
CMU 18-447
S’09 L21-1
© 2009
J. C. Hoe

18-447 Lecture 21:
Virtual Memory: Page Tables and TLBs

James C. Hoe
Dept of ECE, CMU

April 13, 2009

Announcements: Read Jacob&Mudge for Wed

Handouts: Don’t forget Proj 4 and HW 4

CMU 18-447
S’09 L21-2
© 2009
J. C. HoeEA, VA and PA (IBM’s view)

EA0 divided into X
fixed-size segments

PA divided into W pages
(Z>>W)

EA1 divided into X
fixed-size segments

VA divided into Y segments (Y>>X);

segmented EA:
private, contiguous + sharing

Swap disk divided into V
pages (Z>>V, V>>W)

demand paged VA:
size of swap, speed of DRAM

also divided as Z pages (Z>>Y)

CMU 18-447
S’09 L21-3
© 2009
J. C. HoeEA, VA and PA (almost everyone else)

PA divided into W pages
(Z>>W)

EA0
with unique ASID=0

Swap disk divided into V
pages (Z>>V, V>>W)

VA divided into N “address space”
indexed by ASID;

also divided as Z pages (Z>>Y)

EAi
with unique ASID=i

EA and VA almost
synonymous how do processes

share pages?

CMU 18-447
S’09 L21-4
© 2009
J. C. Hoe

How large is the page table?

VPN PO

64-bit

page
table

concat PA

12-bit52-bit

28-bit 40-bit

 A page table holds mapping from VPN to PPN
 Suppose 64-bit VA and 40-bit PA, how large is the

page table? 252 entries x ~4 bytes 16x1015

Bytes
and that is for just one process!!?

CMU 18-447
S’09 L21-5
© 2009
J. C. HoeHow large is the page table?

 Don’t need to keep track of the entire VA space
 the total allocated VA space in a system is 264 bytes x #

processes, but most of which is not alive
th t ’t ibl l ti th the system can’t possibly use more memory locations than
the physical storage (DRAM and swap disk)

 A clever page table scales “linearly” with the size
of physical storage (and not the size of the VA
space)

 Also cannot be too convoluted
 t bl t b “ lk bl ” b HW a page table must be “walkable” by HW

 a page table is accessed not infrequently
 Two basic themes in use today

 hierarchical page tables
 hashed (inverted) page tables

CMU 18-447
S’09 L21-6
© 2009
J. C. Hoe

Hierarchical Page Tables
 Hierarchical page table is a “tree” data structure

in DRAM

VA[11:0]VA[21:13]VA[31:22]PID VA[11:0]VA[21:13]VA[31:22]

L1
table

descriptor

L2
table

PTE

page
frame

data

PID

context
table

descriptor

L1 idx10 L2 idx10 PO12

PA to
base of L1

PA to
base of L2

PA to base of page
frame (i.e., PPN)

or
location on swap disk

Exact implementations vary
greatly. Next lecture!!

CMU 18-447
S’09 L21-7
© 2009
J. C. HoeHierarchical Page Tables

 Hierarchical page table is a “tree” graph,
 for example on previous page

• L1 table has 1024 decedents (L2 tables) indexed by
VA[31:22]

• each L2 table has 1024 decedents (physical page
frames) indexed by VA[21:12]

 more levels can be used to accommodate larger VA space
 assume 4-byte descriptors and PTEs, each table is 4KByte

(size of page frames) such that the tables themselves can
be demand paged between DRAM and disk

 Hierarchical page table is a “sparse” tree graph Hierarchical page table is a sparse tree graph
 if none of the virtual page frames associated with a L2

table is in used, the L2 table does not need to exist
(corresponding L1 entry simply points to null)

 in general, an entire unused sub-tree can avoided
 considering typical size ratio of VA to PA, the tree should

be quite sparse How sparse?

