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18-447 Lecture 19:
Memory Hierarchy: Cache Design

James C. Hoe
Dept of ECE, CMU

April 6, 2009

Announcements: Ckpt 1 bonus reminder
Graded midtermsGraded midterms
You are invited to attend
“Amdahl's Law in the Multicore Era” by Prof. Mark D. Hill
Tuesday April 7, CIC Building 1201, 4:00 pm

Handouts: Handout #14: HW4 (on Blackboard)
Midterm 2 solutions (in class)
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Recap: Basic Cache Parameters
 Let M = 2m be the size of the address space in 

bytes
sample values:  232, 264

IS
A p

 Let G=2g be the cache access granularity in bytes
sample values:  4, 8

 Let C be the “capacity” of the cache in bytes
sample values:  16 KBytes (L1), 1 MByte (L2)

I
nt

at
io

n

 Let B = 2b be the “block size” of the cache in 
bytes

sample values: 16 (L1), >64 (L2)
 Let a be the “associativity” of the cache

sample values: 1, 2, 4, 5(?),... “C/B” 

Im
pl

em
en
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lg2M -bit address

B.O.indextag
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The same cache parameters 
but tune for “narrower” data SRAMs
tag

PA[31:9] PA[0]
b.o.

PA[1]
idx

PA[8:2]

idx idx {idx,bo} {idx,bo}

data 0

256-lines
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2-bytes
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256-lines
x

2-bytes

tag0

128-l
x

23-b

v0

“
x

1-b

tag1

128-l
x

23-b

v1

“
x

1-b

7 7 8 8

this part is
unchanged

Can you play the same trick on the tag SRAMs? 
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The same cache parameters 
but tune for “fatter” data SRAMs

tag
PA[31:9] PA[0]

b.o.
PA[1]

idx
PA[8:2]

idx idx 6

PA[8:3]
6

PA[8:3]

data 0

64-lines
x

8-bytes

data 1

64-lines
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tag0
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x

23-b
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“
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1-b

tag1

128-l
x

23-b

v1

“
x

1-b

7 7

this part is
unchanged

Can you play the same trick on the tag SRAMs? 
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is interleaved over the 2 SRAM banks
tag

PA[31:9] PA[0]
b.o.

PA[1]
idx

PA[8:2]

idx idx
idx idx

data 0

128-lines
x

4-bytes

data 1

128-lines
x

4-bytes

tag0

128-l
x

23 b
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“
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tag1

128-l
x

23 b
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“
x

1 b

7
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7
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7 7

h0 bh0 b h1 bh1 b

this part is
unchanged

23-b 1-b 23-b 1-b

=
tag

23

h0

=

h1

2-1-mux 2-1-muxb.o.

2-1-muxd
h0•bo+h1•bo
h1•bo+h0•bo

HIT DATA

h0 h1

16

h0•boh0•bo h1•boh1•bo
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Understanding Cache Misses
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 Compulsory miss (design factor: B and prefetch)
­ first reference to an address (block) always results in a 

miss
­ subsequent references should hit unless the cache block is subsequent references should hit unless the cache block is 

displaced for the reasons below
dominates when locality is poor

 Capacity miss (design factor: C)
­ cache is too small to hold everything needed
­ defined as the misses that would occur even in a fully-

associative cache (with Belady replacement) of the same 
i d i  h  C  Wcapacity dominates when C < W

 Conflict miss (design factor: a)
­ data displaced by collision under direct-mapped or set-

associative allocation
­ defined as any miss that is neither a compulsory nor a 

capacity miss dominates when CW or when C/B is small
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 Compulsory miss (design factor: B and prefetch)
­ first reference to an address (block) always results in a 

miss
­ subsequent references should hit unless the cache block 

is displaced for the reasons below
 dominates when locality is poor

­ for example, in a “streaming” data access pattern where 
many addresses are visited, but each is visited exactly 
once  little reuse to amortize this cost

hi
t r

at
e

B
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 Capacity miss (design factor: C)
­ cache is too small to hold everything needed
­ defined as the misses that would occur even in an fully-defined as the misses that would occur even in an fully

associative cache of the same capacity
 dominates when C < W

­ for example, the L1 cache can never be made big enough 
due to cycle-time tradeoff

100%

hi
t r

at
e

100%

working 
set size (W)

C

CMU 18-447
S’09 L19-12
© 2009
J. C. HoeClassification of Cache Misses

 Conflict miss (design factor: a)
­ data displaced by collision under direct-mapped or set-

associative allocation
­ defined as any miss that is neither a compulsory nor a 

capacity miss
 dominates when CW or when C/B is small

?
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e
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a
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More Advanced Issues

CMU 18-447
S’09 L19-14
© 2009
J. C. Hoe

Writes are more interesting….

