
CMU 18-447
S’09 L26-1
© 2009
J. C. Hoe

18-447 Lecture 26:
I/O

James C. Hoe
Dept of ECE, CMU

April 29, 2009

Announcements: Complete UCA online!!
Final Thursday, May 7 5:30-8:30p.m. BH 136A

Handouts:

CMU 18-447
S’09 L26-2
© 2009
J. C. HoeFormat of the Big Quiz

Coverage
 lectures (L1~L26, except 1, 15, 23,24), HWs, projects,

assigned readings (textbooks and papers)
Types of questions
 freebies: can you remember the materials
 probing: did you understand the materials
 applied: can you apply the materials in original thoughts

180 minutes, 180 points
 if a question is worth 5 points, don’t spend 20 minutes on

it
 skip questions you can’t do and come back to them later
 closed-book, **three** 2-sided 8½x11 crib sheets
 no calculators

*** Use pencil or black/blue ink only
Study what you missed on little Quiz 1 and Quiz 2

CMU 18-447
S’09 L26-3
© 2009
J. C. Hoe

Processor I/O

Reasons for I/O
 User Interface: keyboard, mouse,

video display
 Data transfer: disk, tapes, punch

cards
 Communication: network interface
 Sensor/control

Storage
(program
and data)

I/OProcessing

How does a
computer
communicate
with the
outside world?

CMU 18-447
S’09 L26-4
© 2009
J. C. Hoe

DiskDiskDisk

I/O Bus (100MB/sec)

How do CPUs talk to the I/O?

CPU
ALU RF

cache

Memory Bus (GB/sec)

Main Memory
(DRAM)

I/O
Bridge

Disk Video Kbd &
Mouse

CPU
ALU RF

cache

Net-
work

CMU 18-447
S’09 L26-5
© 2009
J. C. Hoe

I/O Port Registers (special purpose)

Special input and output registers as part of the
ISA programmer-visible state
 output: values written to an output register appear on

the output pins of an external port
 input: reading from an input register returns the values

at the input pins of an external port
 common scheme on microcontrollers

Simple
 easy to use, low latency
 can be specialized for applications

Not general
 predetermined number of I/O signals
 specialized for whose application?

CPU

ALU

RF

I

O

CMU 18-447
S’09 L26-6
© 2009
J. C. Hoe

Memory Mapped I/O: a general approach

Load/store instructions perform I/O to memory
from the processor’s perspective
 ld/st address identifies a specific memory location
 ld/st data conveys information

“Map” a subset of the “unused” memory addresses
(e.g., the high ones) to registers of external
devices
 LW from a “mmap” address means reading

from the corresponding register
 similar for SW

Memory and devices on the
bus are programmed to
respond only to their own
address ranges

CPU
ALU

RF

DRAM Flash
I/O
or

Device

Common Bus

CMU 18-447
S’09 L26-7
© 2009
J. C. Hoe

Side-effects and Idempotency

Memory load/store semantics are idempotent
 recall, memory semantics says when I “read” location M[A], I

should get back the last value I “wrote” to location M[A]
⇒ writing to M[A] once has the same effect as writing to M[A]

with the same value 10 times in a row
⇒reading from M[A] always return the same value unless I

write something else to M[A]
mmap load/store often have side-effects
 the receiver of mmap load/store may not be memory-like!!
 the action of reading or writing a device register

can implied other state changes
 consider a FIFO example

• SW to 0xffff0000 pushes the store value
• LW from 0xffff0000 returns the popped value

FIFO

0xffff0000

CMU 18-447
S’09 L26-8
© 2009
J. C. Hoe

Interaction with Caches
Review: automatically managed cache hierarchy
 keeps copies of recently used memory locations on chip
 issuing a LW or SW to a cacheable address may not lead

to an external bus transaction
 a cacheable address may be appear in a bus transaction

