
18-447-S24-L05-S1, James C. Hoe, CMU/ECE/CALCM, ©2024

18-447 Lecture 5:
Performance and All That

(Uniprocessor)

James C. Hoe
Department of ECE

Carnegie Mellon University

18-447-S24-L05-S2, James C. Hoe, CMU/ECE/CALCM, ©2024

Housekeeping
• Your goal today

– appreciate the subtleties of
measuring/summarizing/comparing performance

– focus is on sequential execution performance
• L12: power&energy; L23: parallel performance

• Notices
– Lab 1, Part A, due this week
– Lab 1, Part B, due next week
– HW1, due Monday 2/5

• Readings
– P&H Ch 1.6~1.9
– P&H Appendix C for next time

18-447-S24-L05-S3, James C. Hoe, CMU/ECE/CALCM, ©2024

It’s about time

• To the first order, performance 1 / time

• Two very different kinds of performance!!
– latency = time between start and finish of a task
– throughput = number of tasks finished in a given

amount of time (a rate measure)

• Either way, shorter the time, higher the
performance, but not to be mixed up

18-447-S24-L05-S4, James C. Hoe, CMU/ECE/CALCM, ©2024

Throughput 1/Latency : Littles’ Law
• If it takes T sec to do N tasks, throughput=N/T;

latency1=T/N?
• If it takes t sec to do 1 task, latency1=t;

throughput=1/t?
• When there is concurrency, throughput1/latency

• Optimizations can tradeoff one for the other
(think bus vs F1 race car)

 t

T

 t
 t

 t

18-447-S24-L05-S5, James C. Hoe, CMU/ECE/CALCM, ©2024

Little’s Law
• L=W

– L: number of customers

– : arrival rate
– W: wait time

• In steadystate, fix any two, the third is decided

• HW system examples
– in-order instruction pipeline: ILP and RAW hazard

distance determine instruction throughput
– AXI DRAM read: latency and # outstanding

requests determine achieved BW (until peak)

In 447 language:
overlapped ops
throughput
latency

Fort Pitt Tunnel

18-447-S24-L05-S6, James C. Hoe, CMU/ECE/CALCM, ©2024

Throughput Throughput :
Overhead Amortization

• Example: using DMA to transfer on a bus
– bus throughputraw = 1 Byte / (10-9 sec) steadystate
– 10-6 sec to setup a DMA
– throuhgputeffective to send 1B, 1KB, 1MB, 1GB?

Throughput a function of transfer size due
to non-recurring start-up cost (aka overhead)

• For start-up-time=ts and throughputraw=1/t1

– throughputeffective = N / (ts + Nt1)
– if ts >> Nt1, throughputeffective N/ts

– if ts << Nt1, throughputeffective 1/t1

we say ts is “amortized” in the latter case

18-447-S24-L05-S7, James C. Hoe, CMU/ECE/CALCM, ©2024

• What are you doing during the latency period?
• Latency = hands-on time + hands-off time
• In the DMA example

– CPU is busy for the ts to program the DMA engine
– CPU has to wait Nt1 for DMA to complete
– CPU could be doing something else during Nt1 to

“hide” that latency

CPU
bus

Latency Latency : Latency Hiding

ts

Nt1

ts

Nt1

ts

18-447-S24-L05-S8, James C. Hoe, CMU/ECE/CALCM, ©2024

Sounds Like Performance

• The metrics you are most likely to see in
microprocessor marketing
– GHz (billion cycles per second)
– IPC (instruction per cycle)
– MIPS (million instructions per second)

• Incomplete and/or misleading
– GHz and IPC have wrong units (not work/time)
– MIPS and IPC are averages (depend on inst mix)
– GHz, MIPS or IPC can be improved at the expense

of each other and actual performance
e.g., 1.4GHz Intel P4 1.0GHz Intel P3?

