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Announcements: Read P&H Ch5.8 and Ch2.11 for today's lecture
(this lecture not covered on the final)
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# Current CMPs adopt the familiar SMP paradigm

# future design focus on the “uncore”
- how tfo support interprocessor communication
- how to support programmability




rical & Computer
) ERGiNEERING

Shared Memory Abstraction

Py

P,

P3 0000

Memory

CMU 18-447
509 L23-3
© 2009

J. C. Hoe

QO EEREERNE

Multiprocessor with Private Caches

P1 PZ P3 oo o000 Pn
RO B0 c il 3t
X52 $2 2 $2
3 ! ! !

i !
i X Memory

CMU 18-447
509 L23-4
© 2009

J. C. Hoe

The goal of cache coherence is to make all the processors
believe they are connected to the same memory directly
(warning: oversimplified)
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Extreme Solutions to Cache Coherence

# Disallow caching of shared variables

# Only allow only one copy of a mem location at a time

- If location X is cached in one cache then it is not valid in
memory or another cache

- Another processor must have a way to find out who has
location X and take over ownership before reading or
writing

- thus, can only have one reader/writer per location

+ Allow multiple copies, but make sure they all have
the same value at all times

- updates to one copy must be visible to all copies where ever
they may be (memory and all of the caches)

- thus, can have multiple readers and writers at once
A cache coherence protocol is the “rule of conduct”
between caches to enforce a particular policy
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CC Protocol for Bus-based Systems

# Bus is a broadcast medium, bus “snooping” allows every
cache to see what everyone else wants to do

# A cache can even intervene in another cache's bus
transaction, e.g. a cache might ask another cache to
"retry” the transaction later or respond in place of the
memory

# Besides the usual status bits, additional information
might have to be recorded with each cache line, aka
cache coherence states, e.g.

- Invalid: cache line does not have valid data

- Modified: cache line has been written to since it was brought in

- Shared: valid line, but other caches may have copies
(presumably all identical and unchanged from memory)

- Exclusive: valid line, unchanged from memory but no other cache
has a copy
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MESI States

Given the state of an address in one cache, what can one inf
about the possible state of the same address elsewhere?

Modified in Cache A Shared in Cache A
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Example: Multiple Identical Copies**

¢ A cache line can be either shared or Invalid

# Based on a write-through scheme
- a cache issues a read transaction on a read or write
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- acache issues a write transaction fo memory whenever the

cache line is changed by the processor
- a cache does not need to write back when a line is di

splaced

o All writes are write-through so the writer's cache is

coherent with memory

# All caches "snoop” the bus for other's write
transactions
- check if the write is to a currently cached location

- if awrite goes to a cached location, overwrite the ol
stale) value with the new snooped value

- else do nothing

d (aka

All copies are coherent all the time
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Example: One Copy at All Time
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¢ A cache line can be either Modified or Invalid

+ Based on a write-back scheme
- acache issues a read transaction on a read or write miss
- acache issues a write-back to memory when a line is
displaced
¢ All caches "snoop” the bus for other's read
transactions

- If a cache observes a request to a currently cached line,
then respond with a value in place of memory and mark its
owh copy Invalid

- Alternatively, a cache can also ask the requestor to retry
later and, in the meantime, write back its copy to memory
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MSI and MEST Cache Coherence ***~

# An efficient policy for single-writer/multi-reader
usage
- Allow multiple read-only copies (all identical) (Shared)
- Allow only a single writable copy  (Exclusive, Modified)
- Minimizes the number of bus transactions

# Based on a write-back scheme
- Onaread miss, issue a read transaction for a read-only copy

- On awrite miss, issue a “read-with-intent-to-modify” for an
exclusive copy

- Onawrite hit to a read-only copy, issue an “invalidate”
transaction

- When displacing a Exclusive (i.e., “clean") line, do nothing
- When displacing a Modified line, write the dirty value back to
memory
# All caches "snoop” the bus for other caches' read,
RWITM and invalidate transactions
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Implementation of Snoopy Busses

# Every bus snoop requires a cache lookup

- needs a dual ported cache or at least an extra tag lookup
port

- inaninclusive L1 and L2 arrangement, snoop only goes to L2
and does not contend with processor for L1 bandwidth
¢ Broadcast medium is not very scalable

- physical limits (such as number of drops and physical extent
of the bus) force bigger busses to clock slower

- bus bandwidth is divided when you add more processors

# Snoopy protocols are conceptually simple but “high-
performance” implementations can get very
complicated

- MESI state transitions are not really atomic
- CPU and bus transactions are not atomic
- CC issues can become intertwined with memory consistency
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Synchronizations
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Multiprocessor Memory Consistency

# A memory consistency model tells the programmer
for each load which store wrote the value to be
returned

o Intuition: a load should return the value of the
“last” store to the same memory address

# Suppose in a multiprocessor system, each of P1, P2
and P3 performs a stream of reads and writes

........................... Wpi(X) . ..o

¢ Who performed the last write to x before x is
read by P2?

