
CMU 18-447
S’09 L19-1
© 2009
J. C. Hoe

18-447 Lecture 19:
Memory Hierarchy: Cache Design

James C. Hoe
Dept of ECE, CMU

April 6, 2009

Announcements: Ckpt 1 bonus reminder
Graded midtermsGraded midterms
You are invited to attend
“Amdahl's Law in the Multicore Era” by Prof. Mark D. Hill
Tuesday April 7, CIC Building 1201, 4:00 pm

Handouts: Handout #14: HW4 (on Blackboard)
Midterm 2 solutions (in class)

CMU 18-447
S’09 L19-2
© 2009
J. C. Hoe

Recap: Basic Cache Parameters
 Let M = 2m be the size of the address space in

bytes
sample values: 232, 264

IS
A p

 Let G=2g be the cache access granularity in bytes
sample values: 4, 8

 Let C be the “capacity” of the cache in bytes
sample values: 16 KBytes (L1), 1 MByte (L2)

I
nt

at
io

n

 Let B = 2b be the “block size” of the cache in
bytes

sample values: 16 (L1), >64 (L2)
 Let a be the “associativity” of the cache

sample values: 1, 2, 4, 5(?),... “C/B”

Im
pl

em
en

CMU 18-447
S’09 L19-3
© 2009
J. C. HoeRecap: Address Fields

lg2M -bit address

B.O.indextag

CMU 18-447
S’09 L19-4
© 2009
J. C. HoeM=32, a=2, C=1K, B=4, G=2: Basic Solution

tag
PA[31:9] PA[0]

b.o.
PA[1]

idx
PA[8:2]

idx idx idx idx

tag0

128-l
x

23-b

v0

“
x

1-b

tag1

128-l
x

23-b

v1

“
x

1-b

7 7

data 0

128-lines
x

4-bytes

data 1

128-lines
x

4-bytes

7 7

=
tag

23

hit0

=

hit1

y y

2-1-mux 2-1-muxb.o.

HIT

hi
t0

hi
t1

2-1-muxd
hit0
hit1

DATA
16

CMU 18-447
S’09 L19-5
© 2009
J. C. Hoe

The same cache parameters
but tune for “narrower” data SRAMs
tag

PA[31:9] PA[0]
b.o.

PA[1]
idx

PA[8:2]

idx idx {idx,bo} {idx,bo}

data 0

256-lines
x

2-bytes

data 1

256-lines
x

2-bytes

tag0

128-l
x

23-b

v0

“
x

1-b

tag1

128-l
x

23-b

v1

“
x

1-b

7 7 8 8

this part is
unchanged

Can you play the same trick on the tag SRAMs?

=
tag

23

hit0

=

hit1

2-1-muxd
hit0
hit1

HIT DATA

hi
t0

hi
t1

16

16 16

CMU 18-447
S’09 L19-6
© 2009
J. C. Hoe

The same cache parameters
but tune for “fatter” data SRAMs

tag
PA[31:9] PA[0]

b.o.
PA[1]

idx
PA[8:2]

idx idx 6

PA[8:3]
6

PA[8:3]

data 0

64-lines
x

8-bytes

data 1

64-lines
x

8-bytes

tag0

128-l
x

23-b

v0

“
x

1-b

tag1

128-l
x

23-b

v1

“
x

1-b

7 7

this part is
unchanged

Can you play the same trick on the tag SRAMs?

=
tag

23

hit0

=

hit1

4-1-mux 4-1-mux{PA[2],b.o.}

2-1-muxd
hit0
hit1

HIT DATA

hi
t0

hi
t1

16

CMU 18-447
S’09 L19-7
© 2009
J. C. HoeThe same cache parameters but each block frame

is interleaved over the 2 SRAM banks
tag

PA[31:9] PA[0]
b.o.

