
CMU 18-447
S’09 L18-1
© 2009
J. C. Hoe

18-447 Lecture 18:
Multithreading and Multicores

James C. Hoe
Dept of ECE, CMU

April 1, 2009

Announcements:

Handouts: Handout #13 Project 4 (On Blackboard)
“Design Challenges of Technology Scaling”, Shekhar Borkar,
IEEE Micro, 1999 (on Blackboard)

CMU 18-447
S’09 L18-2
© 2009
J. C. Hoe

Instruction-Level Parallelism
When executing a program, how many “independent”
instructions can be performed in parallel
How to take advantage of ILP
 Pipelining (including superpipelining)

• overlap different stages from different instructions
• limited by divisibility of an instruction and ILP

 Superscalar (including VLIW)
• overlap processing of different instructions in all stages
• limited by ILP

How to increase ILP
 dynamic/static register renaming ⇒ reduce WAW and WAR
 dynamic/static instruction scheduling ⇒ reduce RAW

hazards
 use predictions to optimistically break dependence

CMU 18-447
S’09 L18-3
© 2009
J. C. Hoe

Thread-Level Parallelism
The average processor actually executes several
“programs” (a.k.a. processes, threads of control,
etc) at the same time (time multiplexing)
The instructions from these different threads
have lots of parallelism
Taking advantage of “thread-level” parallelism, i.e.
by concurrent execution, can improve the overall
throughput of the processor (but not turn-around
time of any one thread)
Assumption: a single thread cannot use the full
performance potential of the processor
 peak performance is always higher than average
 must overprovision to achieve your average perf. target

CMU 18-447
S’09 L18-4
© 2009
J. C. HoeClassic Time-multiplex

Multiprocessing
Time-multiplex multiprocessing on uniprocessors
started back in 1962 to enable sharing
Even concurrent execution by time-multiplexing
improves throughput
 a single thread would effectively idle the processor when

spin-waiting for new event or for I/O to complete
 can spin-wait for thousands to millions of cycles at a time

 a thread should just go to “sleep” when waiting and let
other threads use the processor,

 keep in mind, this is very coarse-grain interleaving

compute waiting
for I/O compute waiting

for I/O compute waiting
for I/O

compute1 compute2 compute1 compute2 compute1 compute2

CMU 18-447
S’09 L18-5
© 2009
J. C. HoeClassic Context Switching

A “context” is all of the processor (plus machine)
states associated with a particular process
 programmer visible states: program counter, register file

contents, memory contents
 and some invisible states: control and status reg, page

table base pointers, page tables
What about cache, BTB and TLB entries?

Classic Context Switching
 interrupt stops a program mid-execution (precise)

(a thread can also voluntarily give up control by a syscall
 OS saves away the context of the stopped thread
 OS restores the context of a previously stopped thread
 OS uses a “return from exception” to jump to the

restarting PC
The restored thread has no idea it was interrupted,
removed, later restored and restarted

CMU 18-447
S’09 L18-6
© 2009
J. C. HoeSaving and Restoring Context

Saving
 “Context” information that occupy unique resources must

be copied and saved to memory by the OS
• e.g. PC, GPR, cntrl/status reg

 “Context” information the occupy commodity resources
just needs to be hidden from the other threads

• e.g. active pages in memory can be left in place but
hidden via address translation (more on this when we
talk about VM protection)

Restoring is the opposite of saving
The act of saving and restoring is performed by the
OS in software
⇒ can take a few hundred cycles per switch, but
the cost is amortize over a long execution
“quantum”

(If you want the full story, take a real OS course!)

