
18-447-S24-L03-S1, James C. Hoe, CMU/ECE/CALCM, ©2024

18-447 Lecture 3:
RISC-V Instruction Set Architecture

James C. Hoe
Department of ECE

Carnegie Mellon University

18-447-S24-L03-S2, James C. Hoe, CMU/ECE/CALCM, ©2024

Housekeeping
• Your goal today

– get bootstrapped on RISC-V RV32I to start Lab 1
(will return to visit general ISA issues on 4th meeting)

• Notices
– Check Canvas and Piazza regularly
– Student survey (on Canvas), due next Wed
– H02: Lab 1, Part A, due Week 3
– H03: Lab 1, Part B, due Week 4

• Readings
– P&H Ch2 (for today)
– P&H Ch4.1~4.4 (for next time)

18-447-S24-L03-S3, James C. Hoe, CMU/ECE/CALCM, ©2024

What we mean by “architecture”?
(with quotes)

18-447-S24-L03-S4, James C. Hoe, CMU/ECE/CALCM, ©2024

How to specify a clock design?
function/performance/implementation

• “Architecture”
– a clock has an hour hand and a minute hand,

Can read a clock w.o. knowing how it keeps time
Can make a clock w.o. knowing how time is used

• Microarchitecture (think blueprint)
– a particular clockwork has a certain set of gears

arranged in a certain configuration
• Realization

– machined alloy gears vs stamped sheet metal

physical
conceptual

M
us

t u
nd

er
st

an
d

al
l t

o
de

si
gn

 a
 g

oo
d

cl
oc

k

[Computer Architecture, Blaauw and Brooks, 1997]

18-447-S24-L03-S5, James C. Hoe, CMU/ECE/CALCM, ©2024

How to specify a computer design?
• “Architecture”

– a computer does ….????….

Can read a clock w.o. knowing how it keeps time
Can make a clock w.o. knowing how time is used

• Microarchitecture (think blueprint)
– a particular computer design has a certain

datapath and a certain control logic

• Realization
– CMOS vs ECL vs vacuum tubes

[Computer Architecture, Blaauw and Brooks, 1997]

physical
conceptual
Co

m
pu

te
r A

rc
hi

te
ct

ur
e

18-447-S24-L03-S6, James C. Hoe, CMU/ECE/CALCM, ©2024

Stored Program Architecture
a.k.a. von Neumann

• Memory holds both program and data
– instructions and data in a linear memory array
– instructions can be modified as data

• Sequential instruction processing
1. program counter (PC) identifies current instruction
2. fetch instruction from memory
3. update state (e.g. PC and memory) as a function of

current state according to instruction
4. repeat

…

program counter

0 1 2 3 4 5 . . .

Dominant paradigm since its conception

18-447-S24-L03-S7, James C. Hoe, CMU/ECE/CALCM, ©2024

Instruction Set Architecture (ISA):
A Concrete Specification

[images from Wikipedia]

18-447-S24-L03-S8, James C. Hoe, CMU/ECE/CALCM, ©2024

“ISA” in a nut shell
• A stable programming target (to last for decades)

– binary compatibility for SW investments
– permits adoption of foreseeable technology

Better to compromise immediate optimality for
future scalability and compatibility

• Dominant paradigm has been “von Neumann”
– programmer-visible state: mem, registers, PC, etc.
– instructions to modified state; each prescribes

• which state elements are read
• which state elementsincluding PCupdated
• how to compute new values of update state

Atomic, sequential, in-order

18-447-S24-L03-S9, James C. Hoe, CMU/ECE/CALCM, ©2024

3 Instruction Classes (as convention)
• Arithmetic and logical operations

– fetch operands from specified locations
– compute a result as a function of the operands
– store result to a specified location
– update PC to next sequential instruction address

• Data “movement” operations (no compute)
– fetch operands from specified locations
– store operand values to specified locations
– update PC to next sequential instruction address