CMU 18-447
S’09 L21-8
© 2009
J. C. HoeHow large is the hierarchical

table?
 Assume 32-bit VA with 4 MByte in use
 Best Case: one contiguous 4-MByte region in VA

aligned on 4MByte boundariesal gned on 4MByte boundar es
 1K physical page frames
 needs 1 L2 table + 1 L1 table=2 x 4KBytes,
 overhead sizeof(PTE)/page_size per physical page

 Worst Case: 1K 4-KByte regions in VA; each is
4MByte aligned
 1K physical page framesK p y p g f m
 needs 1K L2 tables (only 1 entry per L2 table in use)
 1025 x 4KBytes
 overhead 200% per physical page

 Locality says we should be close to the best case
4 bytes/4Kbytes 0.1%

CMU 18-447
S’09 L21-9
© 2009
J. C. Hoe

Hashed Page Tables
 Choose an appropriate page table storage overhead

 at least 1 entry per physical page, but probably more to
avoid “hash” conflicts

 e.g. 1GB DRAM 256K frames 256K PTEs
 Page table works like a hash table

 to lookup a translation, hash VPN and PID into a index e.g.
(VPNPID)%table_size (note: overly simplified)

 assumes the PTE was inserted according to the same hash
 each entry must be “tagged” by PID and VPN to detect

collisioncollision

VPN
PID

table base

hash

table
offset + PA of entry

PID VPN PTE

CMU 18-447
S’09 L21-10
© 2009
J. C. HoeHow large is the hashed page

table?
 Size of hashed page table is a function of physical

memory size
 The exact proportion is an engineering choice The exact proportion is an engineering choice

large enough to reduce hash collisions
 Often hashed page table only stores translation for

pages currently in DRAM; on a miss, must consult a
complete table structure to determine if the VPN is
on swap disk or if the VPN is non-existent

 The original “inverted” page table (a historical note)
 allocate exactly 1 entry per physical page frame
 hashed location in table corresponds exactly to page frame

in main memory (the table entries do not need to hold PPN)
 viewing the table by itself, it is indexed by PPN and returns

VPN

CMU 18-447
S’09 L21-11
© 2009
J. C. Hoe

Translation Look-Aside Buffer (TLB)
 Every user memory reference (code or data)

requires a translation
 how many memory accesses per translation? how many memory accesses per translation?

hierarchical vs. hashed
 what good is it to hit in the cache if translation takes

forever
 TLB: a “cache” of most recently used translations

 same type of “tagged” lookup structure as caches and BTBs
 given a VPN, returns a PTE (PPN & protections)g p
 TLB entry:

tag: address tag (from VA), PID
PTE: PPN, protection bits
misc: valid, dirty, etc.

 similar design considerations as caches
capacity, block size, associativity, replacement policy

CMU 18-447
S’09 L21-12
© 2009
J. C. Hoe

Direct-Mapped TLB (bad example)

tag idx
VPN POPID

PTE BankTag Bank

va
lid

PTE

=

hit?

CMU 18-447
S’09 L21-13
© 2009
J. C. Hoe

TLB Design
 Separate I and D-TLB, multi-level TLBs make

sense as in caches
 C: if the L1 I cache is 64KB what’s the I TLB C: if the L1 I-cache is 64KB, what s the I-TLB

size?
 should cover the same 64KB footprint
 a minimum of 16 TLB entries some safety factor (2~8)
 in the old days 32~64 entries; nowadays a few hundred

 B: after accessing a page, how likely is it to access
the next page? (coarse grain spatial locality)the next page? (coarse grain spatial locality)
 typically one PTE per TLB entry
 MIPS stores 2 consecutive pages’ translations per entry

 a: what associativity to minimize collision?
 in the old days, fully-associative is the norm
 nowadays, 2~4-way-associative is more common Why?

CMU 18-447
S’09 L21-14
© 2009
J. C. Hoe

On a TLB Miss

 Most address translation resolved in ~1 cycle in
the TLB

 On a TLB miss
 must “walk” the page table to determine translation
 walk usually done by HW (MIPS walks in SW)
 can take 100’s of cycles to complete
 if PTE is found and page is in memory, then replace TLB

with new PTE and continue
if PTE i f d b t th i di k th t i “ if PTE is found but the page is on disk, then trigger “page
fault” exception to initiate kernel handler for demand
paging

 if PTE is not found, trigger “segmentation fault”
exception to initiate kernel handler

What to do now?