 For writes, the tag bank needs to be accessed 
before the data bank to ascertain hit or miss

 In modern CPUs, the tag and data bank accesses 
are decoupled in scheduling
­ on read, attempt to schedule simultaneous access to tag 

and data banks as early as possible, why? 
­ on write, tag bank access scheduled first, with the data 

bank access possibly many cycles later, why?
 Als  n  “p ti l d it ”  th  d t  b nk m st  Also, on a partial-word write”, the data bank must 

be read first to retrieve the unmodified bytes 
before writing back a complete word.
­ Conversely, on a partial-word-read, we pick out the bytes 

we want and ignore the rest
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Store Buffer
 Recall from Project 4

­ SW hit needs a extra cycle to perform the write
­ if SW is followed by a mem inst  structural hazard stall

 You can do better
­ after checking the tag bank for write-hit, buffer write-

data until next free data bank cycle
­ make sure the cache-line is not replaced before then

 Memory forwarding
­ later loads must check against pending store addresses in 

th  t  b ff  f  RAW d dthe store buffer for RAW dependence

store 
buffer w-data

rw-addr
r-data
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Non-blocking Miss
 Does the CPU need to wait for a miss?
 While a cache miss is being handled, should reads 

d   h  dd  b  ll dand writes to other addresses be allowed?
­ essential in high-clock-rate ILP processors to not lose 

too many instruction opportunities during cache miss
­ be aware of ordering and dependency issues when 

memory operations are completing out-of-order
 Even in an in-order pipeline, non-blocking write 

miss is usefulmiss is useful
­ the pipeline does not have to stall just because a SW 

hasn’t completed all the way into the cache
­ but on a RAW-dependent LW, must either stall or 

forward
What about WAW and WAR?



CMU 18-447
S’09 L19-17
© 2009
J. C. HoeWrite-Through Caches

 On a write-hit in Li, should Li+1 also be updated?

 Yes, write-through
­ simple policy, I/O devices that access memory directly 

always see values consistent with the cache 
­ not a viable option for high-performance processors 

today
3.6GHz, IPC=2, 10% stores, ~4byte/store

~3GByte/sec
L1 write-through to L2 is still a common optiong p

 With write-through, on a write-miss, should a 
cache block be allocated in Li (aka write-allocate)?
Do you believe in locality between reads and writes to the 

same address?
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Write-back Caches
 Changes to a cached location could be buffered in 

Li until when the block is displaced to Li+1
on a write miss  the entire block is brought in so the ­ on a write-miss, the entire block is brought in so the 
affected portion can be updated

­ reads and writes hit in the cache until replacement
­ on replacement, the cached copy must be written out to 

memory which presumably has a staled copy
Reduce required bandwidth at lower hierarchies

 “Dirty” bity
­ keep a status bit per block to record if a block has ever 

been modified since brought into Li

­ if not dirty, no write-back necessary on replacement
 What if an I/O device wants to read a write-back 

cached memory location?
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 Historical
­ “Harvard” refers to Aiken’s Mark series at Harvard with 

separate storages for instruction and data 
“Princeton” refers to von Neumann’s unified storage for ­ Princeton” refers to von Neumann s unified storage for 
instruction and data

 Contemporary usage describes unified vs split “caches”
 High-performance processors typically use split and 

asymmetrical L1 caches for instruction and data
­ instruction and data memory footprints typically disjoint

instruction fetch typically has smaller footprint  higher spatial ­ instruction fetch typically has smaller footprint, higher-spatial 
locality and is read-only

 Split L1 caches provide free doubled bandwidth, no-
cross pollution, and separate design customizations

But what about self-modifying code?
 L2 and L3 are okay as unified Why?
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L1-I L1-D
- a few pclk latency

- many GB/sec (random 
)

Ti=ti+mi·Ti+1

access)

L2-Unified

intermediate hierarchy  
is a cheaper way to 

reduce T1 then using a 
faster or bigger L1,

On-chip or
off-chip?

