18-447 Lecture 23:
 Illusiveness of Parallel Performance

James C. Hoe
Department of ECE
Carnegie Mellon University

Housekeeping

- Your goal today
- peel back simplifying assumptions to understand parallel performance (or the lack of)
- Notices
- HW5, due Friday 4/26 midnight
- get going on Lab 4, just 8 days left
- Final Exam, May 3 Friday, 1-3:30pm
- Readings
- P\&H Ch 6
- LogP: a practical model of parallel computation, Culler, et al. (advanced optional)

Format of Final Exam

- Comprehensive in coverage, HW, labs, assigned readings (from textbooks and papers)
- Types of questions
- freebies: remember the materials
- >> probing: understand the materials <<
- applied: apply the materials in original interpretation
- **150 minutes, 150 points**
- point values calibrated to time needed
- closed-book, three $81 / 2 \times 11-$ in 2 hand-written cribsheets
- no electronics
- use pencil or black/blue ink only
- No writing on the back of exam packet

Continuing from Last Lecture

- Parallel Thread Code (Last Lecture)

```
void *sumParallel(void *_id) {
    long id=(long) _id;
    psum[id]=0;
    for(long i=0;i<(ARRAY_SIZE/p);i++)
        psum[id]+=A[id*(ARRAY_SIZE/p) + i];
}
```

- Assumed " + " takes 1 unit-time; everything else free

$$
\begin{aligned}
& T_{1}=10,000 \\
& T_{\infty}=\left\lceil\log _{2} 10,000\right\rceil=14 \\
& P_{\text {average }}=714
\end{aligned}
$$

Need for more detailed analysis

- What cost were left out in "everything else"?
- explicit cost: need to charge for all operations (branches, LW/SW, pointer calculations)
- implicit cost: **communication and synchronization**
- PRAM model (Parallel Random Access Machine) capture cost/rate of parallel processing but assumes
- zero latency and infinite bandwidth to share data between processors
- zero processor overhead to send and receive
Useful when analyzing
algorithms but not enough

Memory

Performance Scaling

Parallelism Defined

- T_{1} (work measured in time):
- time to do work with 1 PE
- T_{∞} (critical path):
- time to do work with infinite PEs
- T_{∞} bounded by dataflow dependence
- Average parallelism:

$$
P_{\mathrm{avg}}=T_{1} / T_{\infty}
$$

- For a system with p PEs

$$
T_{p} \geq \max \left\{T_{1} / p, T_{\infty}\right\}
$$

- When $P_{\text {ank }} \gg{ }^{2}$

$$
\begin{aligned}
& x=a+b ; \\
& y=b * 2 \\
& z=(x-y)^{*}(x+y)
\end{aligned}
$$

[Shiloach\&Vishkin]

"Ideal" Linear Parallel Speedup

- Ideally, parallel speedup linear with p

$$
\text { Speedup }=\frac{\text { time }_{\text {sequential }}}{\text { time }_{\text {parallel }}}
$$

Non-Ideal Speed Up

Parallelism Defined

- T_{1} (work measured in time):
- time to do work with 1 PE
- T_{∞} (critical path):
- time to do work with infinite PEs
- T_{∞} bounded by dataflow dependence
- Average parallelism:

- For a system with p PEs

$$
T_{p} \geq \max \left\{T_{1} / p, T_{\infty}\right\}
$$

- When $\mathrm{P}_{\mathrm{avg}} \gg \mathrm{p}$

$$
T_{p} \approx T_{1} / p, \text { aka "linear speedup" }
$$

$$
\begin{aligned}
& x=a+b ; \\
& y=b * 2 \\
& z=(x-y) *(x+y)
\end{aligned}
$$

[Shiloach\&Vishkin]

Amdahl's Law: a lesson on speedup

- If only a fraction f (of time) is speedup by s

- if f is small, s doesn't matter
- even when f is large, diminishing return on s; eventually "1-f" dominates

Non-Ideal Speed Up

Cheapest algo may not be the most scalable, s.t. time $_{\text {parallel-algo } @ p=1}=K \cdot$ time $_{\text {sequential-algo }}$ where $\mathrm{K}>1$ and

Speedup $=p / K$

Very Non-Ideal Speed Up

Communication not Free

- PE may spend extra time
- in the act of sending or receiving data
- waiting for data to be transferred from another PE
- latency: data coming from far away
- bandwidth: data coming thru finite channel
- waiting for another PE to get to a particular point of the computation (a.k.a. synchronization)

How does communication cost grow with \boldsymbol{T}_{1} ? How does communication cost grow with p?

