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Housekeeping

• Your goal today
– see “Virtual Memory” in easy to digest pieces
– you will come to see memory as either more or 

less magical 

• Notices
– HW 4, due 4/8
– Lab 3, due this week
– Lab 4 out on Thursday 3:20

• Readings
– P&H Ch 5
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RV32I Programmer-Visible State

M[0]
M[1]
M[2]
M[3]
M[4]

M[N-1]

232 by 8-bit locations (4 GBytes)
indexed using 32-bit “byte” addresses

(take this literally for now; magic to come)

program counter
32-bit “byte” address
of current instruction

**note**  x0=0
x1
x2

general purpose
register file

32x 32-bit words
named x0...x31
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Did Anyone Bother to Read This?

• Section 1.4, Volume I: RISC-V Unprivileged ISA 
V20191213
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2 Parts to Modern VM 
• In a multi-tasking system, virtual memory 

supports the illusion of a large, private, and 
uniform memory space to each process

• Ingredient A: naming and protection
– each process sees a large, contiguous address 

space without holes (for convenience)
– each process’s memory is private, i.e., protected 

from access by other processes (for sharing)
• Ingredient B: demand paging (for hierarchy)

– capacity of secondary storage (disk)
– speed of primary storage (DRAM)
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The Common Denominator:
Address Translation 

• Large, private, and uniform abstraction achieved 
through address translation
– user process operates on effective address (EA)
– HW translates from EA to physical address (PA) on 

every memory reference
• Through address translation

– control which physical locations (DRAM and/or 
disk) can be referred to by a process

– allow dynamic allocation and relocation of physical 
backing store (where in DRAM and/or disk)

• Address translation HW and policies controlled by 
the OS and protected from user
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Beginnings of Memory Protection
• No need for protection or translation early on 

– single process, single user at a time
– access all locations directly with PA

• Cooperative Multitasking
– each process limited to a non-overlapping, 

contiguous physical memory region
(space doesn’t start from addr 0 . . . )

– everything must fit in the region
– how to keep one process from

reading or trashing another process’s
code and data? (see corewars.org)

active process’s
region

another process’s
region
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Base and Bound
• A process’s private memory region defined by

– base: starting address of region
– bound: size of region 

• User process issue “effective” address (EA) 
between 0 and the size of its allocated region 
(private and uniform) 

active process’s
region

another process’s
region

base
bound

privileged control
registers

EA

max

0

PA
0

max
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Base and Bound Registers

• Translation and protection check in hardware on 
every user memory reference
– PA = EA + base
– if (EA < bound) then okay else violation 

• When switching user processes, OS sets base and 
bound registers

• User processes cannot be allowed to modify base
and bound registers themselves

Requires at least 2 privilege levels with 
protected instruction and state for OS only
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Segmented Memory
• Limitations of single base-and-bound region

– hard to find large contiguous space after a 
whilefree space become fragmented

– can two processes shared some memory regions 
but not others?

• A “base-and-bound” pair is a unit of protection
 give user multiple memory “segments”
– each segment is a contiguous memory region
– each segment is defined by a base and bound pair

• Earliest use, separate code and data segments
– 2 sets of base/bound for code vs data
– forked processes can share code segments

more elaborate later: code, data, stack, etc.
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Segmented Address Space

• EA partitioned into segment number (SN) and 
segment offset (SO)
– max segment size limited by the range of SO
– active segment size set by bound

• Per-process segment translation table
– map SN to corresponding base and bound
– separate mapping for each process
– privileged structure if used to enforce protection

SN SO

+,< PA,
okay?

segment table

base bound perm
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Access Protection
• Per-segment access permissions can be specified 

as protection bits in segment table entries
• Generic options include

– Readable?
– Writeable? 
– Executable?

• For example
– normal data segment  RW(!E)
– static shared data segment  R(!W)(!E)
– code segment  R(!W)E self modifying code?
– illegal segment  (!R)(!W)(!E)                     what for?

Access violation exception brings OS into play
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Aside: Another (ab)use of segments
• Extend old ISA to give new applications a large 

address space while stay compatible with old
• “User-managed” segmented addressing

– old application use identity mapping in table; 
unaware of segments; can’t use more memory

– new application reloads table at run time to access 
different regions in EAlarge; unequal access to 
active vs inactive regions (what about pointers?)

SN4 SO12

concat“large” base20 EA32

EA16

user-level structure 
orthogonal from 
protection issues

SAEAsmall
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• Divide PA and EA space into equal, fixed size 
segments known as “page frames” 

historically 4KByte pages
• EA and PA are interpreted as page number (PN) 

and page offset (PO)
– page table translates EPN to PPN; EPO=PPO
– PA={PPN,PO}  

Paged Address Space

page
table

concat PA
PPN

perm’s?

