«3 Electrical & Computer CMU 18-447
ENGINEERING $09L16.1
© 2009
J. C. Hoe

18-447 Lecture 18:
Multithreading and Multicores

James C. Hoe
Dept of ECE, CMU

April 1, 2009
Announcements:
Handouts: Handout #13 Project 4 (On Blackboard)
"Design Challenges of Technology Scaling”, Shekhar Borkar,
TEEE Micro, 1999 (on Blackboard)
O EsEERRE T

© 2009
J. C. Hoe

Instruction-Level Parallelism

¢ When executing a program, how many “independent”
instructions can be performed in parallel

+ How to take advantage of ILP
- Pipelining (including superpipelining)
+ overlap different stages from different instructions
* limited by divisibility of an instruction and ILP
- Superscalar (including VLIW)
+ overlap processing of different instructions in all stages
* limited by ILP
How to increase ILP
- dynamic/static register renaming = reduce WAW and WAR

- dynamic/static instruction scheduling = reduce RAW
hazards

- use predictions to optimistically break dependence

«’ Electrical & Computer CMU 18-447
ENGINEERING 509 L18-3
© 2009

Thread-Level Parallelism

The average processor actually executes several
"programs” (a.k.a. processes, threads of control,
etc) at the same time

¢ The instructions from these different threads
have lots of parallelism

Taking advantage of "thread-level” parallelism, i.e.
by concurrent execution, can improve the overall
throughput of the processor (but not furn-around
time of any one thread)

Assumption: a single thread cannot use the full
performance potential of the processor

- peak performance is always higher than average
- must overprovision to achieve your average perf. target

J. C. Hoe

ectrical & Computer
A ERGiNERRNG

Classic Time-multiplex

CMU 18-447
509 L18-4
© 2009

J. C. Hoe

Multiprocessing

o Time-multiplex multiprocessing on uniprocessors
started back in 1962 to enable sharing

o Even concurrent execution by time-multiplexing
improves throughput

- asingle thread would effectively idle the processor when
spin-waiting for new event or for I/0 to complete

- can spin-wait for thousands to millions of cycles at a time

waiting waiting waiting
compute | ¢or 1/0 | COMPUTe | for 1/0 | COMPUTE | for T/0
- a thread should just go to "sleep” when waiting and let
other threads use the processor,

computel |compute2| computel |compute?2| computel |compute2 -

- keep in mind, this is very coarse-grain interleaving

((.; Electrical & Computer CMU 18-447
ENGINEERIN 509 L16-5

Classic Context Switching

A "context” is all of the processor (plus machine)
states associated with a particular process

- programmer visible states: program counter, register file
contents, memory contents

- and some invisible states: control and status reg, page
table base pointers, page tables

What about cache, BTB and TLB entries?

Classic Context Switching
- interrupt stops a program mid-execution (precise)
(a thread can also voluntarily give up control by a syscall
- OS saves away the context of the stopped thread
- OS restores the context of a previously stopped thread
- OS uses a "return from exception” fo jump to the
restarting PC
The restored thread has no idea it was interrupted,
removed, later restored and restarted

{U. Electrical & Compurer CMU 18-447
ENGINEERING 509115-6
© 2009

Saving and Restoring Context &
¢ Saving

- “Context" information that occupy unique resources must
be copied and saved to memory by the OS

+ e.g. PC, GPR, cntrl/status reg

- “Context" information the occupy commodity resources
just needs to be hidden from the other threads

* e.g. active pages in memory can be left in place but
hidden via address translation (more on this when we
talk about VM protection)

Restoring is the opposite of saving

¢ The act of saving and restoring is performed by the
OS in software
= can take a few hundred cycles per switch, but
the cost is amortize over a long execution
"quantum”

(If you want the full story, take a real OS coursel)

? Electrical & Computer CMU 18-447
) ENGiNEERING 509 Lig-7
© 2009

Fast Context Switches

A processor becomes idle when a thread runs into a
cache miss

Cache miss lasts only tens of cycles, but it costs at
least 64 inst just to save and restore the 32 GPRs

¢ Solution: fast context switch in hardware
- replicate hardware context registers: PC, GPRs,
cntrl/status, PT base ptr

- allow multiple context to share some resources, i.e. include
process ID as cache, BTB and TLB match tags