Strong vs. Weak Scaling

- Strong Scaling
- what is S_{p} as p increases for constant work, T_{1} run same workload faster on new larger system
- harder to speedup as (1) p grows toward $P_{\text {avg }}$ and (2) communication cost increases with p
- Weak Scaling
- what is S_{p} as \mathbf{p} increases for larger work, $\mathrm{T}_{1}{ }^{\prime}=\mathrm{p} \cdot \mathrm{T}_{1}$ run a larger workload faster on new larger system
$-S_{p}=$ time $_{\text {sequential }}\left(p \cdot T_{1}\right) /$ time $_{\text {parallel }}\left(p \cdot T_{1}\right)$
- Which is easier depends on
- how $\mathrm{P}_{\text {avg }}$ scales with work size $\mathrm{T}_{1}{ }^{\prime}$
- relative scaling of bottlenecks (storage, BW, etc)

Arithmetic Intensity: Modeling Communication as "Lump" Cost

Not All Parallelism Created Equally

Arithmetic Intensity

- An algorithm has a cost in terms of operation count
- runtime ${ }_{\text {compute-bound }}=$ \# operations / FLOPS
- An algorithm also has a cost in terms of number of bytes communicated (ld/st or send/receive)
- runtime BW-bound $=\#$ bytes $/$ BW
- Which one dominates depends on
- ratio of FLOPS and BW of platform
- ratio of ops and bytes of algorithm
- Average Arithmetic Intensity (AI)
- how many ops performed per byte accessed
- \# operations / \# bytes

Roofline Performance Model

[Williams\&Patterson, 2006]

$$
\begin{aligned}
& \text { cost for CPu to } \\
& \text { communicate } \\
& \text { with memory }
\end{aligned}
$$

Parallel Sum Revisited with AI

- Last lecture we said
- 100 threads perform 100 +'s each in parallel, and
- between 1~7 (plus a few) +'s each in the parallel reduction
$-\mathrm{T}_{100}=100+7$
$-\mathrm{S}_{100}=93.5$
- Now we see (assume 1 op per cycle per thread)
- AI is a constant, 1 op / 8 bytes (for doubles)
- Let BW ${ }_{\text {cyc }}$ be total bandwidth (byte/cycle) shared by threads on a multicore

$$
\operatorname{Perf}_{\mathrm{p}}<\min \left\{\mathrm{p} \text { ops/cycle, AI*BW }{ }_{\text {cyc }}\right\}
$$

- useless to parallelize beyond $p>\mathrm{BW}_{\text {cyc }} / 8$

Interesting AI Example: MMM

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++) \\
& \quad \text { for }(j=0 ; j<N ; j++) \\
& \quad \text { for }(k=0 ; k<N ; k++) \\
& \quad C[i][j]+=A[i][k] * B[k][j] ;
\end{aligned}
$$

- N^{2} data-parallel dot-product's
- Assume N is large s.t. 1 row/col too large for on-chip
- Operation count: N^{3} float-mult and N^{3} float-add
- External memory access (assume 4-byte floats)
- $2 \mathrm{~N}^{3} 4$-byte reads (of A and B) from DRAM
- . . . N \mathbf{N}^{2} 4-byte writes (of C) to DRAM ...
- Arithmetic Intensity $\approx 2 \mathrm{~N}^{3} /\left(4 \cdot 2 \mathrm{~N}^{3}\right)=1 / 4$

More Interesting AI Example: MMM

$$
\begin{aligned}
& \text { for (i0=0; i0<N; iO+=N }{ }_{b} \text {) } \\
& \text { for (j0=0; j0<N; j0+=N }{ }_{b} \text {) } \\
& \text { for (k0=0; } \mathrm{k} 0<\mathrm{N} ; \mathrm{k} 0+=\mathrm{N}_{\mathrm{b}} \text {) \{ } \\
& \text { for (i=i0;i<i0+N } \mathrm{N}_{\mathrm{b}} \text {;i++) } \\
& \text { for (} \mathrm{j}=\mathrm{j} 0 ; \mathrm{j}<\mathrm{j} 0+\mathrm{N}_{\mathrm{b}} ; \mathrm{j}++ \text {) } \\
& \text { for (} k=k 0 ; k<k 0+N_{b} ; k++ \text {) } \\
& \text { C[i][j]+=A[i][k]*B[k][j]; }
\end{aligned}
$$

