((a, Electrical & Computer CMU 18-447
ENGINEERING sosL21-1
2009
J. C. Hoe

18-447 Lecture 21:
Virtual Memory: Page Tables and TLBs

James C. Hoe
Dept of ECE, CMU
April 13, 2009

Announcements: Read Jacob&Mudge for Wed

Handouts: Don't forget Proj 4 and HW 4

((), Electrical & Computer CMU 18-447
ENGINEERIN So9L21-2

EA, VA and PA (IBM's view) &

v
EA, divided into X
fixed-size segments

PA divided into W pages
(Z>»>W)

Swap disk divided into V
pages (Z>»V, V>»>W)

EA, divided into X VA divided into Y segments (Y>X);
fixed-size segments also divided as Z pages (Z>>Y)
segmented EA: demand paged VA:

private, contiguous + sharing size of swap, speed of DRAM

((a, Electrical & Computer CMU 18-447
ENGINEERING 509 L21-3

EA, VA and PA (almost everyone elsej™

-

EAo
with unique ASID=0

EA;
with unique ASID=i

Swap disk divided into V
pages (Z>»V, V>>W)

EA and VA almost

VA divided into N “address space” how do processes
indexed by ASID;
Synonymous also di\r/]idee?as %l pages (Z»Y) share pGg@S?
) ENGINEERING gé%ggf'f !
How large is the page table?
64-bit

I A N

| VPN . PO

-H2-bit 12-bit

page | , | PA
table | 28-bit 40-bit

+ A page table holds mapping from VPN to PPN

Suppose 64-bit VA and 40-bit PA, how large is the
page table? 252 entries x ~4 bytes ~ 16x10%5
Bytes

and that is for just one process!l?

CMU 18-447

((3 Eﬁ‘&ﬁ'ﬁ?ﬁfﬁé g%% 16;1-5
How large is the page table?

Don't need to keep track of the entire VA space

- the total allocated VA space in a system is 294 bytes x #
processes, but most of which is not alive

- the system can't possibly use more memory locations than
the physical storage (DRAM and swap disk)

A clever page table scales “linearly” with the size
of physical storage (and not the size of the VA
space)

& Also cannot be too convoluted

- apage table must be "walkable” by HW

- apage table is accessed not infrequently
+ Two basic themes in use today

- hierarchical page tables

- hashed (inverted) page tables

) ENGINEERING sosiis
Hierarchical Page Tables)
Hierarchical page table is a “tree” data structure

in DRAM
PID | VA[31:22]] VA[21:13] | VA[11:0] |
Llidx,, |L2idx, |POL
context L1 L2 page
table table table frame
descriptor [descriptort=— __PTE data
PA™to PA to PA to base of page
base of L1 base of L2 frame (i.e., PPN)
Exact implementations vary or

greatly. Next lecturell location on swap disk

CMU 18-447
509 L21-7

Hierarchical Page Tables il

Hierarchical page table is a “tree” graph,
- for example on previous page
* L1 table has 1024 decedents (L2 tables) indexed by
VA[31:22]
+ each L2 table has 1024 decedents (physical page
frames) indexed by VA[21:12]
- more levels can be used to accommodate larger VA space

- assume 4-byte descriptors and PTEs, each table is 4KByte
(size of page frames) such that the tables themselves can
be demand paged between DRAM and disk

Hierarchical page table is a "sparse” tree graph

- if none of the virtual page frames associated with a L2
table is in used, the L2 table does not need to exist
(corresponding L1 entry simply points to null)

- in general, an entire unused sub-tree can avoided

- considering typical size ratio of VA to PA, the tree should
be quite sparse

ectrical & Computer
) ERGiNEERING

4}, Electrical & Computer CMU 18-447
ENGINEERING S09L21-8

How large is the hierarchical ‘@

table?
Assume 32-bit VA with 4 MByte in use

Best Case: one contiguous 4-MByte region in VA
aligned on 4MByte boundaries
- 1K physical page frames
- needs 1L2 table + 1 L1 table=2 x 4KBytes,

& Worst Case: 1K 4-KByte regions in VA; each is
4MByte aligned
- 1K physical page frames
- needs 1K L2 tables (only 1 entry per L2 table in use)
- 1025 x 4KBytes

Locality says we should be close o the best case

CMU 18-447

(U' Eﬁbﬁ&?ﬁﬁé gc;% 16;1-9
Hashed Page Tables

Choose an appropriate page table storage overhead

- af least 1 entry per physical page, but probably more to
avoid “hash” conflicts

- e.g. 16B DRAM = 256K frames = 256K PTEs
Page table works like a hash table

- to lookup a translation, hash VPN and PID into a index e.g.
(VPN@PID)%table_size

- assumes the PTE was inserted according to the same hash

- each entry must be "tagged” by PID and VPN to detect
collision

table

| PID |— of fset PID|VPN[PTE
(VN —| hash 2SS+ e PO VPN

L ENGINEERING . sovii
How large is the hashed page &
table?
Size of hashed page table is a function of physical
memory size

The exact proportion is an engineering choice

Often hashed page table only stores translation for
pages currently in DRAM; on a miss, must consult a
complete table structure to determine if the VPN is
on swap disk or if the VPN is non-existent

¢ The original “inverted” page table
- allocate exactly 1 entry per physical page frame
- hashed location in table corresponds exactly to page frame
in main memory
- viewing the table by itself, it is indexed by PPN and returns
VPN

CMU 18-447

a, Electrical & Computer
) ERGiNEERING 509 L2111

© 2009

Translation Look-Aside Buffer (TLB)