- hardware context switch takes only a few cycles
+ set the PID register to the next process ID

+ select the corresponding set of hardware context
registers to be active

({} Electrical & Computer CMU 18-447
ENGINEERING 509115-8
© 2009

Really Fast Context Switches

When pipelined processor stalls due to RAW
dependence between instructions, the execution
stage is idling

+ Not only do you need hardware contexts, switching
between contexts must be instantaneous to have
any advantagel!!

o If this can be done,

- don't need complicated forwarding logic to avoid stalls

- RAW dependence and long latency operations (multiply,
cache misses) do not cause throughput performance loss

GacwRe Fine-grain Multithreading
(hide latency)
o Superpipeline revisited
- deeper pipeline to increase frequency and performance
- but back-to-back dependencies cannot be forwarded
- no performance gain without ILP
To L

inoli Inst, [F][FJ[D][D.[E]
superpipelined et FIEIEIE]

¢ What about
2-way multithreaded 1o

Inst,,.,
IHSTT1_1
Insty,,

({3 Electrical & Compu CMU 18-447

NNERe - Barrel Instruction Pipeline
(hide latency)

On each cycle, select a "ready” thread from
scheduling pool [HEP, Smith]
- only one instruction per context in flight at once
- ona long latency stall, remove the context from scheduling
o Actually make pipelining simpler
- no data dependence, hence no stall or forwarding

- no penalty in making pipeline deeper for frequency or
complexity

- assume there are many threads waiting to run

Insty CIDICE]E]ICE]

Inst, BCIDIEILFIE

Insty, Al[BICIID] L H

Insty, LA CEITRNLEIE

Instys AR CID] FI[GIH

Inst, [A][BI[C 1= A

Inst, CAAIEIEIre]EH

Inst g CBICCIDILENEILEIH
Insty AJCBICCIDICENEICCIH]

S) B
%R ultithreading and Out-of-order i
(better utilization)

Fdiv, unpipe
(16 cyc)

- FMult -

(4 cye)

000
FSTf:h L Dispatch Reorder
nit Unit Buffer

Load/Storie :
{variable)

Superscalar processor datapath must be over-resourced

- has more functional units than ILP because the units are not
universal

- current 4 to 8 way designs only achieves IPC of 2 to 3
+ Some units must be idling in each cycle

Why not switch to another thread?

{U. Elulri:al&ﬁumlpuiﬂ . . . ggg 518:1427
T Simultaneous Multi-Threading $#
[Eggers, et al.]

Fdiv, unpipe
<
"; Fetch 000 Reorder
4 | Unit |—{ Dispatch Buffer
t A A A
o
© [J [
[J [
(. H
N
">'<‘ Fetch 000 Reorder
o4 | Unit —{ Dispatch Buffer
|l z z z
o * . - *
O Léad/Store

\ (variable)

¢ Dynamic and flexible sharing of functional units
between multiple threads

= increases utilization = increases throughput

(U. Electrical & Com u!rr
ENGINEERIN

CMU 18-447
S$'09 L18-13
© 2009

J. C. Hoe

The rise of multicores

{U. Electrical & Cormy um
ENGINEER

Nickel Silicide Layer ———

Silicon Gate Electrode

1.2nm SiO, Gate Oxide

Strained Silicon

CMU 18-447
5'09 L18-14
© 2009

J. C. Hoe

Transistor Scaling

et Y

. S W | _ gate length

50nm transistor dimension is ~2000x
smaller than diameter of human hair
[http://www.intel. com/museum/onlme/cnrcu:'rs htm]

distance between silicon atoms ~ 500 pm

((.; Electrical & Compu! CMU 18-447
ENGINEERING 509 Li6-15
© 2009

Basic Scaling Theory

Planned scaling occurs in discrete "nodes” where each
is ~0.7x of the previous in linear dimension

e.g., 90nm, 65nm, 45nm, 32nm, 22nm, 15nm, "The End"

Take the same design, reducing the linear dimensions
by 0.7x (aka “gate shrink") leads to
- delay = 0.7x, frequency=1.43x
- capacitance = 0.7x
- die area = 0.5x
- Vdd=0.7x (if constant field) or Vdd=1x (if constant voltage)
- power = CxV2xf = 0.5x (if constant field)
- BUT power = 1x (if constant voltage)
¢ Take the same area, then
- transistor count = 2x
- power = 1x (constant field), power = 2x (constant voltage)
[refer to the Shekhar article for the more complete story]