\}

- Imagine a ${ }^{\prime} \mathrm{N} / \mathrm{N}_{\mathrm{b}}{ }^{\prime} \mathrm{x}^{\prime} \mathrm{N} / \mathrm{N}_{\mathrm{b}}{ }^{\prime}$ MATRIX of $\mathrm{N}_{\mathrm{b}} \mathrm{xN} \mathrm{N}_{\mathrm{b}}$ matrices
- inner-triple is straightforward matrix-matrix mult
- outer-triple is MATRIX-MATRIX mult
- To improve AI, hold $\mathrm{N}_{\mathrm{b}} \mathrm{X} \mathrm{N}_{\mathrm{b}}$ sub-matrices on-chip for data-reuse

Al of blocked MMM Kernel $\left(\mathrm{N}_{\mathrm{b}} \mathbf{x N} \mathrm{S}_{\mathrm{b}}\right)$

$$
\begin{aligned}
& \text { for (i=iO;i<iO+N } \mathrm{N}_{\mathrm{b}} \text { ii++) } \\
& \text { for (j=j0;j<j0+N } \mathrm{N}_{\mathrm{b}} ; j++ \text {) \{ } \\
& \text { t=C[i][j]; } \\
& \text { for (} \left.k=k 0 ; k<k 0+N_{b} ; k++\right) \\
& \text { t+=A[i][k]*B[k][j]; } \\
& \text { C[i][j]=t; }
\end{aligned}
$$

- Operation count: $\mathrm{N}_{\mathrm{b}}{ }^{3}$ float-mult and $\mathrm{N}_{\mathrm{b}}{ }^{3}$ float-add
- When A, B fit in scratchpắd $\left(2 \times \mathrm{N}_{\mathrm{b}}{ }^{2} \times 4\right.$ bytes)
$-2 \mathrm{~N}_{\mathrm{b}}{ }^{3}$ 4-byte on-chip reads (A, B) (fast)
$-3 \mathrm{~N}_{\mathrm{b}}{ }^{2}$ 4-byte off-chip DRAM read A, B, C (slow)
$-\mathrm{N}_{\mathrm{b}}{ }^{2} 4$-byte off-chip DRAM writeback C (slow) 5
- Arithmetic Intensity $=2 \mathrm{~N}_{\mathrm{b}}{ }^{3} /(\underbrace{4 \cdot 4 \mathrm{~N}_{\mathrm{b}}{ }^{2}})=\mathrm{N}_{\mathrm{b}} / 8$

Al and Scaling

- Al is a function of algorithm and problem size
- Higher Al means more work per communication and therefore easier to scale
- Recall strong vs. weak scaling
- strong=increase perf on fixed problem sizes
- weak=increase perf on proportional problem sizes
- weak scaling easier if AI grows with problem size

LogP Model:
 Components of Communication Cost

Not All Parallelism Created Equally

Log P

- A parallel machine model with explicit communication cost
- Latency: transit time between sender and receiver
- overhead: time used up to setup a send or a receive (cycles not doing computation)
- gap: wait time in between successive data units sent or received due to limited transfer bandwidth
- Processors: number of processors, i.e., computation throughput

Message Passing Example

```
if (id==0) //assume node-0 has A initially
    for (i=1;i<p;i=i+1)
        SEND(i, &A[SHARE*i], SHARE*sizeof(double));
else
    RECEIVE(O,A[]) //receive into local array
sum=0;
for(i=0;i<SHARE;i=i+1) sum=sum+A[i];
remain=p;
do {
    BARRIER();
```

```
    half=(remain+1)/2;
    if (id>=half&&id<remain) SEND(id-half,sum,8);
    if (id<(remain/2)) {
        RECEIVE (id+half,&temp);
                sum=sum+temp;
    }
    remain=half;
    ile (remain>1);

\section*{Parallel Sum Revisited with LogP}
```