CMU 18-447
S’09 L18-7
© 2009
J. C. HoeFast Context Switches

A processor becomes idle when a thread runs into a
cache miss Why not switch to another thread?
Cache miss lasts only tens of cycles, but it costs at
least 64 inst just to save and restore the 32 GPRs
Solution: fast context switch in hardware
 replicate hardware context registers: PC, GPRs,

cntrl/status, PT base ptr eliminates copying
 allow multiple context to share some resources, i.e. include

process ID as cache, BTB and TLB match tags
eliminates cold starts

 hardware context switch takes only a few cycles
• set the PID register to the next process ID
• select the corresponding set of hardware context

registers to be active

CMU 18-447
S’09 L18-8
© 2009
J. C. Hoe

Really Fast Context Switches
When pipelined processor stalls due to RAW
dependence between instructions, the execution
stage is idling

Why not switch to another thread?
Not only do you need hardware contexts, switching
between contexts must be instantaneous to have
any advantage!!
If this can be done,
 don’t need complicated forwarding logic to avoid stalls
 RAW dependence and long latency operations (multiply,

cache misses) do not cause throughput performance loss

Multithreading is a “latency hiding” technique

CMU 18-447
S’09 L18-9
© 2009
J. C. Hoe

Fine-grain Multithreading
(hide latency)

Superpipeline revisited
 deeper pipeline to increase frequency and performance
 but back-to-back dependencies cannot be forwarded
 no performance gain without ILP

What about

t0 t1 t2 t3 t4

Inst0

Inst1 Fa Fb Da Db Ea Eb Wa Wb

Fa Fb Da Db Ea Eb Wa Wb

Fa Fb Da Db Ea Eb Wa Wb

t0 t1 t2 t3 t4

InstT1-0

InstT1-1

Fa Fb Da Eb Wa Wb

Fa Fb Da Db Ea Eb Wa Wb

Db Ea

Fa Fb Ea Eb Wa WbDa Db

Fa Fb Ea Eb Wa WbDa Db

superpipelined

2-way multithreaded
superpipelined

InstT2-x

InstT2-y

CMU 18-447
S’09 L18-10
© 2009
J. C. HoeBarrel Instruction Pipeline

(hide latency)
On each cycle, select a “ready” thread from
scheduling pool [HEP, Smith]
 only one instruction per context in flight at once
 on a long latency stall, remove the context from scheduling

Actually make pipelining simpler
 no data dependence, hence no stall or forwarding
 no penalty in making pipeline deeper for frequency or

complexity
 assume there are many threads waiting to run

InstT1

InstT3

A B C F G H
A B C D E E G H

D E
A B E F G HC D

A B E F G HC D

InstT2

InstT4
A B E F G HC D

A B E F G HC D
A B E F G HC D

A B E F G HC D
A B E F G HC D

InstT5

InstT7

InstT6

InstT8
InstT1

CMU 18-447
S’09 L18-11
© 2009
J. C. HoeMultithreading and Out-of-order

(better utilization)

Superscalar processor datapath must be over-resourced
 has more functional units than ILP because the units are not

universal
 current 4 to 8 way designs only achieves IPC of 2 to 3

Some units must be idling in each cycle
Why not switch to another thread?

Fetch
Unit

OOO
Dispatch

Unit

FMult
(4 cyc)

FAdd
(2 cyc)

A
LU

1
A

LU
2

Load/Store
(variable)

Fdiv, unpipe
(16 cyc)

Reorder
Buffer

CMU 18-447
S’09 L18-12
© 2009
J. C. HoeSimultaneous Multi-Threading

[Eggers, et al.]

Dynamic and flexible sharing of functional units
between multiple threads

⇒ increases utilization ⇒ increases throughput

FMult
(4 cyc)

FAdd
(2 cyc)

A
LU

1
A

LU
2

Load/Store
(variable)

Fdiv, unpipe
(16 cyc)

Reorder
Buffer

A

Reorder
Buffer

Z

Fetch
Unit

A

OOO
Dispatch

A

Fetch
Unit

Z

OOO
Dispatch

Z

Co
nt

ex
t

A
Co

nt
ex

t
Z

CMU 18-447
S’09 L18-13
© 2009
J. C. Hoe

The rise of multicores

CMU 18-447
S’09 L18-14
© 2009
J. C. Hoe

Transistor Scaling

distance between silicon atoms ~ 500 pm
[http://www.intel.com/museum/online/circuits.htm]

gate length

CMU 18-447
S’09 L18-15
© 2009
J. C. HoeBasic Scaling Theory

Planned scaling occurs in discrete “nodes” where each
is ~0.7x of the previous in linear dimension
e.g., 90nm, 65nm, 45nm, 32nm, 22nm, 15nm, “The End”
Take the same design, reducing the linear dimensions
by 0.7x (aka “gate shrink”) leads to
 delay = 0.7x, frequency=1.43x
 capacitance = 0.7x
 die area = 0.5x
 Vdd=0.7x (if constant field) or Vdd=1x (if constant voltage)
 power = C×V2×f = 0.5x (if constant field)
 BUT power = 1x (if constant voltage)