DRAM
- hundreds of pclk latency

- ~GB/sec (sequential)

Remember, memory hierarchy is also about memory bandwidth
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Multi-Level Cache Design
 Upper Hierarchies

­ small C: upper-bound by SRAM access time
smallish B: upper bound by C/B effects and the benefits ­ smallish B: upper-bound by C/B effects and the benefits 
of fine-grain spatial locality

­ a: required to counter C/B effects
 Lower Hierarchies

­ large C: upper-bound by chip area (or how much you are 
willing to pay off-chip)

­ large B: to reduce tag storage overhead and to take g g g
advantage of coarse-grain spatial locality

­ a: upper bound by complexity (off-chip implementations)
Very large off-chip caches are either direct-mapped or 
use on-chip tag-RAM and hit-logic
Newer on-chip L2s can be highly associative
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 Traditionally, Li contents is always a subset of Li+1
­ if a memory location is important enough to be in Li, it must 

be important enough to be in Li+1

­ external agents (I/O, other processors) only have to check 
th  l t l l t  k  if   l ti  i  h d d  the lowest level to know if a memory location is cached---do 
not need to consume L1 bandwidth

 Nontrivial to maintain when Li+1 has lower associativity
 E.g. a single Li miss may trigger multiple Li evictions

­ suppose Li has a>1, and Li+1 has a=1
­ suppose x, y, z have same Li index

 h  th   L i d  d diff t f  ’­ suppose y, z have the same Li+1 index and different from x’s
­ suppose initially x and y are cached in Li (and hence Li+1)
­ suppose a miss to z evicts x from Li according to LRU

z must evict y from Li+1 due to collision
y must also be evicted from Li to maintain inclusion

New multicores tend not to maintain inclusion anymore, why?
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Possible Inclusion Violation
step 1. L1 miss on z

step 2  x displaced

direct mapped L2

x yx

y

step 2. x displaced
to L2

2-way set asso. L1
z

x,y,z have same L1 idx bits
y,z have the same L2 idx bits

x,{y,z} have different L2 idx bits

step 3. y replaced 
by z
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Test yourself
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What cache is in your computer?

 How to figure out what cache configuration is in 
your computer
­ capacity (C), associativity (a), and block-size (B)
­ number of hierarchies

 The presence or lack of a cache should not be 
detectable by the functional behavior of software

 But you could tell if you get to measure execution 
time to infer the number of cache misses
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Capacity Experiment (for D-cache)
 Assume C is a 2-power
 For increasing values of R, where R is a 2-power

­ allocate a buffer of size R 
­ read every memory location in R in sequence, and repeat

 For small R<=C, we expect to hit in the cache
 For large R>C, we expect to miss in the cache and 

experience a noticeable jump in memory access time
 By continuing to increase R, we can look for the y g , w f

step-function increase in access time when the 
buffer size spill out of the next cache level

(**warning** timing won’t be perfect when you try 
this out)

This test is independent of B and a
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Block Size Experiment: knowing C

 Allocate a buffer of size R that is a multiple of C
 For increasing S, read just every S’th memory g j y y

location in the buffer, and repeat
 Since R>C, we expect to miss on the first access 

to each cache block
 When S>=B, we only use one word per cache block
 When S<B, we expect improving average memory 

access time for smaller S since we read more access time for smaller S since we read more 
words per cache block miss

How do you detect block size for 
the lower cache hierarchies? hi

t r
at

e
B
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Associativity Experiment: knowing C

 For increasing values of R, where R is a multiple of 
C
­ allocate a buffer of size R 
­ read every C’th memory location in sequence, and repeat

 All R/C referenced addresses map to the same set
 When a>=R/C, we expect the references to hit in 

the cache since all referenced addresses fit 
within the set

 When a<R/C, we expect at least some misses since 
all referenced addresses cannot fit simultaneously
­ we expect 100% cache miss if LRU is used.

How do you detect associativity for the lower cache 
hierarchies?
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What else could you tell?

 Write-through vs. Write-back
 Write-allocate
 Unified vs. split design
 I-cache C, B, a
 ti

 replacement policy of associative caches 
 . . . . 
 Caveat: experiments based on our simplified 

understanding of caches will not predict behaviors 
exactly for modern CPUs with virtual memory, 
complex hierarchies, and prefetchers, but it can 
still tell you lots. Try it!