• Control flow operations (affects only PC)
– fetch operands from specified locations
– compute a branch condition and a target address
– if “branch condition is true” then PC target address

else PC next seq. inst addr

18-447-S24-L03-S10, James C. Hoe, CMU/ECE/CALCM, ©2024

Complete “ISA” Picture
• User-level ISA

– state and instructions available to user programs
– single-user abstraction on top a “virtualization”

For this course and for now, RV32I of RISC-V

• “Virtual Environment” Architecture
– state and instructions to control virtualization

(e.g., caches, sharing)
– user-level, but for need-to-know uses

• “Operating Environment” Architecture
– state and instructions to implement virtualization
– privileged/protected access reserved for OS system

arch

18-447-S24-L03-S11, James C. Hoe, CMU/ECE/CALCM, ©2024

RV32I Programmer-Visible State

M[0]
M[1]
M[2]
M[3]
M[4]

M[N-1]

232 by 8-bit locations (4 GBytes)
indexed using 32-bit “byte” addresses

(take this literally for now; magic to come)

program counter
32-bit “byte” address
of current instruction

note x0=0
x1
x2

general purpose
register file

32x 32-bit words
named x0...x31

18-447-S24-L03-S12, James C. Hoe, CMU/ECE/CALCM, ©2024

• Assembly (e.g., register-register addition)
ADD rd, rs1, rs2

• Machine encoding: R-type

• Semantics
– GPR[rd] GPR[rs1] + GPR[rs2]
– PC PC + 4

• Exceptions: none (ignore carry and overflow)
• Variations

– Arithmetic: {ADD, SUB}
– Compare: {signed, unsigned} set if less than
– Logical: {AND, OR, XOR}
– Shift: {Left, Right-Logical, Right-Arithmetic}

Register-Register ALU Instructions

0000000
7-bit

rs2
5-bit

000
3-bit

0110011
7-bit

rs1
5-bit

rd
5-bit

18-447-S24-L03-S13, James C. Hoe, CMU/ECE/CALCM, ©2024

R-Type Reg-Reg Instruction Encodings

[The RISC-V Instruction Set Manual]

32-bit R-type ALU

18-447-S24-L03-S14, James C. Hoe, CMU/ECE/CALCM, ©2024

Assembly Programming 101

• Break down high-level program expressions into a
sequence of elemental operations

• E.g. High-level Code

f = (g + h) – (i + j)

• Assembly Code
– suppose f, g, h, i, j are in rf, rg, rh, ri, rj

– suppose rtemp is a free register
add rtemp rg rh # rtemp = g+h

add rf ri rj # rf = i+j

sub rf rtemp rf # f = rtemp – rf

18-447-S24-L03-S15, James C. Hoe, CMU/ECE/CALCM, ©2024

Reg-Immediate ALU Instructions
• Assembly (e.g., reg-immediate additions)

ADDI rd, rs1, imm12
• Machine encoding: I-type

• Semantics
– GPR[rd] GPR[rs1] + sign-extend (imm)
– PC PC + 4

• Exceptions: none (ignore carry and overflow)
• Variations

– Arithmetic: {ADDI, SUBI}
– Compare: {signed, unsigned} set if less than
– Logical: {ANDI, ORI, XORI}
– **Shifts by unsigned imm[4:0]: {SLLI, SRLI, SRAI}

imm[11:0]
12-bit

000
3-bit

0010011
7-bit

rs1
5-bit

rd
5-bit

18-447-S24-L03-S16, James C. Hoe, CMU/ECE/CALCM, ©2024

I-Type Reg-Immediate ALU Inst. Encodings

[The RISC-V Instruction Set Manual]

32-bit I-type ALU

sign-extended immediate

Note: SLTIU does unsigned compare with sign-extended immediate

unsigned matches
R-type encoding

18-447-S24-L03-S17, James C. Hoe, CMU/ECE/CALCM, ©2024

Load-Store Architecture

• RV32I ALU instructions
– operates only on register operands
– next PC always PC+4