CMU 18-447
S’09 L21-15
© 2009
J. C. Hoe

VA to PA Translation
EA

TLB
l klookup

PT walk protection
check

no yes ~1 pclk

~100’s
pclk

hit

found
noyes

no yes

update TLB
“page fault”

demand
paging PA to

cache
“protection
violation”

10 msec

found
okayno yes

CMU 18-447
S’09 L21-16
© 2009
J. C. HoeHow should VM and Caches Interact?

CPU CPU CPU

TLB

cache

cache

tlb

VA
PA

cache tlb
VA
PA

VA
PA

lower
hier.

physical cache

lower
hier.

virtual (L1) cache

lower
hier.

hybrid??

PA

CMU 18-447
S’09 L21-17
© 2009
J. C. Hoe

Virtual Caches

 Even with TLB, translation takes time
 Naively, memory access time in the best case is y y

TLB hit time + cache hit time
 Why not access cache with virtual addresses and

only translate on a cache miss to DRAM
make sense if TLB hit time >> cache hit time

 Virtual caches in SUN SPARC, circa 1990
CPU h tt f t h th t ff hi SRAM CPU has gotten fast enough that off-chip a SRAM access
takes multiple cycles

 dies size has gotten large enough to integrate L1 caches
 MMU and TLB still on a separate chip

the conditions no longer hold

CMU 18-447
S’09 L21-18
© 2009
J. C. HoeManaging Virtual Caches:

Synonyms and Homonyms
 Homonyms (same sound different meaning)

 same EA (in different processes) points to different PAs
fl h i t l h b t t t i l d PID i flush virtual cache between context; or include PID in
cache tag

 Synonyms (different sound same meaning)
 different EAs (from the same or different processes)

point to the same PA
 in a virtually addressed cache

• a PA could be cached twice under different EAsa PA could be cached twice under different EAs
• updates to one cached copy would not be reflected in

the other cached copy
• solution: make sure synonyms can’t co-exist in the

cache, e.g., OS can forces synonyms to have the same
index bits in a direct mapped cache

CMU 18-447
S’09 L21-19
© 2009
J. C. HoeVirtually-Indexed Physically-Tagged

(a misnomer)
 If C≤(page_size associativity), the cache index

bits come only from page offset (same in VA and PA)
 If both cache and TLB are on chip

 index both arrays concurrently using VA bits
 check cache tag (physical) against TLB output at the end

VPN PO
IDX BO

TLB

PPN

physical
cache

tag data=

cache hit? Only an issue for L1 cachesTLB hit?

CMU 18-447
S’09 L21-20
© 2009
J. C. Hoe

Large Virtually-Indexed Caches
 If C>(page_size associativity), the cache index

bits include VPN Synonyms can cause problems
 Solutions Solut ons

 increase associativity
 increase page size
 MIPS R10K

VPN PO
IDX BO

a
TLB

PPN

physical
cache

tag data=

cache hit?TLB hit?

CMU 18-447
S’09 L21-21
© 2009
J. C. HoeR10000’s Virtually Index Caches

 32KB 2-Way Virtually-Indexed L1
 needs 10 bits of index and 4 bits of block offset
 page offset is only 12-bits 2 bits of index are VPN[1:0]

 Direct-Mapped Physical L2
 L2 is inclusive of L1
 VPN[1:0] is appended to the “tag” of L2

 Given two virtual addresses VA and VB that differs in a
and both map to the same physical address PA
 Suppose VA is accessed first so blocks are allocated in L1&L2
 What happens when VB is referenced?

1 VB indexes to a different block in L1and misses
2 VB translates to PA and goes to the same block as VA in L2
3. Tag comparison fails (VA[1:0]VB[1:0])
4. L2 detects that a synonym is cached in L1 VA’s entry in

L1 is ejected before VB is allowed to be refilled in L1

