lllllllll & Computer CMU 18-447

) ERGiNEERING T

18-447 Lecture 23:
Cache Coherence and
Synchronizations

Nikos Hardavellas
Dept of ECE, CMU
April 20, 2009

Announcements: Read P&H Ch5.8 and Ch2.11 for today's lecture
(this lecture not covered on the final)
HW 4 extended to next Monday 4/27

Handouts:

((3, Electrical & Computer CMU 18-447
ENGINEERING 509 L23.2

Chip-Multiprocessor

J. C. Hoe

Core Core Core

Fat Interconnect

Big L2

Bigger L3

Current CMPs adopt the familiar SMP paradigm

future design focus on the “uncore”
- how tfo support interprocessor communication
- how to support programmability

rical & Computer
) ERGiNEERING

Shared Memory Abstraction

Py

P,

P3 0000

Memory

CMU 18-447
509 L23-3
© 2009

J. C. Hoe

QO EEREERNE

Multiprocessor with Private Caches

P1 PZ P3 oo o000 Pn
RO B0 c il 3t
X52 $2 2 $2
3 ! ! !

i !
i X Memory

CMU 18-447
509 L23-4
© 2009

J. C. Hoe

The goal of cache coherence is to make all the processors
believe they are connected to the same memory directly
(warning: oversimplified)

a, Electrical & Computer CMU 18-447
) ERGiNEERING 5091235
© 2009
J. C. Hoe

Extreme Solutions to Cache Coherence

Disallow caching of shared variables

Only allow only one copy of a mem location at a time

- If location X is cached in one cache then it is not valid in
memory or another cache

- Another processor must have a way to find out who has
location X and take over ownership before reading or
writing

- thus, can only have one reader/writer per location

+ Allow multiple copies, but make sure they all have
the same value at all times

- updates to one copy must be visible to all copies where ever
they may be (memory and all of the caches)

- thus, can have multiple readers and writers at once
A cache coherence protocol is the “rule of conduct”
between caches to enforce a particular policy

((3, Electrical & Computer CMU 18-447
ENGINEERIN 509 L23-6
© 2009

CC Protocol for Bus-based Systems

Bus is a broadcast medium, bus “snooping” allows every
cache to see what everyone else wants to do

A cache can even intervene in another cache's bus
transaction, e.g. a cache might ask another cache to
"retry” the transaction later or respond in place of the
memory

Besides the usual status bits, additional information
might have to be recorded with each cache line, aka
cache coherence states, e.g.

- Invalid: cache line does not have valid data

- Modified: cache line has been written to since it was brought in

- Shared: valid line, but other caches may have copies
(presumably all identical and unchanged from memory)

- Exclusive: valid line, unchanged from memory but no other cache
has a copy

O

Electrical & Comy

ENGINEERING

MESI States

Given the state of an address in one cache, what can one inf
about the possible state of the same address elsewhere?

Modified in Cache A Shared in Cache A
Cache A Other Cache A Other
M—-—ard —p invalid S— vald —don't know
Memory Memory
—>_invalid P valid
Exclusive in Cache A Invalid in Cache A
Cache A Other Cache A Other
E —T>_valid —>_invalid T & nvalid Mﬂ%
Memory Memory

—_valid —tdon' know |

CMU 18-447
509 L23-7
© 2009

J. C. Hoe

er

shared or
invalid

except that it
must be valid
somewhere

€O

Electrical & Computer

ENGINEERIN

Example: Multiple Identical Copies**

¢ A cache line can be either shared or Invalid

Based on a write-through scheme
- a cache issues a read transaction on a read or write

CMU 18-447
509 L23-8
© 2009

miss

- acache issues a write transaction fo memory whenever the

cache line is changed by the processor
- a cache does not need to write back when a line is di

splaced

o All writes are write-through so the writer's cache is

coherent with memory

All caches "snoop” the bus for other's write
transactions
- check if the write is to a currently cached location

- if awrite goes to a cached location, overwrite the ol
stale) value with the new snooped value