• A distinct set of load and store instructions
– dedicated to copying data between register and

memory
– next PC always PC+4

• Another set of “control flow” instructions
– dedicated to manipulating PC (branch, jump, etc.)
– does not affect memory or other registers

18-447-S24-L03-S18, James C. Hoe, CMU/ECE/CALCM, ©2024

Load Instructions
• Assembly (e.g., load 4-byte word)

LW rd, offset12(base)
• Machine encoding: I-type

• Semantics
– byte_address32 = sign-extend(offset12) + GPR[base]
– GPR[rd] MEM32[byte_address]
– PC PC + 4

• Exceptions: none for now
• Variations: LW, LH, LHU, LB, LBU

e.g., LB :: GPR[rd] sign-extend(MEM8[byte_address])
LBU :: GPR[rd] zero-extend(MEM8[byte_address])

RV32I is byte-addressable, little-endian (until v20191213)

offset[11:0]
12-bit

010
3-bit

0000011
7-bit

base
5-bit

rd
5-bit

rs1

18-447-S24-L03-S19, James C. Hoe, CMU/ECE/CALCM, ©2024

When data size > address granularity
• 32-bit signed or unsigned integer word is 4 bytes
• By convention we “write” MSB on left: 0x40:49:0f:db

• On a byte-addressable machine
Big Endian Little Endian

• What difference does it make?

8-bit 8-bit 8-bit 8-bit
LSB

(least significant)
MSB

(most significant)

byte 0 byte 1 byte 2 byte 3
MSB LSB

byte 4 byte 5 byte 6 byte 7
byte 8 byte 9 byte 10 byte 11

byte 12 byte 13 byte 14 byte 15
byte 16 byte 17 byte 18 byte 19

MSB LSB
byte 0byte 1byte 2byte 3
byte 4byte 5byte 6byte 7
byte 8byte 9byte 10byte 11

byte 12byte 13byte 14byte 15
byte 16byte 17byte 18byte 19

pointer points to the big end pointer points to the little end

18-447-S24-L03-S20, James C. Hoe, CMU/ECE/CALCM, ©2024

Load/Store Data Alignment

• Access granularity not same as addressing granularity
– physical implementations of memory and memory

interface optimize for natural alignment boundaries
(i.e., return an aligned 4-byte word per access)

– unaligned loads or stores would require 2 separate
accesses to memory

• Common for RISC ISAs to disallow misaligned
loads/stores; if necessary, use a code sequence of
aligned loads/stores and shifts

• RV32I (until v20191213) allowed misaligned loads/
stores but warns it could be very slow; if necessary, . . .

byte-3 byte-2 byte-1 byte-0
byte-7 byte-6 byte-5 byte-4

MSB LSB

18-447-S24-L03-S21, James C. Hoe, CMU/ECE/CALCM, ©2024

Store Instructions
• Assembly (e.g., store 4-byte word)

SW rs2, offset12(base)
• Machine encoding: S-type

• Semantics
– byte_address32 = sign-extend(offset12) + GPR[base]
– MEM32[byte_address] GPR[rs2]
– PC PC + 4

• Exceptions: none for now
• Variations: SW, SH, SB

e.g., SB:: MEM8[byte_address] (GPR[rs2])[7:0]

offset[11:5]
7-bit

rs2
5-bit

010
3-bit

0100011
7-bit

base
5-bit

ofst[4:0]
5-bit

18-447-S24-L03-S22, James C. Hoe, CMU/ECE/CALCM, ©2024

Assembly Programming 201

• E.g. High-level Code
A[8] = h + A[0]

where A is an array of integers (4 bytes each)

• Assembly Code
– suppose &A, h are in rA, rh

– suppose rtemp is a free register
LW rtemp 0(rA) # rtemp = A[0]

add rtemp rh rtemp # rtemp = h + A[0]

SW rtemp 32(rA) # A[8] = rtemp
note A[8] is 32 bytes
from A[0]

18-447-S24-L03-S23, James C. Hoe, CMU/ECE/CALCM, ©2024

Load/Store Encodings

• Both needs 2 register operands and 1 12-bit
immediate

[The RISC-V Instruction Set Manual]