EPN    PO
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Fragmentation
• External fragmentation by segments

– plenty of unallocated DRAM but none in 
contiguous region of a sufficient size

– paged memory eliminates external fragmentation

• Internal fragmentation of pages
– entire page (4KByte) is allocated; unused bytes go 

to waste
– smaller page size reduces internal fragmentation
– modern ISA moving to larger page sizes (MBytes) 

in addition to 4KBytes

Segments and pages not meant for the same role
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Demand Paging

• Use main memory and disk (swap vs. mmap file) 
as automatically managed memory hierarchies

analogous to cache vs. main memory
• Early attempts 

– von Neumann already described manual memory 
hierarchies

– Brookner’s interpretive coding, 1960:
program interpreter managed paging between a 
40KByte main memory and a 640KByte drum

– Atlas, 1962:
hardware managed paging between 32-page core 
memory and 192-page drum (512 word/page)
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Demand Paging: just like caching
• M bytes of storage (DRAM+Disk), keep most 

frequently used C bytes in DRAM where C < M
• Same basic issues as before

(1) where to place a page in DRAM or disk? 
(2) how to find a page in DRAM or disk?
(3) when to bring a page into DRAM from disk? 
(4) which page to evict from DRAM to disk to free-up 

DRAM for new pages?
• Conceptual difference in swap vs. cache

– DRAM doesn’t hold “copies” of what is on disk
– a page in M either in DRAM or disk (or non-existent)
– address not bound to 1 location for all time

DRAM is cache for mmap’ed file
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Demand Paging: not at all like caching
• Drastically different size and time scale leads to 

drastically different implementation choices
L1 Cache L2 Cache Demand Paging

capacity 10s KByte MByte GByte
block size 10s Byte  L1 4K~4M Byte
hit time few cyc few 10s cyc few 100s cyc
miss penalty few 10s cyc few 100s cyc 10 msec
miss rate 0.1~10% <<0.1% 0.00001~0.001%

(per mem reference not per cache access)
hit handling HW HW HW
miss handling HW HW SW

Hit time, miss penalty, miss rate not independent!!
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Don’t use “VM” to mean everything
• Effective Address (EA): emitted by user 

instructions in a per-process space (protection)
• Physical Address (PA): corresponds to actual 

storage locations on DRAM or on disk
• Virtual Address (VA): refers to locations in a 

single system-wide, large, linear address space; 
not all locations in VA space have physical 
backing (demand paging)

EAprocess PAglobal

map
mapVAglobal

untranslated

protected
sharing demand 

paging

x86 “classically”



18-447-S24-L17-S20, James C. Hoe, CMU/ECE/CALCM, ©2024

EA, VA and PA (IBM Power view)

64-bit EA0 divided into 
X fixed-size segments

64-bit EA1 divided into 
X fixed-size segments 80~90-bit VA divided into Y segments (Y>>X);

segmented EA:
private, contiguous + sharing

40~50-bit PA divided 
into W pages (Z>>W)

swap space divided into V
pages (Z>>V, V>?W)

demand paged VA:
capacity of disk, speed of DRAM

also divided as Z pages
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swap space divided into V
pages (Z>>V, V>?W)

PA divided into W pages 
(Z>>W)

EA, VA and PA (almost everyone else)

VA divided into N “address spaces”
indexed by ASID;

also divided as Z pages

EA0
with unique ASID=0

EAi
with unique ASID=i

how do processes 
share pages?

Easy to blur EA and VA
colloquially but full VA is 
{ASID, EA}!!!
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Just one more thing:
How large is the page table?

• A page table holds mapping from VPN to PPN
• Suppose 64-bit VA and 40-bit PA, how large is the 

page table?     252 entries x ~4 bytes  16x1015 Bytes
And that is for just one process!!?

VPN PO

page
table

concat PA

64-bit

12-bit52-bit

28-bit 40-bit

ASID
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How large should it be?
• Don’t need to track entire VA space 

– total allocated VA space is 264 bytes x # processes, 
but most of which not backed by storage

– can’t use more memory locations than physically 
exist (DRAM and disk)

• A clever page table should scale linearly with 
physical storage size and not VA space size

• Table cannot be too convoluted 
– a page table is accessed not infrequently
– a page table should be “walkable” quickly in HW

Two dominant schemes in use today: 
hierarchical page table and hashed page table


