
CMU 18-447
S’09 L22-1
© 2009
J. C. Hoe

18-447 Lecture 22:
Virtual Memory:

Survey of Modern Systems
James C. Hoe

Dept of ECE, CMU
April 15, 2009

Announcements: Spring Carnival!!!
Final Thursday, May 7 5:30-8:30p.m Room TBA
Two Guest Lectures next Mon and Wed (not on final)

L23: multicore cache-coherence by Nikos Hardavellas
L24: advanced multicore design by Prof. Onur Mutlu

Handouts: Assigned Reading "Virtual memory in contemporary
microprocessors." B. L Jacob and T. N. Mudge. IEEE Micro,
July/August 1998

CMU 18-447
S’09 L22-2
© 2009
J. C. Hoe

Case Studies

B. Jacob and T. Mudge, Virtual Memory in
Contemporary Processors, IEEE Micro, vol.

18, no. 4, 1998.

CMU 18-447
S’09 L22-3
© 2009
J. C. Hoe

SPARC V9
64-bit Virtual Address
 an implementation can choose not to map the high-order bits

(must be sign-extended from the highest mapped bit)
 e.g. UltraSPARC 1 maps only the lower 44 bits

physical address space size set by implementation
64 entry fully associative I-TLB and D-TLB

context13g VA<63:13> 51 Tag64

v size nfo IE Soft diag PA<40:13> Soft L CP CV e p w g Data64

valid
page size 8k~4M

no fault only
invert endianess

software defined

hw diagnosis bits
PPN

software defined

locked from replacement

cacheable in PA-indexed

cacheable in VA-indexed

side-effect (no speculation)

priviledged

writeable
global

CMU 18-447
S’09 L22-4
© 2009
J. C. Hoe

TLB Miss Handling
SPARC V8 (32-bit) defines a 3-level hierarchical
page table for HW MMU page-table walk

SPARC V9 (64-bit) defines Translation Storage
Buffer
 a software managed, direct-mapped cache of PTEs (think hashed

page table)
 HW assisted address generation on a TLB miss, e.g., for 8-k

pages {TSBbase63:21, Logic(TSBbase20:13,VA32:22,size,split?),VA21:13,0000}
 TLB miss handler (SW) search TSB. If TSB misses, a slower TSB-miss

handler takes over

context
table

descriptors

L1 Table:
256

descriptors
(1024-byte)

L2 Table:
64

descriptors
(256-byte)

L3 Table:
64

PTEs
(256-byte)

+VA[31:24] +VA[23:18] +VA[17:12]

context

CMU 18-447
S’09 L22-5
© 2009
J. C. Hoe

IBM PowerPC (32-bit)

seg#4 seg offset16 page offset12 EA32

16-entry
segment table

seg ID24 seg offset16 page offset12 VA52

Pr
ot

ec
ti

on

128 2-way ITLB and DTLB

PPN20 page offset12
PA32

VM
+p

ag
in

g

64-bit PowerPC = 64-bit EA -> 80-bit VA 64-bit PA. How many segments in EA?

segments 256MB regions

CMU 18-447
S’09 L22-6
© 2009
J. C. HoeIBM PowerPC Hashed Page Table

VPN40

Hash
Function Hashed Page Table

8 PTE’s per group

recommend at least N PTEG’s for
a system with 2N physical pages

HW table walk
 VPN hashes into a PTE group (PTEG) of 8
 8 PTEs searched sequentially for tag match
 if not found in first PTE group search a second PTE group
 if not found in the 2nd PTE group, trap to software handler

Hashed table structure also used for EA to VA
mapping in 64-bit implementations

table base +

CMU 18-447
S’09 L22-7
© 2009
J. C. Hoe

MIPS R10K

64-bit virtual address
 top 2 bits set kernel/supervisor/user mode
 additional bits set cache and translation behavior
 bit 61-40 not translate at all (holes in the VA??)

