((3 Electrical & Computer CMU 18-447
ENGINEERIN 509 L26-1
© 2009
J. C. Hoe

18-447 Lecture 26:
I/0

James C. Hoe
Dept of ECE, CMU
April 29, 2009

Announcements: Complete UCA onlinell
Final Thursday, May 7 5:30-8:30p.m. BH 136A

Handouts:
L) ENGINEERING Sy
Format of the Big Quiz
& Coverage

- lectures (L1~L26, except 1,15, 23,24), HWs, projects,
assigned readings (textbooks and papers)
Types of questions
- freebies: can you remember the materials
- probing: did you understand the materials
- applied: can you apply the materials in original thoughts
180 minutes, 180 points
- if a question is worth 5 points, don't spend 20 minutes on
it
- skip questions you can't do and come back to them later
- closed-book, **three** 2-sided 8+x11 crib sheets
- no calculators
*** Use pencil or black/blue ink only

& Study what you missed on little Quiz 1 and Quiz 2

CMU 18-447

((.; Electrical & Computer A
ENGINEERING 5091263

Processor I/0

J. C. Hoe

Storage

Processing “ (program
and data)

¢ Reasons for I/0

How does a - User Interface: keyboard, mouse,
computer video display
communicate - Data transfer: disk, tapes, punch
with the cards
outside world? - Communication: network interface
- Sensor/control
O isismre
How do CPUs talk to the I/0?
CPU CPU

Memory Bus (6B/sec)

. I/ O | 1/0 Bus (100MB/sec)
Main Memory Bridge 1 I I

(DRAM) m .. ||kbd & Net-
[Disk| Vided Mousel work

«’ Electrical & Computer CMU 18-447

ENGINEERING 509 L26-5
© 2009

J. C. Hoe

I/0 Port Registers (special purpose)

Special input and output registers as part of the
ISA programmer-visible state

- output: values written to an output register appear on
the output pins of an external port

- input: reading from an input register returns the values
at the input pins of an external port

- common scheme on microcontrollers
+ Simple — CPU
- easy fo use, low latency I
- can be specialized for applications |
+ Not general]
- predetermined number of I/0 signals @) RF
- specialized for whose application? |

({} Electrical & Computer C(V\U 18-447
ENGINEERING 509126-6
© 2009
J. C. Hoe

Memory Mapped I/0: a general approach

Load/store instructions perform I/0 to memory
from the processor’s perspective
- |d/st address identifies a specific memory location
- |d/st data conveys information

"Map” a subset of the "unused” memory addresses
(e.g., the high ones) to registers of external

devices
- LW from a "mmap" address means reading| CPU
from the corresponding register \ALU/
- similar for SW
¢ Memory and devices on the -
bus are programmed to I/0
DRAM Flash or

respond only o their own
address ranges

Device

? Electrical & Computer CMU 18-447
) ENGiNEERING 509 L26.7
© 2009

Side-effects and Idempotency

& Memory load/store semantics are idempotent

- recall, memory semantics says when I “read” location M[A], T
should get back the last value T "wrote” to location M[A]

= writing to M[A] once has the same effect as writing fo M[A]
with the same value 10 times in a row

=reading from M[A] always return the same value unless I
write something else to M[A]
+ mmap load/store often have side-effects
- the receiver of mmap load/store may not be memory-like!!
- the action of reading or writing a device register [OxfF££0000]
can implied other state changes
- consider a FIFO example
+ SW to OxffffO00O0 pushes the store value FIFO
* LW from Oxffff0000 returns the popped value

({} Electrical & Computer CMU 18-447
ENGINEERING 509126-8
© 2009

Interaction with Caches

Review: automatically managed cache hierarchy
- keeps copies of recently used memory locations on chip

- issuing a LW or SW to a cacheable address may not lead
to an external bus transaction

- a cacheable address may be appear in a bus transaction
"spontaneously” without being directed by either a LW or
SW

+ if Oxffff0O00O is allowed to be cached
- reading OxffffOO00 may return the old value [Oxff£0000)
copied into the cache previously

- spontaneous read/write bus
transactions changes the FIFO state FIFO
unexpectedly