*(,} Electrical & Compu CMU 18-447
ENGINEERING 509 L18-16

Moore's Law

J. C. Hoe

The number of transistors that can be
economically integrated shall double every 24

m transistors
Pentium® 4 Processor 100,000,000
Pentium# Il Processor
MOORE'S LAW
Pentiurm® il Processor 10,000,000
Pentium® Processor
486™ DX Processor /
. 11,000,000
386™ Processor %
286
e 1 100,000
BOB6 L
&, - i
BOBO / A ":; 10,000
8008 o 3 T Tl
4004 & |
- - ° 2 i = A 1000
1970 1975 1280 1985 1990 1995 2000

[http://www.intel.com/research/silicon/mooreslaw.htm]

Electrical & Computer CMU 18-447

) ENGINEER Pt

Moore's Law = Performance

J. C. Hoe

Microprocessor performance has been doubling
about every 24 months
- is this Moore's Law?
- are we doing well?

According to scaling theory, we should get
constant complexity: 1x transistor at 1.43x frequency
= 1.43x performance at 0.5x power
max complexity: 2x transistor at 1.43x frequency
= 2.8x performance at constant power
Instead, we have been getting (for high-perf CPUs)
- ~2x transistor?
- ~2x frequency (how
- we get about ~2x performance at ~2x power

({3 Electrical & Computer C(V\U 18-447
ENGINEERING 509 L15-18
© 2009

Performance (In)efficiency

To hit the "expected” performance target on
single-thread microprocessors
- we had been pushing frequency harder by deepening
pipelines
- we used the 2x transistors to build more complicated

microarchitectures so the fast/deep pipelines don't stall
(i.e., caches, BP, superscalar, out-of-order)

The consequence of performance inefficiency

. Intel Tehas 150W
" (Guess what
happened next)

limit of economical
PC cooling [ITRS]

1

1985 1900 1095 2000 2005 2010
Year

Figure 8. Power dissipation projections

[from Shekhar Borkar, IEEE Micro, July 1999]

? Electrical & Computer CMU 18-447
) ENGiNEERING 509 L1-19

Multicore Performance Efficiency

PC-class cooling and packaging technologies cap
per-die CPU power to ~150W

Going forward,
- still deliver 2x performance every 24 months
- but do it without increasing power
- in other words, must go faster and at the same time use
less energy per instruction
How about just use the 2x transistor per
technology node to 2x the number of cores?

- 2x the “aggregate” performance without even having to
increase frequency

- slow-down or even stop power climb

({} Electrical & Computer CMU 18-447
ENGINEERING 509 L18-20

Chip-Multiprocessor

J. C. Hoe

Core Core Core

Fat Interconnect

BigL2

Bigger L3

Current CMPs adopt the familiar SMP paradigm

o future design focus on the “uncore”
- how tfo support interprocessor communication
- how to support programmability

(B. Electrical & Computer C{V\U 18-447
ENGINEERIN 509 L18.21
© 2009
J. C. Hoe

Proj 4: Multithreading Multicore

(0. Electrical & Computer CMU 18-447
ENGINEERING 509 L15-22

Checkpoint 1: Caches

o
28 $3z

combinational
0.5 KB each

128 128

1

On cache miss:

1. stall previous stages
2. insert bubbles for
next stages
10 cycle latency

Real memory are even slower, 150 cycles for 3.0 GHz CPU w/DDR2

L&

trical & Com) CMU 18-447

GINEERING 00 L1523

Selected cache details

J. C. Hoe

¢ Both caches are
- direct-mapped
- 128-bit cache lines
- write-back
Cache hits indicated by
p_data_ready in same cycle as read/write request
Misses take 10 or more cycles
o Instruction cache read-only, returns entire cache
line
Modify the caches to output hit/miss statistics
+ A new memory module
- Wider data bus to accommodate caches

Q&

trical & Computer CMU 18-447
GINEERING 509 L15-24

Using the Cache

J. C. Hoe
Performing a cache read
- Provide address in p_addr_in, and assert p_re
- Maintain inputs until p_data_ready is asserted
+ Cache hit: within the same cycle (combinational)
+ Cache miss: at least 10 cycles to read from memory
- Then, check p_addr_out, and get data from p_data_out