1: if (id==0)
2: for (i=1;i<100;i=i+1)
3: SEND(i, \&A[100*i], 100*sizeof(double));
4: else RECEIVE(0, A[])

```
- assuming no back-pressure, node-0 finishes sending to node-99 after \(99 \times\) overhead of SEND( )
L - first byte arrives at node-99 some network latency later
g - the complete message arrives at node-99 after 100*sizeof(double)/network_bandwidth
o - node-99 finally ready to compute after the overhead to RECEIVE( )

What if 100*sizeof(double)/network_bandwidth

\section*{Parallel Sum Revisited with LogP}
sum=0;
for (i=0;i<100;i=i+1) sum=sum+A[i];
- ideally, this step is computed \(\mathrm{p}=100\) times faster than summing 10,000 numbers by one processor
- big picture thinking, e.g.,
- is the time saved worth the data distribution cost?
- if not, actually faster if parallelized less
- fine-tooth comb thinking, e.g.,
- node-1 begins work first; node-99 begins work last \(\Rightarrow\) minimize overall finish time by assigning more work to node-1 and less work to node-99
- maybe latency and bandwidth are different to different nodes

\section*{Parallel Sum Revisited with LogP}


\section*{Parallel Sum Revisited with LogP}
```

do {
mARRIER();
half=(remain+1)/2;
if (id>=half\&\&id<remain) SEND(id-half,sum,8);
if (id<(remain/2)) {
RECEIVE (id+half,\&temp);
sum=sum+temp;
}
remain=half;
} while (remain>1);

```
- do we need to synchronize each round? how does one build a BARRIER () ?
- is this actually faster than if all nodes sent to node-0?

What if \(\boldsymbol{p}\) is small? What if \(\boldsymbol{p}\) is very large?
Real answer is a combination of techniques

\section*{LogP applies to shared memory too}

```

do {
pthread_barrier_wait(...);
half=(remain+1)/2;
if (id<(remain/2))
psum[id]=psum[id]+
psum[id+half];
remain=half;
} while (remain>1);

```
- When \(\mathrm{C}_{0}\) is reading psum [0+half], the value originates in the cache of \(\mathrm{C}_{\text {"half" }}\)
- L: time from \(\mathrm{C}_{0}\) 's cache miss to when data retrieved from the cache of \(\mathbf{C}_{\text {"half" }}\) (via cache coherence)
-g : there is a finite bandwidth between \(\mathrm{C}_{0}\) and \(\mathrm{C}_{\text {"half" }}\)
- o: as low as a LW instruction but also pay for stalls

\section*{Implications of Communication Cost}
- Large g-can't exchange a large amount of data
- must have lots of work per byte communicated
- only scalable for applications with high AI
- Large o-can't communicate frequently
- can only exploit coarse-grain parallelism
- if DMA, amount of data not necessarily limited
- Large L-can't send data at the last minute
- must have high average parallelism (more work/time between production and use of data)
- High cost in each category limits
- the kind of applications that can speed up, and
- how much they can speed up

\section*{Parallelization not just for Performance}
- Ideal parallelization over \(\mathbf{N}\) CPUs
\[
\begin{aligned}
& -T=\text { Work } /\left(k_{\text {perf }} \cdot N\right) \\
& -E=\left(k_{\text {switch }}+k_{\text {static }} / k_{\text {perf }}\right) \cdot \text { Work }
\end{aligned}
\]
\(\boldsymbol{N}\)-times static power, but \(\boldsymbol{N}\)-times faster runtime
\(-P=N\left(k_{\text {switch }} \cdot k_{\text {perf }}+k_{\text {static }}\right)\)
- Alternatively, forfeit speedup for power and energy reduction by \(s_{\text {freq }}=1 / N\) (assume \(s_{\text {voltage }} \approx s_{\text {freq }}\) below)
\(-T=\) Work \(/ k_{\text {perf }}\)
\(-E^{\prime \prime}=\left(k_{\text {switch }} / N^{2}+k_{\text {static }} /\left(k_{\text {perf }} N\right)\right) \cdot\) Work
- \(P^{\prime \prime}=k_{\text {switch }} \cdot k_{\text {perf }} / N^{2}+k_{\text {static }} / N\)
so works with using \(N\) slower-simpler CPUs```