8-bit ASID (address space ID) distinguishes
between processes

40-bit physical address

Translation -
“64”-bit VA and 8-bit ASID 40-bit PA

1 GB
mapped
(ksseg)

0.5 GB
unmapped
uncached

0.5 GB
unmapped

cached

Bottom
2 GB

Mapped

(normal)

si
m

pl
if

ie
d

ex
am

pl
e

fr
om

 3
2-

bi
t

VA
 in

R2

00
0/

30
00

CMU 18-447
S’09 L22-8
© 2009
J. C. HoeMIPS TLB

64-entry fully associative unified TLB
 paired: each entry maps 2 consecutive VPNs to 2

different PPNs
 software managed

• 7-instruction page table walk in the best case
• TLB Write Random: chooses a random entry for TLB

replacement
• OS can exclude some number of TLB entry (low range)

to be excluded from the random selection, to hold
translations that cannot miss or should not miss

TLB entry

 N: noncacheable
 D: dirty (actually a write-enable bit)
 V: valid
 G: global entry, i.e., ignore ASID matching

VPN20 ASID6 06
PPN20 ndvg 08

R2000

CMU 18-447
S’09 L22-9
© 2009
J. C. Hoe

MIPS Bottom-Up Hierarchical Table
Page table organization is not part of the ISA
Reference design optimized for software TLB miss
handling

Bottom-Up Table
 start with a basic 2-level hierarchical table (32-bit case)
 map all of the L2 tables (empty or not) linearly in the

mapped kseg
 VPN is the index into this linear table in VA

A linear translation table that scales with VA size,
Is this okay?

CMU 18-447
S’09 L22-10
© 2009
J. C. Hoe

Bottom-Up Table Walk

VPN PO

VPN 0sPTEBase

VA on TLB Miss, trap

VA of PTE
(generated automatically
by HW after TLB miss)

which
address
space?

PPN status

mem
load

PTE loaded from mem

Can this load miss in the TLB?
What happens if it misses?

Notice translation also eats up TLB entries!

CMU 18-447
S’09 L22-11
© 2009
J. C. HoeUserTLB Miss Handling

mfc0 k0,tlbcxt # move the contents of TLB
context register into k0

mfc0 k1,epc # move PC of faulting load
instruction into k1

lw k0,0(k0) # load thru address that was
inTLB context register

mtc0 k0,entry_lo # move the loaded value
into the EntryLo register

tlbwr # write entry into the TLB
at a random slot number

j k1 # jump to PC of faulting
load instruction to retry

rfe # RESTORE FROM
EXCEPTION

CMU 18-447
S’09 L22-12
© 2009
J. C. HoeHP PA-RISC: PID and AID

2-level translation:
64-bit EA 96-bit VA (global) 64-bit PA

Variable sized segmented EA to VA
A different twist on protection
 everyone else: limit what can be named by a process

• In PowerPC, OS controls what VA can be reached by a
process by controlling what’s in the segment registers

 HP-RISC: rights-based access control
• User controls segment registers, i.e., user can generate any

VA it wants
• Each virtual page has an access ID (not related to ownership

by a processes) assigned by the OS
• Each process has 8 active protection IDs in special HW

registers controlled by the OS
• A process can only access a page if it has the key (PID) that

fits the lock (AID)

CMU 18-447
S’09 L22-13
© 2009
J. C. HoeIntel x86

Intended for two-level address translation with
segments for naming and protection (similar to PPC)
 user private 48-bit effective address

16-bit segment number (implicit) + 32-bit segment offset
each addr register has a corresponding segment register

 a global 32-bit virtual address
20-bit page number + 12-bit page offset

 an implementation defined paged physical address space
What is strange about this?

32-bit VA too small to be shared by multiple processes
No major OS today uses segmentation features
 code, data, stack segments always mapped to 0~(232-1)
 time multiplex VA between processes for naming and protection
 set MMU to use a different table on context switch
 must flush TLB on context switch because TLB entries are not

defined to have ASIDs