18-447-S24-L03-S24, James C. Hoe, CMU/ECE/CALCM, ©2024

RV32I Immediate Encoding
• Most RISC ISAs use 1 register-immediate format

– rt field used as a source (e.g., store) or dest (e.g., load)
– also common to opt for bigger 16-bit immediate

• RV32I adopts 2 different register-immediate formats
(I vs S) to keep rs2 operand at inst[24:20] always

• RV32I encodes immediate in non-consecutive bits

opcode
6-bit

rs
5-bit

rt
5-bit

immediate
16-bit

18-447-S24-L03-S25, James C. Hoe, CMU/ECE/CALCM, ©2024

• All instructions 4-byte long and 4-byte aligned in mem
• R-type: 3 register operands

• I-type: 2 register operands (with dest) and 12-bit imm

• S/B-type: 2 register operands (no dest) and 12-bit imm

• U/J-type, 1 register operand (dest) and 20-bit imm

Aimed to simplify decoding and field extraction

RV32I Instruction Formats

18-447-S24-L03-S26, James C. Hoe, CMU/ECE/CALCM, ©2024

Control Flow Instructions

• C-Code

{ code A }
if X==Y then

{ code B }
else

{ code C }
{ code D }

code A

if X==Y

code B code C

code D

Control Flow Graph

True False

Assembly Code
(linearized)

code A

if X==Y
goto

code C

goto

code B

code D

basic blocks (1-way in, 1-way out, all or nothing)

18-447-S24-L03-S27, James C. Hoe, CMU/ECE/CALCM, ©2024

(Conditional) Branch Instructions
• Assembly (e.g., branch if equal)

BEQ rs1, rs2, imm13 Note: implicit imm[0]=0
Note: real assembler expects a target label or address

• Machine encoding: B-type

• Semantics
– target = PC + sign-extend(imm13)
– if GPR[rs1]==GPR[rs2] then PC target

else PC PC + 4
How far can you jump?

• Exceptions: misaligned target (4-byte) if taken
• Variations

– BEQ, BNE, BLT, BGE, BLTU, BGEU

imm[12|10:5]
7-bit

rs2
5-bit

000
3-bit

1100011
7-bit

rs1
5-bit

imm[4:1|11]
5-bit

18-447-S24-L03-S28, James C. Hoe, CMU/ECE/CALCM, ©2024

• E.g. High-level Code
if (i == j) then

e = g
else

e = h
f = e

• Assembly Code
– suppose e, f, g, h, i, j are in re, rf, rg, rh, ri, rj

bne ri rj L1 # L1 and L2 are addr labels
assembler computes offset

add re rg x0 # e = g
beq x0 x0 L2 # goto L2 unconditionally

L1: add re rh x0 # e = h
L2: add rf re x0 # f = e

Assembly Programming 301

fork

then

else

join

18-447-S24-L03-S29, James C. Hoe, CMU/ECE/CALCM, ©2024

• If you write C code:
for (int i=0; i<16; i++) {
sum+=A[i];

}

• GCC –O generates code for:
for (int* a=&A[0]; a<&A[16]; a++) {
sum+=*a;

}

• Assembly Code (suppose sum, A, a are in rsum, rA, ra)
addi ra rA 0 # a=&A[0]

L1: lw rtmp 0(ra) # sum+=*a
add rsum rsum rtmp
addi ra ra 4 # a++
addi rtmp rA 64 # tmp=&A[16]
bltu ra rtmp L1

Assembly Programming 302

18-447-S24-L03-S30, James C. Hoe, CMU/ECE/CALCM, ©2024

Function Call and Return
......

A: BEQ x0, x0, F
......
......

B: BEQ x0, x0, F
......

F:
......
......
BEQ x0, x0, A+4

?