- else do nothing

d (aka

All copies are coherent all the time

CMU 18-447

a, Electrical & Computer
) ERGiNEERING 5091239

Example: One Copy at All Time

J. C. Hoe

¢ A cache line can be either Modified or Invalid

+ Based on a write-back scheme
- acache issues a read transaction on a read or write miss
- acache issues a write-back to memory when a line is
displaced
¢ All caches "snoop” the bus for other's read
transactions

- If a cache observes a request to a currently cached line,
then respond with a value in place of memory and mark its
owh copy Invalid

- Alternatively, a cache can also ask the requestor to retry
later and, in the meantime, write back its copy to memory

4}, Electrical & Computer CMU 18-447
ENGINEERING 0912310
© 2009

MSI and MEST Cache Coherence ***~

An efficient policy for single-writer/multi-reader
usage
- Allow multiple read-only copies (all identical) (Shared)
- Allow only a single writable copy (Exclusive, Modified)
- Minimizes the number of bus transactions

Based on a write-back scheme
- Onaread miss, issue a read transaction for a read-only copy

- On awrite miss, issue a “read-with-intent-to-modify” for an
exclusive copy

- Onawrite hit to a read-only copy, issue an “invalidate”
transaction

- When displacing a Exclusive (i.e., “clean") line, do nothing
- When displacing a Modified line, write the dirty value back to
memory
All caches "snoop” the bus for other caches' read,
RWITM and invalidate transactions

CMU 18-447

(U' Eﬁbﬁﬁﬁ“ﬁfﬁ% g%% 1623-11
MST State Transition Diagram

J. C. Hoe
Rd (hit) BusRd, BusRdMod, Invalidate, WriteBack
Start

Rd (miss)/BusRd

BusRdMod, Invalidate
Invalid Shared

Invalid \

Evict

Evict/
WriteBack

Wr (miss)/

BusRdMod BusRdMod

BusRd
Wr (hit)/Invalidate

Modified Modified

de (hit), W (hit)
a. State transitions using signals b. State transitions using signals
from the processor from the bus
a, Electrical & Computer CMU 18-447
L) ENGINEERING 5092312

© 2009
J. C. Hoe

Implementation of Snoopy Busses

Every bus snoop requires a cache lookup

- needs a dual ported cache or at least an extra tag lookup
port

- inaninclusive L1 and L2 arrangement, snoop only goes to L2
and does not contend with processor for L1 bandwidth
¢ Broadcast medium is not very scalable

- physical limits (such as number of drops and physical extent
of the bus) force bigger busses to clock slower

- bus bandwidth is divided when you add more processors

Snoopy protocols are conceptually simple but “high-
performance” implementations can get very
complicated

- MESI state transitions are not really atomic
- CPU and bus transactions are not atomic
- CC issues can become intertwined with memory consistency

CMU 18-447

*0 Eﬁ‘cﬁ‘r'fz‘é’ﬁfﬁ'f; 509123-13

© 2009
J. C. Hoe

Synchronizations

€O

Electrical & Computer CMU 18-447
ENGINEERING 509 L23-14

© 2009
J. C. Hoe

Multiprocessor Memory Consistency

A memory consistency model tells the programmer
for each load which store wrote the value to be
returned

o Intuition: a load should return the value of the
“last” store to the same memory address

Suppose in a multiprocessor system, each of P1, P2
and P3 performs a stream of reads and writes

........................... Wpi(X) . ..o

¢ Who performed the last write to x before x is
read by P2?