PA[1]
idx

PA[8:2]

idx idx
idx idx

data 0

128-lines
x

4-bytes

data 1

128-lines
x

4-bytes

tag0

128-l
x

23 b

v0

“
x

1 b

tag1

128-l
x

23 b

v1

“
x

1 b

7

idx
7

idx
7 7

h0 bh0 b h1 bh1 b

this part is
unchanged

23-b 1-b 23-b 1-b

=
tag

23

h0

=

h1

2-1-mux 2-1-muxb.o.

2-1-muxd
h0•bo+h1•bo
h1•bo+h0•bo

HIT DATA

h0 h1

16

h0•boh0•bo h1•boh1•bo

CMU 18-447
S’09 L19-8
© 2009
J. C. Hoe

Understanding Cache Misses

CMU 18-447
S’09 L19-9
© 2009
J. C. HoeClassification of Cache Misses

 Compulsory miss (design factor: B and prefetch)
­ first reference to an address (block) always results in a

miss
­ subsequent references should hit unless the cache block is subsequent references should hit unless the cache block is

displaced for the reasons below
dominates when locality is poor

 Capacity miss (design factor: C)
­ cache is too small to hold everything needed
­ defined as the misses that would occur even in a fully-

associative cache (with Belady replacement) of the same
i d i h C Wcapacity dominates when C < W

 Conflict miss (design factor: a)
­ data displaced by collision under direct-mapped or set-

associative allocation
­ defined as any miss that is neither a compulsory nor a

capacity miss dominates when CW or when C/B is small

CMU 18-447
S’09 L19-10
© 2009
J. C. HoeClassification of Cache Misses

 Compulsory miss (design factor: B and prefetch)
­ first reference to an address (block) always results in a

miss
­ subsequent references should hit unless the cache block

is displaced for the reasons below
 dominates when locality is poor

­ for example, in a “streaming” data access pattern where
many addresses are visited, but each is visited exactly
once  little reuse to amortize this cost

hi
t r

at
e

B

CMU 18-447
S’09 L19-11
© 2009
J. C. HoeClassification of Cache Misses

 Capacity miss (design factor: C)
­ cache is too small to hold everything needed
­ defined as the misses that would occur even in an fully-defined as the misses that would occur even in an fully

associative cache of the same capacity
 dominates when C < W

­ for example, the L1 cache can never be made big enough
due to cycle-time tradeoff

100%

hi
t r

at
e

100%

working
set size (W)

C

CMU 18-447
S’09 L19-12
© 2009
J. C. HoeClassification of Cache Misses

 Conflict miss (design factor: a)
­ data displaced by collision under direct-mapped or set-

associative allocation
­ defined as any miss that is neither a compulsory nor a

capacity miss
 dominates when CW or when C/B is small

?

hi
t r

at
e

?

a

~5

CMU 18-447
S’09 L19-13
© 2009
J. C. Hoe

More Advanced Issues

CMU 18-447
S’09 L19-14
© 2009
J. C. Hoe

Writes are more interesting….

 For writes, the tag bank needs to be accessed
before the data bank to ascertain hit or miss

 In modern CPUs, the tag and data bank accesses
are decoupled in scheduling
­ on read, attempt to schedule simultaneous access to tag

and data banks as early as possible, why?
­ on write, tag bank access scheduled first, with the data

bank access possibly many cycles later, why?
 Als n “p ti l d it ” th d t b nk m st  Also, on a partial-word write”, the data bank must

be read first to retrieve the unmodified bytes
before writing back a complete word.
­ Conversely, on a partial-word-read, we pick out the bytes

we want and ignore the rest

CMU 18-447
S’09 L19-15
© 2009
J. C. Hoe

Store Buffer
 Recall from Project 4

­ SW hit needs a extra cycle to perform the write
­ if SW is followed by a mem inst  structural hazard stall

 You can do better
­ after checking the tag bank for write-hit, buffer write-

data until next free data bank cycle
­ make sure the cache-line is not replaced before then

