
CMU 18-447
S’09 L23-1
© 2009
J. C. Hoe

18-447 Lecture 23:
Cache Coherence and

Synchronizationsy
Nikos Hardavellas
Dept of ECE, CMU

April 20, 2009

Announcements: Read P&H Ch5.8 and Ch2.11 for today’s lecture
(this lecture not covered on the final)(this lecture not covered on the final)

HW 4 extended to next Monday 4/27

Handouts:

CMU 18-447
S’09 L23-2
© 2009
J. C. Hoe

Chip-Multiprocessor
Core

$
Core

$
Core

$

Bigger L3

Fat Interconnect

Big L2

Bigger L3

 Current CMPs adopt the familiar SMP paradigm
 future design focus on the “uncore”

 how to support interprocessor communication
 how to support programmability

CMU 18-447
S’09 L23-3
© 2009
J. C. Hoe

Shared Memory Abstraction

P1 P2 P3 PP1 P2 P3 Pn

MemoryMemory
x

CMU 18-447
S’09 L23-4
© 2009
J. C. HoeMultiprocessor with Private Caches

P1 P2 P3 Pn

$1
$2

$1
$2

$1
$2

$1
$2x

x
x
x

x’
x’

The goal of cache coherence is to make all the processors
believe they are connected to the same memory directly

(warning: oversimplified)

Memoryx

CMU 18-447
S’09 L23-5
© 2009
J. C. Hoe

Extreme Solutions to Cache Coherence
 Disallow caching of shared variables
 Only allow only one copy of a mem location at a time

If location X is cached in one cache then it is not valid in If location X is cached in one cache then it is not valid in
memory or another cache

 Another processor must have a way to find out who has
location X and take over ownership before reading or
writing

 thus, can only have one reader/writer per location
 Allow multiple copies, but make sure they all have

h l ll the same value at all times
 updates to one copy must be visible to all copies where ever

they may be (memory and all of the caches)
 thus, can have multiple readers and writers at once

A cache coherence protocol is the “rule of conduct”
between caches to enforce a particular policy

CMU 18-447
S’09 L23-6
© 2009
J. C. HoeCC Protocol for Bus-based Systems

 Bus is a broadcast medium, bus “snooping” allows every
cache to see what everyone else wants to do

 A cache can even intervene in another cache’s bus
transaction, e.g. a cache might ask another cache to
“retry” the transaction later or respond in place of the
memory

 Besides the usual status bits, additional information
might have to be recorded with each cache line, aka
cache coherence states, e.g.
 Invalid: cache line does not have valid data
 Modified: cache line has been written to since it was brought in
 Shared: valid line, but other caches may have copies

(presumably all identical and unchanged from memory)
 Exclusive: valid line, unchanged from memory but no other cache

has a copy

CMU 18-447
S’09 L23-7
© 2009
J. C. Hoe

Modified in Cache A Shared in Cache A

MESI States
Given the state of an address in one cache, what can one infer

about the possible state of the same address elsewhere?

Cache A Other

Memory

Cache A Other

Memory

E l i i C h I lid i C h A

M S
shared or
invalid

valid validinvalid

invalid valid

don’t know

Cache A Other

Memory

Exclusive in Cache A
Cache A Other
Invalid in Cache A

E I

except that it
must be valid
somewhere

valid invalid invalid

valid

don’t know

don’t know

Memory

CMU 18-447
S’09 L23-8
© 2009
J. C. HoeExample: Multiple Identical Copies

 A cache line can be either Shared or Invalid
 Based on a write-through scheme

 a cache issues a read transaction on a read or write miss
 a cache issues a write transaction to memory whenever the

cache line is changed by the processor
 a cache does not need to write back when a line is displaced

 All writes are write-through so the writer’s cache is
coherent with memory

 All caches “snoop” the bus for other’s write
transactions
 check if the write is to a currently cached location
 if a write goes to a cached location, overwrite the old (aka

stale) value with the new snooped value
 else do nothing

All copies are coherent all the time

CMU 18-447
S’09 L23-9
© 2009
J. C. Hoe

Example: One Copy at All Time
 A cache line can be either Modified or Invalid
 Based on a write-back scheme

 h i d t ti d it i a cache issues a read transaction on a read or write miss
 a cache issues a write-back to memory when a line is

displaced
 All caches “snoop” the bus for other’s read

transactions
 If a cache observes a request to a currently cached line,

then respond with a value in place of memory and mark its then respond with a value in place of memory and mark its
own copy Invalid

 Alternatively, a cache can also ask the requestor to retry
later and, in the meantime, write back its copy to memory

Why don’t caches need to snoop for write-back
transactions?