A function return need to 1. jump back to different callers
2. know where to jump back to

18-447-S24-L03-S31, James C. Hoe, CMU/ECE/CALCM, ©2024

Jump and Link Instruction

• Assembly
JAL rd imm21 Note: implicit imm[0]=0

Note: real assembler expects a target label or address

• Machine encoding: J-type

• Semantics
– target = PC + sign-extend(imm21)
– GPR[rd] PC + 4
– PC target How far can you jump?

• Exceptions: misaligned target (4-byte)

1101111
7-bit

imm[20|10:1|11|19:12]
20-bit

rd
5-bit

18-447-S24-L03-S32, James C. Hoe, CMU/ECE/CALCM, ©2024

Jump Indirect Instruction
• Assembly

JALR rd, rs1, imm12

• Machine encoding: I-type

• Semantics
– target = GPR[rs1] + sign-extend(imm12)
– target &= 0xffff_fffe
– GPR[rd] PC + 4
– PC target How far can you jump?

• Exceptions: misaligned target (4-byte)

imm[11:0]
12-bit

000
3-bit

1100111
7-bit

rs1
5-bit

rd
5-bit

18-447-S24-L03-S33, James C. Hoe, CMU/ECE/CALCM, ©2024

Assembly Programming 401

• Acall Breturn Ccall Breturn D
• How do you pass argument between caller and callee?
• If A set x10 to 1, what is the value of x10 when B returns

to C?
• What registers can B use?
• What happens to x1 if B calls another function

Callee
_myfxn: ... code B ...

JALR x0,x1,0

Caller
... code A ...

JAL x1, _myfxn

... code C ...

JAL x1, _myfxn

... code D ...

18-447-S24-L03-S34, James C. Hoe, CMU/ECE/CALCM, ©2024

Caller and Callee Saved Registers
• Callee-Saved Registers

– caller says to callee, “The values of these registers
should not change when you return to me.”

– callee says, “If I need to use these registers, I
promise to save the old values to memory first and
restore them before I return to you.”

• Caller-Saved Registers
– caller says to callee, “If there is anything I care

about in these registers, I already saved it myself.”
– callee says to caller, “Don’t count on them staying

the same values after I am done.
• Unlike endianness, this is not arbitrary

When to use which?

18-447-S24-L03-S35, James C. Hoe, CMU/ECE/CALCM, ©2024

RISC-V Register Usage Convention

[The RISC-V Instruction Set Manual]

18-447-S24-L03-S36, James C. Hoe, CMU/ECE/CALCM, ©2024

stack pointer
GPR[x2]

Memory Usage Convention

static data

text

reserved

free space

stack space

dynamic data

grow down

grow up

low address

high address

binary executable

18-447-S24-L03-S37, James C. Hoe, CMU/ECE/CALCM, ©2024

1. caller saves caller-saved registers
2. caller loads arguments into a0~a7 (x10~x17)
3. caller jumps to callee using JAL x1

4. callee allocates space on the stack (dec. stack pointer)
5. callee saves callee-saved registers to stack

6. callee loads results to a0, a1 (x10, x11)
7. callee restores saved register values
8. JALR x0, x1

9. caller continues with return values in a0, a1

Basic Calling Convention

....... body of callee (can “nest” additional calls)

pr
ol

og
ue

ep
ilo

gu
efu

nc
tio

n

18-447-S24-L03-S38, James C. Hoe, CMU/ECE/CALCM, ©2024

Terminologies
• Instruction Set Architecture

– machine state and functionality as observable and
controllable by the programmer

• Instruction Set
– set of commands supported

• Machine Code
– instructions encoded in binary format
– directly consumable by the hardware

• Assembly Code
– instructions in “textual” form, e.g. add r1, r2, r3
– converted to machine code by an assembler
– one-to-one correspondence with machine code

(mostly true: compound instructions, labels)

18-447-S24-L03-S39, James C. Hoe, CMU/ECE/CALCM, ©2024

We didn’t talk about

• Privileged Modes
– user vs. supervisor

• Exception Handling
– trap to supervisor handling routine and back

• Virtual Memory
– each process has 4-GBytes of private, large, linear

and fast memory?

• Floating-Point Instructions

