use produce produce
MEM produce | (use)
WB

e Even with forwarding, RAW dependence on
immediate preceding LW results in hazard
={[rs1y==rd., a& (IRp) 8&rslpi=0] || 1€ OPactx
|

[== && (IRp)] && 1=0] }&&'

18-447-524-1.08-S22, James C. Hoe, CMU/ECE/CALCM, ©2024

Historical: MIPS Load “Delay Slot”

0 LW x1 --- IF ID EX MEMﬂ WB
l,: addi r%xl,o IF ID ?Ex NMEM| WB
l;:addi r3,x1,0 |F ID PEX MEM|| WB

e R2000 defined LW with arch. latency of 1 inst
— invalid for |, (in LW’s delay slot) to ask for LW’s result

— any dependence on LW at least distance 2

e Delay slot vs dynamic stalling
— fill with an independent instruction (no difference)
— if not, fill with a NOP (no difference)

e Can’t lose on 5-stage ... good idea?

Hint: 1. non-atomic instruction; 2. puarch influence

18-447-524-1.08-523, James C. Hoe, CMU/ECE/CALCM, ©2024

Sample Assembly [P&H]
for (j=i-1; j>=0 && v][j] > v[j+1]; j-=1) {

for2tst:

exit2:

18-447-524-1.08-S24, James C. Hoe, CMU/ECE/CALCM, ©2024

addi
slti
bne
sl
add
lw
lw

Ss1, SsO, -1

St0, Ss1, 0

St0, Szero, exit2
St1, Ssi, 2

St2, Sao, Stl

1 stall or

>t4, 4(5t2) 1 nop (MIPS)

StO, St4, St3
St0, Szero, exit2

Ss1, Ss1, -1
for2tst

CarnegieMellon

Why not very deep pipelines?
e With only 5 stages, still plenty of combinational
logic between registers

e “Superpipelining” = increase pipelining such that
even intrinsic operations (e.g. ALU, RF access,
memory access) require multiple stages

e What’s the problem? Inst,: addi x1, x0, O
Inst,: addi x2, x1, 0
L% 51 5 £ L U | —
Insty [F. || FollDa)[Dyll Eo | E[MIMIW.)[W,,
|I‘IS'C1 F Il Fu || DA D, Y E, [IM_[IM,[|W_]IWV,

18-447-524-1.08-S25, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Aside: Intel P4’s Superpipelined Adder

:\ —c
Alower > _"c;
| © S
B >N =2 —° > lower
lower — — 19
L~ | O
i
N
A 1 P S
upper | ©
4 ——>
B =_"_5 Supper
_’ |
upper (o
pp - e
EX, EX,

32-bit addition pipelined over 2 stages, BW=1/latency ¢ ,::..qq
No stall between back-to-back dependencies

18-447-524-1.08-526, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Terminology

e Dependency
— property of program
— ordering requirement between instructions
e Pipeline Hazard:
— property of uarch when interacting with program
— (potential) violation of dependencies in program
e Hazard Resolution:

— static = schedule instructions at compile time to
avoid hazards

— dynamic = detect hazard and adjust pipeline
operation Stall, Flush or Forward

18-447-524-1.08-527, James C. Hoe, CMU/ECE/CALCM, ©2024

CarnegieMellon

Dependencies and Pipelining
(architecture vs. microarchitecture)

Sequential and atomic

Instruction semantics
True dependence between two

instructions may only require
G ordering of certain sub-operations

i:
1 A

i —

Defines what is correct;
doesn’t say do it this way

18-447-524-1.08-528, James C. Hoe, CMU/ECE/CALCM, ©2024