? Electrical & Computer CMU 18-447
) ENGiNEERING 509 L26-9

Direct Memory Access

J. C. Hoe

I/0 devices are not always dumb and passive
+ mmap I/0 is slow and consumes CPU cycles

=

¢ Commands to a DMA device

- "read (or write) 1024 KBytes starting from location
0x54100"

- CPU issue commands using mmap writes to device registers

& Commands to a DMA “engine”

- "copy a source block (i.e., base & size) to a destination
block"

- source and destination region could be memory or mmap'ed

({} Electrical & Computer CMU 18-447
ENGINEERING 50912610

Interaction with VM e
& A contiguous block in VA
- is not necessarily contiguous in PA
- may not be in memory at all

¢ Software solutions

- user must allocate special pages if it is intfended for DMA
transfer later

- kernel copies from user buffer to pinned, contiguous buffer
before DMA
& Smarter DMA engines

- OS creates in memory a “linked list" of commands for moving
non-contiguous blocks

- DMA engine follows linked list to perform gather/scatter

Virtually-address I/0 bus
- I/0O devices refer to contiguous data blocks by VA
- translate by I/0 TLB into PA before accessing main memory
- can TLB-miss or page-fault

«3 Electrical & Computer CMU 18-447
ENGINEERIN 509 Loo11
© 2009
J. C. Hoe

Device Servicing Schemes

({3 Electrical & Computer C(V\U 18-447
ENGINEERING 509 L26-12
© 2009

J. C. Hoe

the mailman did it!

You are waiting at home for mail to be delivered

How do you find out when the mail is delivered?
- keep going outside to check the mailbox
- rig the mailbox door to ring your cell phone

¢ Which method is better?
- easier to implement
- less work for you
- lets you know sooner

¢ What if
you are very busy
you know roughly when mail should come
the mail is extremely urgent
many deliveries each day
also consider inverse cases

«’ Electrical & Computer CMU 18-447
ENGINEERING 509 L26.13

Polling I/O

J. C. Hoe

Consider a keyboard device with 2 mmap registers
- READY: a read returns true if a new character is available
- DATA: aread returns the new character typed and
resets READY if no more characters are available
Polling-based service routine
_checkkbd: LW rlé _READY
BEQ rlé r0 _end

LW r3 _DATA
JAL _keystroke

_end: JR r3l
- must be called frequently and repeatedly from an outer
loop

- most of the time nothing happens
- inefficient for infrequent, but latency-sensitive I/0 events

({} Electrical & Computer CMU 18-447
ENGINEERING 509 L26-14
© 2009

Interrupts
(remember Lecture 14?)

¢ Interrupt Vector

- aset of input pins that can be asserted by I/0 devices
who need "servicing"

- Inother words, let the device ring a door-bell at the CPU

Can't ask the executing thread to keep checking if
there is an interrupt

o Better ideaq, only when interrupts are asserted
- stop the running thread

- switch to a special program (aka, interrupt handler) to
service the interrupt

- return fo the running thread

? Electrical & Computer CMU 18-447
) ENGiNEERING 509 L26-15

Interrupt-Driven I/0

J. C. Hoe

Recall the keyboard device with 2 mmap registers
- READY: a read returns true if a new character is available
- DATA: aread returns the new character typed and
resets READY if no more characters are available

+ Now, add interrupt capability to signal readiness

Instead of polling, _checkkbd is called by the
interrupt handler only if the corresponding interrupt
line is raised

Interrupt-Driven I/0 is suitable for

- very infrequent events (e.g. any human input interface)

- very long-latency operations (e.g. signaling the end of a DMA
transfer)

({} Electrical & Computer CMU 18-447
ENGINEERING 509 L26-16

Which I/0O Mechanism to use?

J. C. Hoe

¢ First of all, you are limited by what is available

Performance considerations
- I/0 Bandwidth = transfer size / transfer time
- Transfer time = { overhead }+{transfer size / raw_bandwidth}
* DMA has high raw bandwidth but large setup overhead
+ mmap I/0 has low bandwidth but no overhead

CPU considerations
- What fraction of processing is lost to I/O operations?
- Can the CPU be doing something else useful while I/0 is
happening
- How long can afford to let I/0 wait?