CMU 18-447
S’09 L23-10
© 2009
J. C. HoeMSI and MESI Cache Coherence

 An efficient policy for single-writer/multi-reader
usage
 Allow multiple read-only copies (all identical) (Shared)
 Allow only a single writable copy (Exclusive Modified) Allow only a single writable copy (Exclusive, Modified)
 Minimizes the number of bus transactions

 Based on a write-back scheme
 On a read miss, issue a read transaction for a read-only copy
 On a write miss, issue a “read-with-intent-to-modify” for an

exclusive copy
 On a write hit to a read-only copy, issue an “invalidate” On a wr t h t to a r a on y copy, ssu an n a at

transaction
 When displacing a Exclusive (i.e., “clean”) line, do nothing
 When displacing a Modified line, write the dirty value back to

memory
 All caches “snoop” the bus for other caches’ read,

RWITM and invalidate transactions

CMU 18-447
S’09 L23-11
© 2009
J. C. Hoe

MSI State Transition Diagram

I lid

Rd (miss)/BusRd

Rd (hit)
Start

BusRdMod Invalidate

BusRd, BusRdMod, Invalidate, WriteBack

Invalid Shared

Wr (hit)/Invalidate

Evict

Evict/
WriteBackWr (miss)/

BusRdMod

Invalid Shared

BusRd

BusRd

BusRdMod, Invalidate

BusRdMod

Modified

Rd (hit), Wr (hit)

Modified

a. State transitions using signals
from the processor

b. State transitions using signals
from the bus

CMU 18-447
S’09 L23-12
© 2009
J. C. HoeImplementation of Snoopy Busses

 Every bus snoop requires a cache lookup
 needs a dual ported cache or at least an extra tag lookup

port
i i l i L1 d L2 l L2 in an inclusive L1 and L2 arrangement, snoop only goes to L2
and does not contend with processor for L1 bandwidth

 Broadcast medium is not very scalable
 physical limits (such as number of drops and physical extent

of the bus) force bigger busses to clock slower
 bus bandwidth is divided when you add more processors

 Snoopy protocols are conceptually simple but “high Snoopy protocols are conceptually simple but high-
performance” implementations can get very
complicated
 MESI state transitions are not really atomic
 CPU and bus transactions are not atomic
 CC issues can become intertwined with memory consistency

CMU 18-447
S’09 L23-13
© 2009
J. C. Hoe

Synchronizations

CMU 18-447
S’09 L23-14
© 2009
J. C. Hoe

Multiprocessor Memory Consistency
 A memory consistency model tells the programmer

for each load which store wrote the value to be
returnedreturned

 Intuition: a load should return the value of the
“last” store to the same memory address

 Suppose in a multiprocessor system, each of P1, P2
and P3 performs a stream of reads and writes
. WP1(x)

 WP (x) WP (y) RP (x) RP (y) WP2(x),WP2(y), RP2(x), RP2(y)
.WP3(x). . . . WP3(y).WP3(x)

 Who performed the last write to x before x is
read by P2?

 How do you establish a global ordering of memory
operations? Do you need a global ordering?

