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Instruction-Level Parallelism

¢ When executing a program, how many “independent”
instructions can be performed in parallel

+ How to take advantage of ILP
- Pipelining (including superpipelining)
+ overlap different stages from different instructions
* limited by divisibility of an instruction and ILP
- Superscalar (including VLIW)
+ overlap processing of different instructions in all stages
* limited by ILP
# How to increase ILP
- dynamic/static register renaming = reduce WAW and WAR

- dynamic/static instruction scheduling = reduce RAW
hazards

- use predictions to optimistically break dependence
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Thread-Level Parallelism

# The average processor actually executes several
"programs” (a.k.a. processes, threads of control,
etc) at the same time

¢ The instructions from these different threads
have lots of parallelism

# Taking advantage of "thread-level” parallelism, i.e.
by concurrent execution, can improve the overall
throughput of the processor (but not furn-around
time of any one thread)

# Assumption: a single thread cannot use the full
performance potential of the processor

- peak performance is always higher than average
- must overprovision to achieve your average perf. target
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Multiprocessing

o Time-multiplex multiprocessing on uniprocessors
started back in 1962 to enable sharing

o Even concurrent execution by time-multiplexing
improves throughput

- asingle thread would effectively idle the processor when
spin-waiting for new event or for I/0 to complete

- can spin-wait for thousands to millions of cycles at a time

waiting waiting waiting
compute | ¢or 1/0 | COMPUTe | for 1/0 | COMPUTE | for T/0
- a thread should just go to "sleep” when waiting and let
other threads use the processor,

computel |compute2| computel |compute?2| computel |compute2 -

- keep in mind, this is very coarse-grain interleaving
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Classic Context Switching

# A "context” is all of the processor (plus machine)
states associated with a particular process

- programmer visible states: program counter, register file
contents, memory contents

- and some invisible states: control and status reg, page
table base pointers, page tables

What about cache, BTB and TLB entries?

# Classic Context Switching
- interrupt stops a program mid-execution (precise)
(a thread can also voluntarily give up control by a syscall
- OS saves away the context of the stopped thread
- OS restores the context of a previously stopped thread
- OS uses a "return from exception” fo jump to the
restarting PC
The restored thread has no idea it was interrupted,
removed, later restored and restarted
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Saving and Restoring Context &
¢ Saving

- “Context" information that occupy unique resources must
be copied and saved to memory by the OS

+ e.g. PC, GPR, cntrl/status reg

- “Context" information the occupy commodity resources
just needs to be hidden from the other threads

* e.g. active pages in memory can be left in place but
hidden via address translation (more on this when we
talk about VM protection)

# Restoring is the opposite of saving

¢ The act of saving and restoring is performed by the
OS in software
= can take a few hundred cycles per switch, but
the cost is amortize over a long execution
"quantum”

(If you want the full story, take a real OS coursel)
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Fast Context Switches

# A processor becomes idle when a thread runs into a
cache miss

# Cache miss lasts only tens of cycles, but it costs at
least 64 inst just to save and restore the 32 GPRs

¢ Solution: fast context switch in hardware
- replicate hardware context registers: PC, GPRs,
cntrl/status, PT base ptr

- allow multiple context to share some resources, i.e. include
process ID as cache, BTB and TLB match tags

- hardware context switch takes only a few cycles
+ set the PID register to the next process ID

+ select the corresponding set of hardware context
registers to be active
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Really Fast Context Switches

# When pipelined processor stalls due to RAW
dependence between instructions, the execution
stage is idling

+ Not only do you need hardware contexts, switching
between contexts must be instantaneous to have
any advantagel!!

o If this can be done,

- don't need complicated forwarding logic to avoid stalls

- RAW dependence and long latency operations (multiply,
cache misses) do not cause throughput performance loss




GacwRe  Fine-grain Multithreading
(hide latency)
o Superpipeline revisited
- deeper pipeline to increase frequency and performance
- but back-to-back dependencies cannot be forwarded
- no performance gain without ILP
To L

inoli Inst, [F][FJ[D][D.[E]
superpipelined et FIEIEIE]

¢ What about
2-way multithreaded 1o

Inst,,.,
IHSTT1_1
Insty,,
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NNERe - Barrel Instruction Pipeline
(hide latency)

# On each cycle, select a "ready” thread from
scheduling pool [HEP, Smith]
- only one instruction per context in flight at once
- ona long latency stall, remove the context from scheduling
o Actually make pipelining simpler
- no data dependence, hence no stall or forwarding