Take the same area, then
 transistor count = 2x
 power = 1x (constant field), power = 2x (constant voltage)

[refer to the Shekhar article for the more complete story]

CMU 18-447
S’09 L18-16
© 2009
J. C. Hoe

Moore’s Law

The number of transistors that can be
economically integrated shall double every 24
months

[http://www.intel.com/research/silicon/mooreslaw.htm]

CMU 18-447
S’09 L18-17
© 2009
J. C. Hoe

Moore’s Law Performance
Microprocessor performance has been doubling
about every 24 months
 is this Moore’s Law?
 are we doing well?

According to scaling theory, we should get
constant complexity: 1x transistor at 1.43x frequency
⇒ 1.43x performance at 0.5x power
max complexity: 2x transistor at 1.43x frequency
⇒ 2.8x performance at constant power

Instead, we have been getting (for high-perf CPUs)
 ~2x transistor?
 ~2x frequency (how
 we get about ~2x performance at ~2x power

CMU 18-447
S’09 L18-18
© 2009
J. C. HoePerformance (In)efficiency

To hit the “expected” performance target on
single-thread microprocessors
 we had been pushing frequency harder by deepening

pipelines
 we used the 2x transistors to build more complicated

microarchitectures so the fast/deep pipelines don’t stall
(i.e., caches, BP, superscalar, out-of-order)

The consequence of performance inefficiency

[from Shekhar Borkar, IEEE Micro, July 1999]

Intel Tehas 150W
(Guess what
happened next) limit of economical

PC cooling [ITRS]

CMU 18-447
S’09 L18-19
© 2009
J. C. HoeMulticore Performance Efficiency

PC-class cooling and packaging technologies cap
per-die CPU power to ~150W
Going forward,
 still deliver 2x performance every 24 months
 but do it without increasing power
 in other words, must go faster and at the same time use

less energy per instruction How do you do that?
How about just use the 2x transistor per
technology node to 2x the number of cores?
 2x the “aggregate” performance without even having to

increase frequency
 slow-down or even stop power climb
*** this only works well when we have sufficient “parallel”

workloads to keep all cores busy
*** “uncore” portion of processors become very important

CMU 18-447
S’09 L18-20
© 2009
J. C. Hoe

Bigger L3

Chip-Multiprocessor

Current CMPs adopt the familiar SMP paradigm
future design focus on the “uncore”
 how to support interprocessor communication
 how to support programmability

Core
$

Core
$

Core
$

Fat Interconnect

Big L2

CMU 18-447
S’09 L18-21
© 2009
J. C. Hoe

Proj 4: Multithreading Multicore

CMU 18-447
S’09 L18-22
© 2009
J. C. Hoe

Checkpoint 1: Caches

IF ID EX MEM WB

Memory
10 cycle latency

I Cache D Cachecombinational
0.5 KB each

128

128 128

32

On cache miss:
1. stall previous stages
2. insert bubbles for

next stages

Real memory are even slower, 150 cycles for 3.0 GHz CPU w/DDR2

CMU 18-447
S’09 L18-23
© 2009
J. C. Hoe

Selected cache details

Both caches are
 direct-mapped
 128-bit cache lines
 write-back

Cache hits indicated by
p_data_ready in same cycle as read/write request
Misses take 10 or more cycles
Instruction cache read-only, returns entire cache
line
Modify the caches to output hit/miss statistics
A new memory module
 Wider data bus to accommodate caches

CMU 18-447
S’09 L18-24
© 2009
J. C. Hoe

Using the Cache
Performing a cache read
 Provide address in p_addr_in, and assert p_re
 Maintain inputs until p_data_ready is asserted

• Cache hit: within the same cycle (combinational)
• Cache miss: at least 10 cycles to read from memory