18-447-S24-L05-S9, James C. Hoe, CMU/ECE/CALCM, ©2024

Iron Law of Processor Performance
• time/program = (inst/program) (cyc/inst) (time/cyc)

note workload dependence

• Contributing factors
– time/cyc: architecture and implementation
– cyc/inst: architecture, implementation, instruction mix
– inst/program: architecture, nature and quality of prgm

• **Note**: cyc/inst is a workload average
potentially large instantaneous variations

due to instruction type and sequence

1/IPC 1/MIPS 1/GHz

18-447-S24-L05-S10, James C. Hoe, CMU/ECE/CALCM, ©2024

When it is about more than time

18-447-S24-L05-S11, James C. Hoe, CMU/ECE/CALCM, ©2024

Tradeoff
• Other metrics of goodness beside “getting the

right answer”: performance, power/energy, cost,
risk, social factors . . . ethics . . .

• Cannot optimize individual metrics without
considering tradeoff between them

• E.g. runtime vs. energy
– may be willing to spend more energy per task to

run faster
– conversely, may be willing to run slower for less

energy per task
– but never use more energy to run slower

“…$5.8 million the value of a statistical life…” FAA

18-447-S24-L05-S12, James C. Hoe, CMU/ECE/CALCM, ©2024

1/perf

po
w

er

Pareto Front

Pareto Optimality (2D example)

All points on front are optimal (can’t do better)
How to select between them?

worse
better depends

depends

nothing
better!!

18-447-S24-L05-S13, James C. Hoe, CMU/ECE/CALCM, ©2024

Composite Metrics

• Define scalar function to reflect desiderata---
incorporate dimensions and their relationships

• E.g., energy-delay product
– can’t cheat by minimizing one ignoring other
– but is smaller really better?

be wary of relevance to application context
• Floors and ceilings

– real-life designs more often about good enough
than optimal

– e.g., meet a perf floor under a power(cost)-ceiling

Not all desires reducible to quantifiable terms!!

18-447-S24-L05-S14, James C. Hoe, CMU/ECE/CALCM, ©2024

Which Design Point is Best?
(runtime, power, energy, EDP, perf/Watt)

en
er

gy

runtime

E

C

A

B
D

Is B really lowest power?

18-447-S24-L05-S15, James C. Hoe, CMU/ECE/CALCM, ©2024

Scale Makes a Difference in Normalization

• Perf/Watt and op/J are normalized measures
– hides the scale of problem and platform
– recall, Watt perfk for some k>1

• 10 GFLOPS/Watt at 1W is a very different design
challenge than at 1KW or 1MW or 1GW
– say 10 GFLOPS/Watt on a <GPGPU,problem>
– now take 1000 GPUGPUs to the same problem
– realized perf is < 1000x (less than perfect parallelism)
– required power > 1000x (energy to move data & heat)

• Scaling down not always easier with real constraints
Pay attention to denominator of normalized metrics

18-447-S24-L05-S16, James C. Hoe, CMU/ECE/CALCM, ©2024

Comparing and Summarizing
Performance

18-447-S24-L05-S17, James C. Hoe, CMU/ECE/CALCM, ©2024

Relative Performance

• Performance = 1 / Time
– shorter latency higher performance
– higher throughput (job/time) higher performance

• Pop Quiz
if X is 50% slower than Y and TimeX=1.0s, what is
TimeY

– Case 1: TimeY = 0.5s since TimeY/TimeX=0.5
– Case 2: TimeY = 0.66666s since TimeX/TimeY=1.5

18-447-S24-L05-S18, James C. Hoe, CMU/ECE/CALCM, ©2024

Architect’s Definition of Faster

•“X is n times faster than Y” means
n = PerformanceX / PerformanceY

= ThroughputX / ThroughputY if rate
= TimeY / TimeX if latency

•“X is m% faster than Y” means
1+m/100 = PerformanceX / PerformanceY

•To avoid confusion, stick with definition of “faster”
– for case 1 say “Y is 100% faster than X”
– for case 2 say “Y is 50% faster than X”