- no penalty in making pipeline deeper for frequency or
complexity

- assume there are many threads waiting to run

Insty CIDICE]E]ICE]

Inst, BCIDIEILFIE

Insty, Al[BICIID] L H

Insty, LA CEITRNLEIE

Instys AR CID] FI[GIH
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# Superscalar processor datapath must be over-resourced

- has more functional units than ILP because the units are not
universal

- current 4 to 8 way designs only achieves IPC of 2 to 3
+ Some units must be idling in each cycle

Why not switch to another thread?
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T Simultaneous Multi-Threading $#
[Eggers, et al.]
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¢ Dynamic and flexible sharing of functional units
between multiple threads

= increases utilization = increases throughput
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The rise of multicores
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Nickel Silicide Layer ———

Silicon Gate Electrode

1.2nm SiO, Gate Oxide

Strained Silicon
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Transistor Scaling

et Y

. S W | _ gate length

50nm transistor dimension is ~2000x
smaller than diameter of human hair
[http://www.intel. com/museum/onlme/cnrcu:'rs htm]

distance between silicon atoms ~ 500 pm
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Basic Scaling Theory

# Planned scaling occurs in discrete "nodes” where each
is ~0.7x of the previous in linear dimension

e.g., 90nm, 65nm, 45nm, 32nm, 22nm, 15nm, "The End"

# Take the same design, reducing the linear dimensions
by 0.7x (aka “gate shrink") leads to
- delay = 0.7x, frequency=1.43x
- capacitance = 0.7x
- die area = 0.5x
- Vdd=0.7x (if constant field) or Vdd=1x (if constant voltage)
- power = CxV2xf = 0.5x (if constant field)
- BUT power = 1x (if constant voltage)
¢ Take the same area, then
- transistor count = 2x
- power = 1x (constant field), power = 2x (constant voltage)
[refer to the Shekhar article for the more complete story]
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Moore's Law
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# The number of transistors that can be
economically integrated shall double every 24

m transistors
Pentium® 4 Processor 100,000,000
Pentium# Il Processor
MOORE'S LAW
Pentiurm® il Processor 10,000,000
Pentium® Processor
486™ DX Processor /
. 11,000,000
386™ Processor %
286
e 1 100,000
BOB6 L
&, - i
BOBO / A ":; 10,000
8008 o 3 T Tl
4004 & |
- - ° 2 i = A 1000
1970 1975 1280 1985 1990 1995 2000

[http://www.intel.com/research/silicon/mooreslaw.htm]
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Moore's Law = Performance
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# Microprocessor performance has been doubling
about every 24 months
- is this Moore's Law?
- are we doing well?

# According to scaling theory, we should get
constant complexity: 1x transistor at 1.43x frequency
= 1.43x performance at 0.5x power
max complexity: 2x transistor at 1.43x frequency
= 2.8x performance at constant power
# Instead, we have been getting (for high-perf CPUs)
- ~2x transistor?
- ~2x frequency (how
- we get about ~2x performance at ~2x power
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Performance (In)efficiency

# To hit the "expected” performance target on
single-thread microprocessors
- we had been pushing frequency harder by deepening
pipelines
- we used the 2x transistors to build more complicated

microarchitectures so the fast/deep pipelines don't stall
(i.e., caches, BP, superscalar, out-of-order)

# The consequence of performance inefficiency

# . Intel Tehas 150W
" (Guess what
happened next)

limit of economical
PC cooling [ITRS]

1

1985 1900 1095 2000 2005 2010
Year

Figure 8. Power dissipation projections

[from Shekhar Borkar, IEEE Micro, July 1999]
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Multicore Performance Efficiency

# PC-class cooling and packaging technologies cap
per-die CPU power to ~150W

# Going forward,
- still deliver 2x performance every 24 months
- but do it without increasing power
- in other words, must go faster and at the same time use
less energy per instruction
# How about just use the 2x transistor per
technology node to 2x the number of cores?