& How do you establish a global ordering of memory
operations? Do you need a global ordering?
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Sequential Consistency [Lamport] ™

# For this lecture, let's only consider the "strongest”
consistency model, but know that there are others

# Sequential Consistency (should match your infuition)
- aprocessor perceives its own memory ops in program order
- memory ops from different processors can be interleaved

arbitrarily (different interleaving are allowed on different
runs)

- but for each run, all processors must agree on the same
total ordering

Example: Thread A and Thread B share variables X and Y
(initially X =0,Y = 0)

Thread A: Thread B
MIX]<- 1; rl < M[Y];
M[Y]< 1; r2 <- M[X];

SC says the final values of rl and r2 may be different from run
to run but for sure if rlis 1 then r2 cannot be 0
(BTW, r2 could be O in some weaker consistency models)
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Data Races when Sharing Memory
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# Two threads A and B repeatedly increment a
shared variable C in memory (assuming SC)

//Thread A //Thread B
_loop: _loop:
R8<-M[C] R8<-M[(C]
R8<-R8+1 R8<-R8+1
M[C]-R8 M[C]-R8
goto _loop goto _loop

# The intention of the program is clear, but what
actually happens depends on what Thread B does
between when Thread A reads and writes to C
(and vice versa)
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Atomic Read-Modify-Write "

+ A special class of memory instructions is need for
synchronization (between concurrent threads or
between time-multiplexed threads)

# Ansemantically atomic instruction that
- read a shared memory location
- perform some simple computation
- write something back to the same memory location

Note: atomic means the memory location cannot be written
to by anyone else between the read and the write back

+ Eg.. |swap(addr,r): Fetch&Add(addr,v):
temp=M[addr]. | or temp=M[addr];
M[addr]=r; M[addr] = temp+v;
r=temp:

# This class of instructions is very expensive to
implement and to perform
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RMW Examples

+ We could rewrite the earlier counting example
using atomic Fetch&Add, or

# A general technique is to develop a “lock" acquire
and release protocol to protect “critical sections”
that should not be interleaved

# Given a special lock variable L

//Thread A //Thread B

_loop: _loop:
Acquire(L) Acquire(L)
R8<-M[C] R8<-M[C]
R8<-R8+1 R8<-R8+1
M[C]-R8 M[Ck-R8
Release(L) Release(L)
goto _loop goto _loop
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Acquire and Release
# Using Swap, L initially O

Acquire(L) Release(L)
do { M[LX-O;
Ftemp™ 1;

SWGP(L, r|‘remp);
} while (Pyepp):

# Using Fetch&Add, L initially O
Acquire(L) Release(L)
do { M[L)-O;

fetch&Add(L,1);
} while (M[L] =1 );

# Many equally powerful RMW instructions have
been proposed
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Special Load and Store for RMW

# Atomic RMW can be mimicked by a pair of load
and store instructions with "extra” semantics

# Each core needs a special < reserved, address>
register, and a store-conditional status bit

load-linked(r, addr):
r=M[addr];
< reserved, address> = < 1, addr >

store-conditional(r, addr):
if < reserved, address> = < 1, addr > then
M[addr]=r
set status bit to succeed
else
set status bit to fail

# Much more efficient to implement than true
atomic ops
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LL/SC Examples

# Basic strategy when mimicking an atomic RWM
operation = keep retrying until you know you have
succeeded uninterrupted)

Swap(addr,r): . e
f if m is modified in between
loop: Islgr(';eg‘agcri‘;:lr') >sc will fajl and you try again
if status=failed then go to _loop
r‘:Iﬂ’remp

Fetch&Add(m,v):

loop:  [I(Pyep, addr)
r"'remp: r*remp+ v
store-conditional(ry,,,, addr)
if status=failed then go to loop