According to H&P

18-447-S24-L05-S19, James C. Hoe, CMU/ECE/CALCM, ©2024

Architect’s Definition of Speedup

• If X is an “enhanced” version of Y, the “speedup”
due to the enhancement is

S = Timewithout enhancement / Timewith enhancement

= TimeY / TimeX

18-447-S24-L05-S20, James C. Hoe, CMU/ECE/CALCM, ©2024

Amdahl’s Law: a lesson on speedup

• If only a fraction f (of time) is speedup by s

timeimproved = timeoriginal·((1-f) + f/s)
Seffective = 1 / ((1-f) + f/s)

– if f is small, s doesn’t matter
– even when f is large, diminishing return on s;

eventually “1-f” dominates

f(1 - f)

timeoriginal

timeimproved

(1 - f) f/s

18-447-S24-L05-S21, James C. Hoe, CMU/ECE/CALCM, ©2024

Amdahl’s Law: a quiz

True or False:
An opcode X is used infrequently (less than 1 in 500
executed instructions) in an embedded workload.
Amdahl’s Law would say NOT to worry about
optimizing the executions of opcode X on a processor
designed specifically for that workload.

Hint: what does f mean in Amdahl’s Law?

18-447-S24-L05-S22, James C. Hoe, CMU/ECE/CALCM, ©2024

Summarizing Performance
• When comparing two computers X and Y, the relative

performance of X and Y depends on program executed
– X can be m% faster than Y on prog A
– X can be n% (where m!=n) faster than Y on prog B
– Y can be k% faster than X on prog C

• Which computer is faster and by how much?
– depends on which program(s) you care about
– if multiple programs, also depends their relative

importance (frequency or occupancy??)
• Many ways to summarize performance comparisons

into a single numerical measure
– know what the resulting “number” actually mean
– know when to use which to be meaningful

18-447-S24-L05-S23, James C. Hoe, CMU/ECE/CALCM, ©2024

Arithmetic Mean

• Suppose workload is applications A0,A1,…,An-1

• Arithmetic mean of run time is

– comparing AM same as comparing total run-time
caveat: longer running apps have greater

contribution than shorter running apps

• If AMX/AMY=n then Y is n times faster than X . . .
True: A0,A1,…,An-1 run equal number of times always
False: some apps run more frequently

Especially bad if most frequent apps also shortest

1

0

1 n

i
Ai

Time
n

18-447-S24-L05-S24, James C. Hoe, CMU/ECE/CALCM, ©2024

Weighted Arithmetic Mean
• Describe relative frequency of apps by weights
w0,w1,…,wn-1

– wi = number of Ai executions / total app executions

–

• Weighted AM of the run time =

• If WAMX/WAMY=n then Y is n times faster than X on
a workload characterized by w0,w1,…,wn-1

• But wi isn’t always known, so why not “normalize”

or

What does it mean though?

1
1

0

n

i
iw

1

0

n

i
Ai i

Timew

1

0

1 n

i YonA

XonA

i

i

Time

Time

n
n

n

i
YonA

XonA

i

i

Time

Time

1

0

18-447-S24-L05-S25, James C. Hoe, CMU/ECE/CALCM, ©2024

Danger of Normalized Performance
• Suppose

– A0 takes 1s on X; 10s on Y; 20s on Z
– A1 takes 1000s on X; 100s on Y; 20s on Z

normalized to Znormalized to Ynormalized to X
ZYXZYXZYX
10.50.05210.120101TimeA0
15500.21100.020.11TimeA1

[Computer Architecture: A quantitative
approach. Hennessy and Patterson]