+ Every user memory reference (code or data)
requires a translation
- how many memory accesses per translation?
hierarchical vs. hashed
- what good is it to hit in the cache if translation takes
forever
& TLB: a "cache” of most recently used translations
- same type of “tagged" lookup structure as caches and BTBs
- given a VPN, returns a PTE (PPN & protections)
- TLBentry:
tag: address tag (from VA), PID
PTE: PPN, protection bits
misc: valid, dirty, etc.
- similar design considerations as caches
capacity, block size, associativity, replacement policy

L) ENGINEERING 5’32% gg;‘f‘!
Direct-Mapped TLB (bad example)
PID VPN PO
tag idx
i o
Tag Bank '?;, PTE Bank

hit? PTE

Q&

eal & Camputer CMU 18-447
GINEERING 509 L21-13

© 2009
J. C. Hoe

TLB Design

Separate I and D-TLB, multi-level TLBs make
sense as in caches

¢ C:if the L1 I-cache is 64KB, what's the I-TLB
size?
- should cover the same 64KB footprint
- aminimum of 16 TLB entries x some safety factor
- in the old days 32~64 entries; nowadays a few hundred
B: after accessing a page, how likely is it to access
the next page?
- typically one PTE per TLB entry
a: what associativity to minimize collision?
- in the old days, fully-associative is the norm
- nowadays, 2~4-way-associative is more common

4}, Electrical & Computer CMU 18-447
ENGINEERING S09L21-14

© 2009
J. C. Hoe

On a TLB Miss

Most address translation resolved in ~1 cycle in
the TLB

¢ Ona TLB miss

- must “walk" the page table to determine translation

- walk usually done by HW

- can take 100's of cycles to complete

- if PTE is found and page is in memory, then replace TLB
with new PTE and continue

- if PTE is found but the page is on disk, then trigger "page
fault” exception to initiate kernel handler for demand
paging

- if PTE is not found, trigger "segmentation fault”
exception to initiate kernel handler

) ENGINEERING gégog{‘{‘!
VA to PA Translation
EA
i
TB |-
lookup
_<> ~1 pblk
no_~7 ._yes \
[— hit)
~100's L - N
clk | PT walk protection \\
P check !
fno '
no @ es |
“page fault" |
P | denand | Fpieltonl [
cache
B 10 msec

() ENGNERRRE g?;é;ggii'fﬁ
How should VM and Caches Interact?™
CPU CPU CPU
! !
VA
- TLB- A cache
| l cache ----ﬂb—--:—:ﬁ
cache S TN e
PA
! !
lower lower lower
hier. hier. hier.
physical cache virtual (L1) cache hybrid??

a, Electrical & Computer CMU 18-447
) ERGiNEERING 509 Lei-17

Virtual Caches

J. C. Hoe

¢ Even with TLB, translation takes time
+ Naively, memory access time in the best case is
TLB hit time + cache hit time
& Why not access cache with virtual addresses and
only translate on a cache miss o DRAM
make sense if TLB hit time > cache hit time

o Virtual caches in SUN SPARC, circa 1990

- CPU has gotten fast enough that of f-chip a SRAM access
takes multiple cycles

- dies size has gotten large enough to integrate L1 caches
- MMU and TLB still on a separate chip
the conditions no longer hold

((3. Electrical & Computer CMU 18-447
ENGINEERIN S09L21-18

Managing Virtual Caches: it
Synonyms and Homonyms

Homonyms (same sound different meaning)
- same EA (in different processes) points to different PAs
- flush virtual cache between context; or include PID in
cache tag
Synonyms (different sound same meaning)
- different EAs (from the same or different processes)
point to the same PA
- ina virtually addressed cache
+ a PA could be cached twice under different EAs

+ updates to one cached copy would not be reflected in
the other cached copy

+ solution: make sure synonyms can't co-exist in the
cache, e.g., OS can forces synonyms to have the same
index bits in a direct mapped cache

uuuuuuuuuuuuuuuu CMU 18-447

&
) ERGiNEERING vt

© 2009

Virtually-Indexed Physically-Tagged ™
(a misnomer)
* If C<(page_size x associativity), the cache index
bits come only from page offset (same in VA and PA)

o If both cache and TLB are on chip

- index both arrays concurrently using VA bits
- check cache tag (physical) against TLB output at the end

| VPN PO
— IDX BO
Iﬁ
TLB physical
cache
l v I v
| PPN F@—{ tag | | data |
TLB hit? cache hit? Only an issue for L1 caches
L ERGNEERRE e

© 2009
J. C. Hoe

Large Virtually-Indexed Caches

o If C>(page_size x associativity), the cache index
bits include VPN — Synonyms can cause problems
Solutions
- increase associativity
- increase page size

- MIPS R10K
| VPN | PO
— | IDX BO
\Tl
TLB physical
cache

l —

v
| PPN }—@—{ tag || data |

TLB hit? cache hit?

CMU 18-447

a, Electrical & Computer
) ERGiNEERING 509 L2121

R10000's Virtually Index Caches

32KB 2-Way Virtually-Indexed L1
- needs 10 bits of index and 4 bits of block of fset
- page offset is only 12-bits = 2 bits of index are VPN[1:0]
Direct-Mapped Physical L2
- L2is of L1
- VPN[1:0] is appended to the “tag" of L2
Given two virtual addresses VA and VB that differs ina
and both map to the same physical address PA
- Suppose VA is accessed first so blocks are allocated in L1&L2
- What happens when VB is referenced?
1 VB indexes to a different block in Lland misses
2 VB translates to PA and goes to the same block as VA in L2
3. Tag comparison fails (VA[1:0]-VB[1:0])
4. L2 detects that a synonym is cached in L1 = VA's entry in
L1 is ejected before VB is allowed to be refilled in L1