& How do you establish a global ordering of memory
operations? Do you need a global ordering?

a, Electrical & Computer CMU 18-447
) ERGiNEERING 509 L23-15

© 2009

Sequential Consistency [Lamport] ™

For this lecture, let's only consider the "strongest”
consistency model, but know that there are others

Sequential Consistency (should match your infuition)
- aprocessor perceives its own memory ops in program order
- memory ops from different processors can be interleaved

arbitrarily (different interleaving are allowed on different
runs)

- but for each run, all processors must agree on the same
total ordering

Example: Thread A and Thread B share variables X and Y
(initially X =0,Y = 0)

Thread A: Thread B
MIX]<- 1; rl < M[Y];
M[Y]< 1; r2 <- M[X];

SC says the final values of rl and r2 may be different from run
to run but for sure if rlis 1 then r2 cannot be 0
(BTW, r2 could be O in some weaker consistency models)

4}, Electrical & Computer CMU 18-447
ENGINEERING 509 L2316

Data Races when Sharing Memory

J. C. Hoe

Two threads A and B repeatedly increment a
shared variable C in memory (assuming SC)

//Thread A //Thread B
_loop: _loop:
R8<-M[C] R8<-M[(C]
R8<-R8+1 R8<-R8+1
M[C]-R8 M[C]-R8
goto _loop goto _loop

The intention of the program is clear, but what
actually happens depends on what Thread B does
between when Thread A reads and writes to C
(and vice versa)

a, Electrical & Computer CMU 18-447
) ERGiNEERING 509 L23-17

© 2009

Atomic Read-Modify-Write "

+ A special class of memory instructions is need for
synchronization (between concurrent threads or
between time-multiplexed threads)

Ansemantically atomic instruction that
- read a shared memory location
- perform some simple computation
- write something back to the same memory location

Note: atomic means the memory location cannot be written
to by anyone else between the read and the write back

+ Eg.. |swap(addr,r): Fetch&Add(addr,v):
temp=M[addr]. | or temp=M[addr];
M[addr]=r; M[addr] = temp+v;
r=temp:

This class of instructions is very expensive to
implement and to perform

4}, Electrical & Computer CMU 18-447
ENGINEERING S09 L2318

RMW Examples

+ We could rewrite the earlier counting example
using atomic Fetch&Add, or

A general technique is to develop a “lock" acquire
and release protocol to protect “critical sections”
that should not be interleaved

Given a special lock variable L

//Thread A //Thread B

_loop: _loop:
Acquire(L) Acquire(L)
R8<-M[C] R8<-M[C]
R8<-R8+1 R8<-R8+1
M[C]-R8 M[Ck-R8
Release(L) Release(L)
goto _loop goto _loop

CMU 18-447

(U' Eﬁbﬁﬁﬁ“ﬁfﬁ% g%% 1623-19
Acquire and Release
Using Swap, L initially O

Acquire(L) Release(L)
do { M[LX-O;
Ftemp™ 1;

SWGP(L, r|‘remp);
} while (Pyepp):

Using Fetch&Add, L initially O
Acquire(L) Release(L)
do { M[L)-O;

fetch&Add(L,1);
} while (M[L] =1);

Many equally powerful RMW instructions have
been proposed

Electrical & Computer CMU 18-447

) ERGiNERRNG $09123:20

Special Load and Store for RMW

Atomic RMW can be mimicked by a pair of load
and store instructions with "extra” semantics

Each core needs a special < reserved, address>
register, and a store-conditional status bit

load-linked(r, addr):
r=M[addr];
< reserved, address> = < 1, addr >

store-conditional(r, addr):
if < reserved, address> = < 1, addr > then
M[addr]=r
set status bit to succeed
else
set status bit to fail

Much more efficient to implement than true
atomic ops

*0, Electrical & Computer CMU 18-447
ENGINEERING 509 L23-21

© 2009

LL/SC Examples

Basic strategy when mimicking an atomic RWM
operation = keep retrying until you know you have
succeeded uninterrupted)

Swap(addr,r): . e
f if m is modified in between
loop: Islgr(';eg‘agcri‘;:lr') >sc will fajl and you try again
if status=failed then go to _loop
r‘:Iﬂ’remp

Fetch&Add(m,v):

loop: [I(Pyep, addr)
r"'remp: r*remp+ v
store-conditional(ry,,,, addr)
if status=failed then go to loop

