
18-447-S24-L17-S1, James C. Hoe, CMU/ECE/CALCM, ©2024

18-447 Lecture 17:
VM Concepts: Address Translation

James C. Hoe
Department of ECE

Carnegie Mellon University

18-447-S24-L17-S2, James C. Hoe, CMU/ECE/CALCM, ©2024

Housekeeping

• Your goal today
– see “Virtual Memory” in easy to digest pieces
– you will come to see memory as either more or

less magical

• Notices
– HW 4, due 4/8
– Lab 3, due this week
– Lab 4 out on Thursday 3:20

• Readings
– P&H Ch 5

18-447-S24-L17-S3, James C. Hoe, CMU/ECE/CALCM, ©2024

RV32I Programmer-Visible State

M[0]
M[1]
M[2]
M[3]
M[4]

M[N-1]

232 by 8-bit locations (4 GBytes)
indexed using 32-bit “byte” addresses

(take this literally for now; magic to come)

program counter
32-bit “byte” address
of current instruction

note x0=0
x1
x2

general purpose
register file

32x 32-bit words
named x0...x31

18-447-S24-L17-S4, James C. Hoe, CMU/ECE/CALCM, ©2024

Did Anyone Bother to Read This?

• Section 1.4, Volume I: RISC-V Unprivileged ISA
V20191213

18-447-S24-L17-S5, James C. Hoe, CMU/ECE/CALCM, ©2024

2 Parts to Modern VM
• In a multi-tasking system, virtual memory

supports the illusion of a large, private, and
uniform memory space to each process

• Ingredient A: naming and protection
– each process sees a large, contiguous address

space without holes (for convenience)
– each process’s memory is private, i.e., protected

from access by other processes (for sharing)
• Ingredient B: demand paging (for hierarchy)

– capacity of secondary storage (disk)
– speed of primary storage (DRAM)

18-447-S24-L17-S6, James C. Hoe, CMU/ECE/CALCM, ©2024

The Common Denominator:
Address Translation

• Large, private, and uniform abstraction achieved
through address translation
– user process operates on effective address (EA)
– HW translates from EA to physical address (PA) on

every memory reference
• Through address translation

– control which physical locations (DRAM and/or
disk) can be referred to by a process

– allow dynamic allocation and relocation of physical
backing store (where in DRAM and/or disk)

• Address translation HW and policies controlled by
the OS and protected from user

18-447-S24-L17-S7, James C. Hoe, CMU/ECE/CALCM, ©2024

Beginnings of Memory Protection
• No need for protection or translation early on

– single process, single user at a time
– access all locations directly with PA

• Cooperative Multitasking
– each process limited to a non-overlapping,

contiguous physical memory region
(space doesn’t start from addr 0 . . .)

– everything must fit in the region
– how to keep one process from

reading or trashing another process’s
code and data? (see corewars.org)

active process’s
region

another process’s
region

18-447-S24-L17-S8, James C. Hoe, CMU/ECE/CALCM, ©2024

Base and Bound
• A process’s private memory region defined by

– base: starting address of region
– bound: size of region

• User process issue “effective” address (EA)
between 0 and the size of its allocated region
(private and uniform)

active process’s
region

another process’s
region

base
bound

privileged control
registers

EA

max

0

PA
0

max

18-447-S24-L17-S9, James C. Hoe, CMU/ECE/CALCM, ©2024

Base and Bound Registers

• Translation and protection check in hardware on
every user memory reference
– PA = EA + base
– if (EA < bound) then okay else violation

• When switching user processes, OS sets base and
bound registers

• User processes cannot be allowed to modify base
and bound registers themselves

Requires at least 2 privilege levels with
protected instruction and state for OS only

18-447-S24-L17-S10, James C. Hoe, CMU/ECE/CALCM, ©2024

Segmented Memory
• Limitations of single base-and-bound region

– hard to find large contiguous space after a
whilefree space become fragmented

– can two processes shared some memory regions
but not others?

• A “base-and-bound” pair is a unit of protection
 give user multiple memory “segments”
– each segment is a contiguous memory region
– each segment is defined by a base and bound pair

• Earliest use, separate code and data segments
– 2 sets of base/bound for code vs data
– forked processes can share code segments

more elaborate later: code, data, stack, etc.

18-447-S24-L17-S11, James C. Hoe, CMU/ECE/CALCM, ©2024

Segmented Address Space

• EA partitioned into segment number (SN) and
segment offset (SO)
– max segment size limited by the range of SO
– active segment size set by bound

• Per-process segment translation table
– map SN to corresponding base and bound
– separate mapping for each process
– privileged structure if used to enforce protection

SN SO

+,< PA,
okay?

segment table

base bound perm

18-447-S24-L17-S12, James C. Hoe, CMU/ECE/CALCM, ©2024

Access Protection
• Per-segment access permissions can be specified

as protection bits in segment table entries
• Generic options include

– Readable?
– Writeable?
– Executable?

• For example
– normal data segment RW(!E)
– static shared data segment R(!W)(!E)
– code segment R(!W)E self modifying code?
– illegal segment (!R)(!W)(!E) what for?

Access violation exception brings OS into play

18-447-S24-L17-S13, James C. Hoe, CMU/ECE/CALCM, ©2024

Aside: Another (ab)use of segments
• Extend old ISA to give new applications a large

address space while stay compatible with old
• “User-managed” segmented addressing

– old application use identity mapping in table;
unaware of segments; can’t use more memory

– new application reloads table at run time to access
different regions in EAlarge; unequal access to
active vs inactive regions (what about pointers?)