 Then, check p_addr_out, and get data from p_data_out

clock

p_addr_in

p_re

p_data_ready

p_addr_out

p_data_out

A1

A1

D1

A1

Read Miss

A1

D1

A1

Read Hit

CMU 18-447
S’09 L18-25
© 2009
J. C. HoeUsing the Cache

Performing a cache write
 Provide p_addr_in, p_data_in, and assert p_we
 Maintain inputs until p_data_ready and p_writing asserted

• Cache hit: within the same cycle (combinational)
• Cache miss: at least 10 cycles to bring block from mem
• Note: p_writing asserted 1 cycle after p_data_ready

clock

p_addr_in

p_we

p_data_ready

p_writing

p_data_in

A1 A1

Write Miss

D1 D1

A1

Write Hit

D1

CMU 18-447
S’09 L18-26
© 2009
J. C. Hoe

Structural Hazard on D-cache Writes
On cache hit, need extra cycle to perform the
write
 D-cache unavailable for 2 cycles
 If a ST is followed by a memory inst structural

hazard!

How to deal with this?
 On Decode stage, detect hazard

• i.e., if inst in E is ST, and inst in D is mem inst
 On hazard, inject one bubble

• Allow the older ST to complete before executing the
subsequent mem inst

CMU 18-447
S’09 L18-27
© 2009
J. C. Hoe

Checkpoint 1: Pipeline Changes

I-cache
 Addressed at a cache block granularity
 Stall fetch on miss, propagate bubbles

D-cache
 Addressed at a word granularity
 Stall on load/store misses
 Stall on (2 cycle) store hits

Be deliberate when enabling reads and writes

As before, interlock for ld dependencies (no delay
slot)
 Stall on load dependency

CMU 18-447
S’09 L18-28
© 2009
J. C. Hoe

Checkpoint 2: Multithreading
We will make one pipeline run two programs/
threads “simultaneously”
 add a second set of architectural state registers (PC and

register file) for thread 0 and thread 1
 instructions in the pipeline are tagged by thread-ID, 0 or 1
 use instruction’s thread-ID to choose which set of

architectural states to access
 what about memory states? (more later)

Keep pipeline full *without forwarding*
 the decode stage tries to issue instruction from thread 0

unless it encounters a dependency or structural hazard
 while thread 0 is stalled, decode issues from thread 1; if

both thread 0 and thread 1 stall, decode stage stalls
 as soon as thread 0 is able to advance, return to issuing

from thread 0

CMU 18-447
S’09 L18-29
© 2009
J. C. Hoe

How do we fetch?
Separate IRs for thread 0 and 1
 ideally both are full on each cycle

so the decode stage can choose
thread according to hazards

 if one IR is empty, decode should
try to issue from the other thread

The “fetch” stage needs to be
synchronized with decode to
replenish the IR is issuing, except
 if IR0 is empty, always try to

fetch IR0 next (even if thread 1 is
issuing)

 if IR1 is empty, it is only fetched
if IR0 is not empty and thread 0 is
not issuing

decode
stage

IR0

IR1

v

v

CMU 18-447
S’09 L18-30
© 2009
J. C. Hoe

Checkpoint 3: Multicores

Two cores have private I-
caches (read-only); the two
I-caches share a common
instruction memory port
Two cores share a common
D-cache interface
Require a 2-port fair
arbiter
 if both cores need to

access memory in the same
cycle, one side is told to
stall

 the core that is stalled is
guaranteed to go on the
next “round.”

MemoryMemory

D CacheD Cache

I CacheI Cache I CacheI Cache

Threads 0, 1 Threads 2, 3

128 128

128 32

CMU 18-447
S’09 L18-31
© 2009
J. C. Hoe

Deliverables

All project checkpoints due by 4/30
 no late credit, partial credit by complete checkpoints
 checkpoint 1 90 points
 checkpoint 2 240 points
 checkpoint 3 120 points

Extra Credit (50 max)
 Checkpoint 1 checked-off by 4/9 10 points
 Checkpoint 1&2 checked-off by 4/21 20 points
 Checkpoint 1&2&3 checked-off by 4/28 20 points