Read Hit Read Miss
S R i W
p_addr_in _T_ __A1___
p_re — 3

p_data_ready
p_addr_out LA

p_data_out D1

T r—] S09 Lin-5
G Using the Cache 2
Performing a cache write
- Provide p_addr_in, p_data_in, and assert p_we
- Maintain inputs until p_data_ready and p_writing asserted
* Cache hit: within the same cycle (combinational)
+ Cache miss: at least 10 cycles to bring block from mem
* Note: p_writing asserted I cycle after p_data_ready

Write Hit Write Miss
SSS [I e T S s O B
p_addrin Fi AY HIEE T :

p_we

B

p_data_in ..~~D1') % D1

p_data_ready

({} Electrical & Computer C(V\U 18-447
ENGINEERING 509 L18-26
© 2009
J. C. Hoe

Structural Hazard on D-cache Writes

On cache hit, need extra cycle to perform the
write
- D-cache unavailable for 2 cycles

- If a STis followed by a memory inst > structural
hazard!

¢ How to deal with this?
- On Decode stage, detect hazard
+ i.e., if inst inE is ST, and inst in D is mem inst
- On hazard, inject one bubble

* Allow the older ST to complete before executing the
subsequent mem inst

«’ Electrical & Computer CMU 18-447
ENGINEERING 509 Lig-27

Checkpoint 1: Pipeline Changes

J. C. Hoe

o I-cache
- Addressed at a cache block granularity
- Stall fetch on miss, propagate bubbles

¢ D-cache
- Addressed at a word granularity
- Stall on load/store misses
- Stall on (2 cycle) store hits

Be deliberate when enabling reads and writes

As before, interlock for |d dependencies (no delay
slot)

- Stall on load dependency

L) ENGINEERING soaLiszs
Checkpoint 2: Multithreading

J. C. Hoe
+ We will make one pipeline run two programs/
threads “simultaneously”

- add a second set of architectural state registers (PC and
register file) for thread O and thread 1

- instructions in the pipeline are tagged by thread-ID, O or 1

- use instruction's thread-ID to choose which set of
architectural states to access

- what about memory states? (more later)

+ Keep pipeline full *without forwarding™

- the decode stage tries to issue instruction from thread O
unless it encounters a dependency or structural hazard

- while thread O is stalled, decode issues from thread 1; if
both thread O and thread 1 stall, decode stage stalls

- as soon as thread O is able to advance, return to issuing
from thread O

{7 ENGiNEERING
How do we fetch?

Separate IRs for thread O and 1

- ideally both are full on each cycle
so the decode stage can choose
thread according to hazards

- if one IR is empty, decode should

CMU 18-447
S'09 L18-29
© 2009

J. C. Hoe

try to issue from the other thread |v| IRO

¢ The "fetch” stage needs to be
synchronized with decode to
replenish the IR is issuing, except
- if IRO is empty, always try to vl IR1

fetch IRO next (even if thread 1is
issuing)

- if IRl is empty, it is only fetched
if IR0 is not empty and thread O is
not issuing

decode
stage

€ EiNeERve

Checkpoint 3: Multicores

+ Two cores have private I-
caches (read-only); the two
I-caches share a common

instruction memory port Threads 0, 1

arbiter

- if both cores need to
access memory in the same
cycle, one side is told to
stall

- the core that is stalled is
guaranteed to go on the
next “round.”

CMU 18-447
5'09 L18-30
© 2009

J. C. Hoe

Threads 2, 3

+ Two cores share a common
Require a 2-port fair

QO

Electrical & Com)

ENGINEERING

Deliverables

o All project checkpoints due by 4/30
- no late credit, partial credit by complete checkpoints
- checkpoint1 90 points
- checkpoint 2 240 points
- checkpoint 3 120 points

¢ Extra Credit (50 max)
- Checkpoint 1 checked-off by 4/9 10 points
- Checkpoint 1&2 checked-off by 4/21 20 points
- Checkpoint 14243 checked-off by 4/28 20 points

CMU 18-447
S$'09 L18-31
© 2009

J. C. Hoe