CMU 18-447
S’09 L23-15
© 2009
J. C. HoeSequential Consistency [Lamport]

 For this lecture, let’s only consider the “strongest”
consistency model, but know that there are others

 Sequential Consistency (should match your intuition)
a processor perceives its own memory ops in program order a processor perceives its own memory ops in program order

 memory ops from different processors can be interleaved
arbitrarily (different interleaving are allowed on different
runs)

 but for each run, all processors must agree on the same
total ordering

Example: Thread A and Thread B share variables X and Y
(initially X = 0 Y = 0)(initially X = 0, Y = 0)

Thread A: Thread B:
……… …….
M[X] <- 1; r1 <- M[Y];
M[Y] <- 1; r2 <- M[X];

SC says the final values of r1 and r2 may be different from run
to run but for sure if r1 is 1 then r2 cannot be 0

(BTW, r2 could be 0 in some weaker consistency models)

CMU 18-447
S’09 L23-16
© 2009
J. C. Hoe

Data Races when Sharing Memory
 Two threads A and B repeatedly increment a

shared variable C in memory (assuming SC)

//Thread A
_loop:

R8<-M[C]
R8<-R8+1
M[C]<-R8
goto _loop

//Thread B
_loop:

R8<-M[C]
R8<-R8+1
M[C]<-R8
goto _loop

 The intention of the program is clear, but what
actually happens depends on what Thread B does
between when Thread A reads and writes to C
(and vice versa)

g _ p g _ p

CMU 18-447
S’09 L23-17
© 2009
J. C. HoeAtomic Read-Modify-Write

 A special class of memory instructions is need for
synchronization (between concurrent threads or
between time-multiplexed threads)

 An semantically atomic instruction that
 read a shared memory location
 perform some simple computation
 write something back to the same memory location
Note: atomic means the memory location cannot be written

to by anyone else between the read and the write back
E E.g.,

or

 This class of instructions is very expensive to
implement and to perform

Swap(addr,r):
temp=M[addr];
M[addr]=r;
r=temp;

Fetch&Add(addr,v):
temp=M[addr];
M[addr] = temp+v;

CMU 18-447
S’09 L23-18
© 2009
J. C. HoeRMW Examples

 We could rewrite the earlier counting example
using atomic Fetch&Add, or

 A general technique is to develop a “lock” acquire g q p q
and release protocol to protect “critical sections”
that should not be interleaved

 Given a special lock variable L

//Thread A
_loop:

Acquire(L)

//Thread B
_loop:

Acquire(L) Acquire(L)
R8<-M[C]
R8<-R8+1
M[C]<-R8
Release(L)
goto _loop

Acquire(L)
R8<-M[C]
R8<-R8+1
M[C]<-R8
Release(L)
goto _loop

CMU 18-447
S’09 L23-19
© 2009
J. C. HoeAcquire and Release

 Using Swap, L initially 0
Acquire(L)
do {

Release(L)
M[L]<-0;

 Using Fetch&Add, L initially 0

do {
rtemp<- 1;
swap(L, rtemp);

} while (rtemp);

M[L] 0;

Acquire(L) Release(L)

 Many equally powerful RMW instructions have
been proposed

q ()
do {

fetch&Add(L,1);
} while (M[L] !=1);

()
M[L]<-0;

CMU 18-447
S’09 L23-20
© 2009
J. C. HoeSpecial Load and Store for RMW

 Atomic RMW can be mimicked by a pair of load
and store instructions with “extra” semantics

 Each core needs a special < reserved, address> Each core needs a spec al reserved, address
register, and a store-conditional status bit

load-linked(r, addr):
r=M[addr];
< reserved, address> = < 1, addr >

store-conditional(r, addr):
if < reserved address> = < 1 addr > thenif < reserved, address> = < 1, addr > then

M[addr]=r
set status bit to succeed

else
set status bit to fail

 Much more efficient to implement than true
atomic ops

CMU 18-447
S’09 L23-21
© 2009
J. C. HoeLL/SC Examples

 Basic strategy when mimicking an atomic RWM
operation keep retrying until you know you have
succeeded uninterrupted)

Swap(addr,r):
loop: ll(rtemp,addr)

sc(r,addr)
if status=failed then go to _loop
r=rtemp

if m is modified in between
sc will fail and you try again

Fetch&Add(m,v):
loop: ll(rtemp, addr)

rtemp= rtemp+ v
store-conditional(rtemp, addr)
if status=failed then go to loop