“spontaneously” without being directed by either a LW or
SW
No problem for memory. Very bad news for mmap I/O

if 0xffff0000 is allowed to be cached
 reading 0xffff0000 may return the old value

copied into the cache previously
 spontaneous read/write bus

transactions changes the FIFO state
unexpectedly

Solution: disallow caching on mmap addresses

FIFO

0xffff0000

CMU 18-447
S’09 L26-9
© 2009
J. C. HoeDirect Memory Access

I/O devices are not always dumb and passive
mmap I/O is slow and consumes CPU cycles
⇒ Let the I/O device read/write memory directly to move
large data blocks to/from memory!!
Commands to a DMA device
 “read (or write) 1024 KBytes starting from location

0x54100”
 CPU issue commands using mmap writes to device registers

How do you know when a DMA transfer is finished?
Commands to a DMA “engine”
 “copy a source block (i.e., base & size) to a destination

block”
 source and destination region could be memory or mmap’ed

Allows DMA with mmap-only devices

CMU 18-447
S’09 L26-10
© 2009
J. C. HoeInteraction with VM

A contiguous block in VA
 is not necessarily contiguous in PA
 may not be in memory at all

Software solutions
 user must allocate special pages if it is intended for DMA

transfer later
 kernel copies from user buffer to pinned, contiguous buffer

before DMA
Smarter DMA engines
 OS creates in memory a “linked list” of commands for moving

non-contiguous blocks
 DMA engine follows linked list to perform gather/scatter

Virtually-address I/O bus
 I/O devices refer to contiguous data blocks by VA
 translate by I/O TLB into PA before accessing main memory
 can TLB-miss or page-fault

CMU 18-447
S’09 L26-11
© 2009
J. C. Hoe

Device Servicing Schemes

CMU 18-447
S’09 L26-12
© 2009
J. C. Hoe

the mailman did it!
You are waiting at home for mail to be delivered
How do you find out when the mail is delivered?
 keep going outside to check the mailbox
 rig the mailbox door to ring your cell phone

Which method is better?
 easier to implement
 less work for you
 lets you know sooner

What if
 you are very busy
 you know roughly when mail should come
 the mail is extremely urgent
 many deliveries each day

also consider inverse cases

CMU 18-447
S’09 L26-13
© 2009
J. C. Hoe

Polling I/O

Consider a keyboard device with 2 mmap registers
 READY: a read returns true if a new character is available
 DATA: a read returns the new character typed and

resets READY if no more characters are available
Polling-based service routine

_checkkbd: LW r16 _READY
BEQ r16 r0 _end
LW r3 _DATA
JAL _keystroke

_end: JR r31

 must be called frequently and repeatedly from an outer
loop

 most of the time nothing happens
 inefficient for infrequent, but latency-sensitive I/O events

CMU 18-447
S’09 L26-14
© 2009
J. C. HoeInterrupts

(remember Lecture 14?)
Interrupt Vector
 a set of input pins that can be asserted by I/O devices

who need “servicing”
 In other words, let the device ring a door-bell at the CPU

Who and when to answer the door?

Can’t ask the executing thread to keep checking if
there is an interrupt (otherwise, same as polling)

Better idea, only when interrupts are asserted
 stop the running thread
 switch to a special program (aka, interrupt handler) to

service the interrupt
 return to the running thread

CMU 18-447
S’09 L26-15
© 2009
J. C. Hoe

Interrupt-Driven I/O

Recall the keyboard device with 2 mmap registers
 READY: a read returns true if a new character is available
 DATA: a read returns the new character typed and

resets READY if no more characters are available
Now, add interrupt capability to signal readiness

Instead of polling, _checkkbd is called by the
interrupt handler only if the corresponding interrupt
line is raised
Interrupt-Driven I/O is suitable for
 very infrequent events (e.g. any human input interface)
 very long-latency operations (e.g. signaling the end of a DMA

transfer)

CMU 18-447
S’09 L26-16
© 2009
J. C. Hoe

Which I/O Mechanism to use?

First of all, you are limited by what is available
Hopefully who ever designed the processor or I/O device had the

right application in mind
Performance considerations
 I/O Bandwidth = transfer size / transfer time
 Transfer time = { overhead }+{transfer size / raw_bandwidth}

• DMA has high raw bandwidth but large setup overhead
• mmap I/O has low bandwidth but no overhead

CPU considerations
 What fraction of processing is lost to I/O operations?
 Can the CPU be doing something else useful while I/O is

happening
 How long can afford to let I/O wait?