 Memory forwarding
­ later loads must check against pending store addresses in

th t b ff f RAW d dthe store buffer for RAW dependence

store
buffer w-data

rw-addr
r-data

CMU 18-447
S’09 L19-16
© 2009
J. C. Hoe

Non-blocking Miss
 Does the CPU need to wait for a miss?
 While a cache miss is being handled, should reads

d h dd b ll dand writes to other addresses be allowed?
­ essential in high-clock-rate ILP processors to not lose

too many instruction opportunities during cache miss
­ be aware of ordering and dependency issues when

memory operations are completing out-of-order
 Even in an in-order pipeline, non-blocking write

miss is usefulmiss is useful
­ the pipeline does not have to stall just because a SW

hasn’t completed all the way into the cache
­ but on a RAW-dependent LW, must either stall or

forward
What about WAW and WAR?

CMU 18-447
S’09 L19-17
© 2009
J. C. HoeWrite-Through Caches

 On a write-hit in Li, should Li+1 also be updated?

 Yes, write-through
­ simple policy, I/O devices that access memory directly

always see values consistent with the cache
­ not a viable option for high-performance processors

today
3.6GHz, IPC=2, 10% stores, ~4byte/store

~3GByte/sec
L1 write-through to L2 is still a common optiong p

 With write-through, on a write-miss, should a
cache block be allocated in Li (aka write-allocate)?
Do you believe in locality between reads and writes to the

same address?

CMU 18-447
S’09 L19-18
© 2009
J. C. Hoe

Write-back Caches
 Changes to a cached location could be buffered in

Li until when the block is displaced to Li+1
on a write miss the entire block is brought in so the ­ on a write-miss, the entire block is brought in so the
affected portion can be updated

­ reads and writes hit in the cache until replacement
­ on replacement, the cached copy must be written out to

memory which presumably has a staled copy
Reduce required bandwidth at lower hierarchies

 “Dirty” bity
­ keep a status bit per block to record if a block has ever

been modified since brought into Li

­ if not dirty, no write-back necessary on replacement
 What if an I/O device wants to read a write-back

cached memory location?

CMU 18-447
S’09 L19-19
© 2009
J. C. HoeUnified vs Split I/D

 Historical
­ “Harvard” refers to Aiken’s Mark series at Harvard with

separate storages for instruction and data
“Princeton” refers to von Neumann’s unified storage for ­ Princeton” refers to von Neumann s unified storage for
instruction and data

 Contemporary usage describes unified vs split “caches”
 High-performance processors typically use split and

asymmetrical L1 caches for instruction and data
­ instruction and data memory footprints typically disjoint

instruction fetch typically has smaller footprint higher spatial ­ instruction fetch typically has smaller footprint, higher-spatial
locality and is read-only

 Split L1 caches provide free doubled bandwidth, no-
cross pollution, and separate design customizations

But what about self-modifying code?
 L2 and L3 are okay as unified Why?

CMU 18-447
S’09 L19-20
© 2009
J. C. HoeMulti-Level Caches

L1-I L1-D
- a few pclk latency

- many GB/sec (random
)

Ti=ti+mi·Ti+1

access)

L2-Unified

intermediate hierarchy
is a cheaper way to

reduce T1 then using a
faster or bigger L1,

On-chip or
off-chip?

DRAM
- hundreds of pclk latency

- ~GB/sec (sequential)

Remember, memory hierarchy is also about memory bandwidth

CMU 18-447
S’09 L19-21
© 2009
J. C. Hoe

Multi-Level Cache Design
 Upper Hierarchies

­ small C: upper-bound by SRAM access time
smallish B: upper bound by C/B effects and the benefits ­ smallish B: upper-bound by C/B effects and the benefits
of fine-grain spatial locality

­ a: required to counter C/B effects
 Lower Hierarchies

­ large C: upper-bound by chip area (or how much you are
willing to pay off-chip)

­ large B: to reduce tag storage overhead and to take g g g
advantage of coarse-grain spatial locality

­ a: upper bound by complexity (off-chip implementations)
Very large off-chip caches are either direct-mapped or
use on-chip tag-RAM and hit-logic
Newer on-chip L2s can be highly associative