SN4 SO12

concat“large” base20 EA32

EA16

user-level structure
orthogonal from
protection issues

SAEAsmall

18-447-S24-L17-S14, James C. Hoe, CMU/ECE/CALCM, ©2024

• Divide PA and EA space into equal, fixed size
segments known as “page frames”

historically 4KByte pages
• EA and PA are interpreted as page number (PN)

and page offset (PO)
– page table translates EPN to PPN; EPO=PPO
– PA={PPN,PO}

Paged Address Space

page
table

concat PA
PPN

perm’s?

EPN PO

18-447-S24-L17-S15, James C. Hoe, CMU/ECE/CALCM, ©2024

Fragmentation
• External fragmentation by segments

– plenty of unallocated DRAM but none in
contiguous region of a sufficient size

– paged memory eliminates external fragmentation

• Internal fragmentation of pages
– entire page (4KByte) is allocated; unused bytes go

to waste
– smaller page size reduces internal fragmentation
– modern ISA moving to larger page sizes (MBytes)

in addition to 4KBytes

Segments and pages not meant for the same role

18-447-S24-L17-S16, James C. Hoe, CMU/ECE/CALCM, ©2024

Demand Paging

• Use main memory and disk (swap vs. mmap file)
as automatically managed memory hierarchies

analogous to cache vs. main memory
• Early attempts

– von Neumann already described manual memory
hierarchies

– Brookner’s interpretive coding, 1960:
program interpreter managed paging between a
40KByte main memory and a 640KByte drum

– Atlas, 1962:
hardware managed paging between 32-page core
memory and 192-page drum (512 word/page)

18-447-S24-L17-S17, James C. Hoe, CMU/ECE/CALCM, ©2024

Demand Paging: just like caching
• M bytes of storage (DRAM+Disk), keep most

frequently used C bytes in DRAM where C < M
• Same basic issues as before

(1) where to place a page in DRAM or disk?
(2) how to find a page in DRAM or disk?
(3) when to bring a page into DRAM from disk?
(4) which page to evict from DRAM to disk to free-up

DRAM for new pages?
• Conceptual difference in swap vs. cache

– DRAM doesn’t hold “copies” of what is on disk
– a page in M either in DRAM or disk (or non-existent)
– address not bound to 1 location for all time

DRAM is cache for mmap’ed file

18-447-S24-L17-S18, James C. Hoe, CMU/ECE/CALCM, ©2024

Demand Paging: not at all like caching
• Drastically different size and time scale leads to

drastically different implementation choices
L1 Cache L2 Cache Demand Paging

capacity 10s KByte MByte GByte
block size 10s Byte L1 4K~4M Byte
hit time few cyc few 10s cyc few 100s cyc
miss penalty few 10s cyc few 100s cyc 10 msec
miss rate 0.1~10% <<0.1% 0.00001~0.001%

(per mem reference not per cache access)
hit handling HW HW HW
miss handling HW HW SW

Hit time, miss penalty, miss rate not independent!!

18-447-S24-L17-S19, James C. Hoe, CMU/ECE/CALCM, ©2024

Don’t use “VM” to mean everything
• Effective Address (EA): emitted by user

instructions in a per-process space (protection)
• Physical Address (PA): corresponds to actual

storage locations on DRAM or on disk
• Virtual Address (VA): refers to locations in a

single system-wide, large, linear address space;
not all locations in VA space have physical
backing (demand paging)

EAprocess PAglobal

map
mapVAglobal

untranslated

protected
sharing demand

paging

x86 “classically”

18-447-S24-L17-S20, James C. Hoe, CMU/ECE/CALCM, ©2024

EA, VA and PA (IBM Power view)

64-bit EA0 divided into
X fixed-size segments

64-bit EA1 divided into
X fixed-size segments 80~90-bit VA divided into Y segments (Y>>X);

segmented EA:
private, contiguous + sharing

40~50-bit PA divided
into W pages (Z>>W)

swap space divided into V
pages (Z>>V, V>?W)

demand paged VA:
capacity of disk, speed of DRAM

also divided as Z pages

18-447-S24-L17-S21, James C. Hoe, CMU/ECE/CALCM, ©2024

swap space divided into V
pages (Z>>V, V>?W)

PA divided into W pages
(Z>>W)

EA, VA and PA (almost everyone else)

VA divided into N “address spaces”
indexed by ASID;

also divided as Z pages

EA0
with unique ASID=0

EAi
with unique ASID=i

how do processes
share pages?

Easy to blur EA and VA
colloquially but full VA is
{ASID, EA}!!!

18-447-S24-L17-S22, James C. Hoe, CMU/ECE/CALCM, ©2024

Just one more thing:
How large is the page table?

• A page table holds mapping from VPN to PPN
• Suppose 64-bit VA and 40-bit PA, how large is the

page table? 252 entries x ~4 bytes 16x1015 Bytes
And that is for just one process!!?

VPN PO

page
table

concat PA

64-bit

12-bit52-bit

28-bit 40-bit

ASID

18-447-S24-L17-S23, James C. Hoe, CMU/ECE/CALCM, ©2024

How large should it be?
• Don’t need to track entire VA space

– total allocated VA space is 264 bytes x # processes,
but most of which not backed by storage

– can’t use more memory locations than physically
exist (DRAM and disk)

• A clever page table should scale linearly with
physical storage size and not VA space size

• Table cannot be too convoluted
– a page table is accessed not infrequently
– a page table should be “walkable” quickly in HW

Two dominant schemes in use today:
hierarchical page table and hashed page table