- 2x the “aggregate” performance without even having to
increase frequency

- slow-down or even stop power climb
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Chip-Multiprocessor
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Core Core Core

Fat Interconnect

BigL2

Bigger L3

# Current CMPs adopt the familiar SMP paradigm

o future design focus on the “uncore”
- how tfo support interprocessor communication
- how to support programmability
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Proj 4: Multithreading Multicore
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Checkpoint 1: Caches

o
28 $3z

combinational
0.5 KB each

128 128

1

On cache miss:

1. stall previous stages
2. insert bubbles for
next stages
10 cycle latency

Real memory are even slower, 150 cycles for 3.0 GHz CPU w/DDR2
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Selected cache details
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¢ Both caches are
- direct-mapped
- 128-bit cache lines
- write-back
# Cache hits indicated by
p_data_ready in same cycle as read/write request
# Misses take 10 or more cycles
o Instruction cache read-only, returns entire cache
line
# Modify the caches to output hit/miss statistics
+ A new memory module
- Wider data bus to accommodate caches
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Using the Cache
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# Performing a cache read
- Provide address in p_addr_in, and assert p_re
- Maintain inputs until p_data_ready is asserted
+ Cache hit: within the same cycle (combinational)
+ Cache miss: at least 10 cycles to read from memory
- Then, check p_addr_out, and get data from p_data_out

Read Hit Read Miss
S R i W
p_addr_in _T_ __A1___
p_re — 3

p_data_ready
p_addr_out LA

p_data_out D1
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G Using the Cache 2
# Performing a cache write
- Provide p_addr_in, p_data_in, and assert p_we
- Maintain inputs until p_data_ready and p_writing asserted
* Cache hit: within the same cycle (combinational)
+ Cache miss: at least 10 cycles to bring block from mem
* Note: p_writing asserted I cycle after p_data_ready

Write Hit Write Miss
SSS [ I e T S s O B
p_addrin Fi  AY HIEE T :

p_we

B

p_data_in ..~~D1') % D1

p_data_ready
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Structural Hazard on D-cache Writes

# On cache hit, need extra cycle to perform the
write
- D-cache unavailable for 2 cycles

- If a STis followed by a memory inst > structural
hazard!

¢ How to deal with this?
- On Decode stage, detect hazard
+ i.e., if inst inE is ST, and inst in D is mem inst
- On hazard, inject one bubble

* Allow the older ST to complete before executing the
subsequent mem inst
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Checkpoint 1: Pipeline Changes
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o I-cache
- Addressed at a cache block granularity
- Stall fetch on miss, propagate bubbles

¢ D-cache
- Addressed at a word granularity
- Stall on load/store misses
- Stall on (2 cycle) store hits

# Be deliberate when enabling reads and writes

# As before, interlock for |d dependencies (no delay
slot)

- Stall on load dependency

L) ENGINEERING soaLiszs
Checkpoint 2: Multithreading

J. C. Hoe
+ We will make one pipeline run two programs/
threads “simultaneously”

- add a second set of architectural state registers (PC and
register file) for thread O and thread 1

- instructions in the pipeline are tagged by thread-ID, O or 1

- use instruction's thread-ID to choose which set of
architectural states to access

- what about memory states? (more later)

+ Keep pipeline full *without forwarding™

- the decode stage tries to issue instruction from thread O
unless it encounters a dependency or structural hazard

- while thread O is stalled, decode issues from thread 1; if
both thread O and thread 1 stall, decode stage stalls

- as soon as thread O is able to advance, return to issuing
from thread O
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How do we fetch?

# Separate IRs for thread O and 1

- ideally both are full on each cycle
so the decode stage can choose
thread according to hazards

- if one IR is empty, decode should
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try to issue from the other thread |v| IRO

¢ The "fetch” stage needs to be
synchronized with decode to
replenish the IR is issuing, except
- if IRO is empty, always try to vl IR1

fetch IRO next (even if thread 1is
issuing)

- if IRl is empty, it is only fetched
if IR0 is not empty and thread O is
not issuing

decode
stage

€ EiNeERve

Checkpoint 3: Multicores

+ Two cores have private I-
caches (read-only); the two
I-caches share a common

instruction memory port Threads 0, 1

arbiter

- if both cores need to
access memory in the same
cycle, one side is told to
stall

- the core that is stalled is
guaranteed to go on the
next “round.”
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Threads 2, 3

+ Two cores share a common
# Require a 2-port fair
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Deliverables

o All project checkpoints due by 4/30
- no late credit, partial credit by complete checkpoints
- checkpoint1 90 points
- checkpoint 2 240 points
- checkpoint 3 120 points

¢ Extra Credit (50 max)
- Checkpoint 1 checked-off by 4/9 10 points
- Checkpoint 1&2 checked-off by 4/21 20 points
- Checkpoint 14243 checked-off by 4/28 20 points
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