CMU 18-447
S’09 L19-22
© 2009
J. C. HoeInclusion Principle

 Traditionally, Li contents is always a subset of Li+1
­ if a memory location is important enough to be in Li, it must

be important enough to be in Li+1

­ external agents (I/O, other processors) only have to check
th l t l l t k if l ti i h d d the lowest level to know if a memory location is cached---do
not need to consume L1 bandwidth

 Nontrivial to maintain when Li+1 has lower associativity
 E.g. a single Li miss may trigger multiple Li evictions

­ suppose Li has a>1, and Li+1 has a=1
­ suppose x, y, z have same Li index

 h th L i d d diff t f ’­ suppose y, z have the same Li+1 index and different from x’s
­ suppose initially x and y are cached in Li (and hence Li+1)
­ suppose a miss to z evicts x from Li according to LRU

z must evict y from Li+1 due to collision
y must also be evicted from Li to maintain inclusion

New multicores tend not to maintain inclusion anymore, why?

CMU 18-447
S’09 L19-23
© 2009
J. C. Hoe

Possible Inclusion Violation
step 1. L1 miss on z

step 2 x displaced

direct mapped L2

x yx

y

step 2. x displaced
to L2

2-way set asso. L1
z

x,y,z have same L1 idx bits
y,z have the same L2 idx bits

x,{y,z} have different L2 idx bits

step 3. y replaced
by z

CMU 18-447
S’09 L19-24
© 2009
J. C. Hoe

Test yourself

CMU 18-447
S’09 L19-25
© 2009
J. C. Hoe

What cache is in your computer?

 How to figure out what cache configuration is in
your computer
­ capacity (C), associativity (a), and block-size (B)
­ number of hierarchies

 The presence or lack of a cache should not be
detectable by the functional behavior of software

 But you could tell if you get to measure execution
time to infer the number of cache misses

CMU 18-447
S’09 L19-26
© 2009
J. C. Hoe

Capacity Experiment (for D-cache)
 Assume C is a 2-power
 For increasing values of R, where R is a 2-power

­ allocate a buffer of size R
­ read every memory location in R in sequence, and repeat

 For small R<=C, we expect to hit in the cache
 For large R>C, we expect to miss in the cache and

experience a noticeable jump in memory access time
 By continuing to increase R, we can look for the y g , w f

step-function increase in access time when the
buffer size spill out of the next cache level

(**warning** timing won’t be perfect when you try
this out)

This test is independent of B and a

CMU 18-447
S’09 L19-27
© 2009
J. C. Hoe

Block Size Experiment: knowing C

 Allocate a buffer of size R that is a multiple of C
 For increasing S, read just every S’th memory g j y y

location in the buffer, and repeat
 Since R>C, we expect to miss on the first access

to each cache block
 When S>=B, we only use one word per cache block
 When S<B, we expect improving average memory

access time for smaller S since we read more access time for smaller S since we read more
words per cache block miss

How do you detect block size for
the lower cache hierarchies? hi

t r
at

e
B

CMU 18-447
S’09 L19-28
© 2009
J. C. Hoe

Associativity Experiment: knowing C

 For increasing values of R, where R is a multiple of
C
­ allocate a buffer of size R
­ read every C’th memory location in sequence, and repeat

 All R/C referenced addresses map to the same set
 When a>=R/C, we expect the references to hit in

the cache since all referenced addresses fit
within the set

 When a<R/C, we expect at least some misses since
all referenced addresses cannot fit simultaneously
­ we expect 100% cache miss if LRU is used.

How do you detect associativity for the lower cache
hierarchies?

CMU 18-447
S’09 L19-29
© 2009
J. C. Hoe

What else could you tell?

 Write-through vs. Write-back
 Write-allocate
 Unified vs. split design
 I-cache C, B, a
 ti

 replacement policy of associative caches

 Caveat: experiments based on our simplified

understanding of caches will not predict behaviors
exactly for modern CPUs with virtual memory,
complex hierarchies, and prefetchers, but it can
still tell you lots. Try it!