12.7525.031.115.0510.015.051AM of ratio
11.581.580.6311.00.631.01GM of ratio

18-447-S24-L05-S26, James C. Hoe, CMU/ECE/CALCM, ©2024

Harmonic Mean
• Don’t blindly take AM of rates or normalize metrics

– 30mph drive to school (10 miles) and 90mph to
return home, roundtrip average speed is not

(30mph + 90mph)/2

• To compute average mph, expand fully
average speed = total distance / total time

= 20 / (10/30 + 10/90) = 45mph

• In case you are not confused,
– if A1@IPC1, A2@IPC2,
– what is IPCaverage if A1, A2, ... are equal

in # cyc vs # inst vs # occurrence

1

0

1
n

i i

i

Rate

w
WHM

18-447-S24-L05-S27, James C. Hoe, CMU/ECE/CALCM, ©2024

What is IPCavg of A1@IPC1 ... AN@IPCN ?

• If k cycles each:
#insttotal/#cyctotal = (kIPC1 + … + kIPCN) / (kN)

= (IPC1+… IPCN) / N

• If k instructions each:
#insttotal/#cyctotal = kN / (k/IPC1 + … + k/IPCN)

= N / (1/IPC1 + … + 1/IPCN)

• If k occurrences each: don’t know without #inst
or #cyc of a program occurrence

Forget equations, think what you want to know

18-447-S24-L05-S28, James C. Hoe, CMU/ECE/CALCM, ©2024

Standard Benchmarks
• Why standard benchmarks?

– everyone cares about different applications
(different aspects of performance)

– your application may not be available for the
machine you want to study

• E.g. SPEC Benchmarks (www.spec.org)
– a set of “realistic”, general-purpose, public-domain

applications chosen by a multi-industry committee
– updated every few year to reflect changes in usage

and technology
– a sense of objectivity and predictive power

Everyone knows it is not perfect, but at least
everyone plays/cheats by the same rules

18-447-S24-L05-S29, James C. Hoe, CMU/ECE/CALCM, ©2024

SPEC CPU Benchmark Suites
• CINT2006 (C or C++)

perlbench (prog lang), bzip2 (compress), gcc (compile),mcf
(optimize), gobmk (go), hmmer (gene seq. search), sjeng (chess),
libquantum (physics sim.), h264ref (video compress), omnetpp
(discrete event sim.), astar (path-finding), xalancbmk (XML)

• CFP2006 (F77/F90 unless otherwise noted)
bwaves (CFD), gamess (quantum chem), milc (C, QCD), zeusmp
(CFD), gromacs (C+Fortran, molecular dyn), cactusADM
(C+Fortran, relativity), leslie3d (CFD), namd (C++, molecular dyn),
dealII (C++, finite element), soplex (C++, Linear Programming),
povray (C++, Ray-trace), calculix (C+Fortran, Finite element),
GemsFDTD (E&M), tonto (quantum chem), lbm (C, CFD), wrf
(C+Fortran, weather), sphinx3 (C, speech recog)

• Reports GM of performance normalized to a 1997-
era 296MHz Sun UltraSparc II

(http://www.spec.org/cpu2006)

18-447-S24-L05-S30, James C. Hoe, CMU/ECE/CALCM, ©2024

Performance Recap
• There is no one-size-fits-all methodology

– be sure you understand what you want to measure
– be sure you understand what you measured
– be sure what you report is accurate and

representative
– be ready to come clean with raw data

• No one believes your numbers anyway
– explain what effect you are trying to measure
– explain what and how you actually measured
– explain how performance is summarized and

represented
When it matters, people will check for themselves

18-447-S24-L05-S31, James C. Hoe, CMU/ECE/CALCM, ©2024

Most important is to be truthful

We, the members of the IEEE, in recognition of the
importance of our technologies . . . do hereby commit
ourselves to the highest ethical and professional
conduct and agree:

7. to be honest and realistic in stating claims or
estimates based on available data;

--- Paragraph 7.8 IEEE Code of Ethics, IEEE Policies

Bad to fool others; even worse to fool yourself

