18-447 Lecture 16: Memory Hierarchy

James C. Hoe
Dept of ECE, CMU
March 23, 2009

Announcements: Project 3 due this week
Midterm 2 next Monday

Handouts: Handout #12 HW 3 solutions (on Blackboard)

Format of the Quiz

- Coverage
 - lectures (L1-L14, emphasis on L8-L14), HWs, projects, assigned readings (textbooks and papers)

- Types of questions
 - freebies: can you remember the materials
 - probing: did you understand the materials
 - applied: can you apply the materials in original thoughts

- 100 minutes, 100 points
 - if a question is worth 5 points, don’t spend 20 minutes
 - skip questions you can’t do and come back to them later
 - closed-book, one 2-sided 8½x11 crib sheet
 - no calculators

*** Use pencil or black/blue ink only
*** Be on time, 2:30 sharp!!!
Wishful Memory

- Lecture 6: a program sees a contiguous 4GB memory
- Lecture 7: access anywhere in memory in 1 proc. cycle
- We are in good company

4.1. Ideally one would desire an indefinitely large memory capacity such that any particular aggregate of 40 binary digits, word (cf. 2.3), would be immediately available—i.e. in a tin

---- Burks, Goldstein, von Neumann, 1946

The Reality

- Can't afford and don't need as much memory as the size of the user address space (think about 64-bit ISAs)
- Most machines are multi-tasked between several programs
- You can't find memory technology that is affordable in GBytes and also cycle in GHz
- The "magic" memory abstraction are nevertheless very "useful" approximation of reality due to
 - memory hierarchy: large and fast
 - virtual memory: contiguous and private
The Law of Storage

- **Bigger is slower**
 - SRAM, 512 Bytes, sub-nanosec
 - SRAM, KByte~MByte, ~nanosec
 - DRAM, Gigabyte, ~50 nanosec
 - Hard Disk, Terabyte, ~10 millisec

- **Faster is more expensive (dollars and chip area)**
 - SRAM, < 10$ per Megabyte
 - DRAM, < 1$ per Megabyte
 - Hard Disk < 1$ per Gigabyte

Note these sample values scale with time

How to make memory Bigger, Faster, and Cheaper?

Principles behind the solution
Locality

- One’s recent past is a very good predictor of his/her near future.
- Temporal Locality: If you just did something, it is very likely that you will do the same thing again soon.
 - since you are here today, there is a good chance you will be here again and again regularly
 - inverse is also true
- Spatial Locality: If you just did something, it is very likely you will do something similar/related.
 - every time I find you in this room, you are probably sitting in the same seat
 - you are probably sitting near the same people

Memory Locality

- A “typical” program has a lot of locality in memory references
 *** typical programs are composed of “loops”
- Temporal: A program tends to reference the same memory location many times and all within a small window of time
- Spatial: A program tends to reference a cluster of memory locations at a time (most notable examples 1. instruction memory references and 2. array/data structure references)

- Corollary: a program may reference a large number of different memory locations over its live time but not all at the same time
Memoization

- If something is expensive to compute, you might want to remember the answer for a while, just in case you will need the same answer again.
- Memoization needs locality to work effectively.
- Without locality:
 - storing a large number of different answers (many of which never reused).
 - storing a very large number of answers and later locating an answer on demand can be more expensive than recomputing it.
- With locality:
 - store only small number of the most frequently used answers avoids most recomputations.
 - the same answer gets reused many, many times!

Cost Amortization

- overhead cost: one-time cost to set something up.
- per-unit cost: cost for per unit of operation.
- total cost = overhead + per-unit cost \times N.
- average cost = total cost / N
 \[= \left(\frac{\text{overhead}}{N} \right) + \text{per-unit cost} \]
- It is often okay to have a high overhead cost if the cost can be distributed over a large number of units.
 ⇒ lower the average cost.
Putting the principles to work

Memory Hierarchy

With good locality of reference, memory appears as fast as and as large as faster per byte cheaper per byte.

move what you use here

backup everything here
Managing Memory Hierarchy

- You could manage data movement across hierarchies manually
 - already discussed in von Neumann paper (vacuum tubes vs Selectron)
 - “core” vs “drum” memory in the 50’s
 - too painful for programmers on substantial programs
 - still done in some embedded processors (on-chip scratch pad SRAM in lieu of a cache)
- Automatic management
 - simple heuristic: keep most recently used items in fast mem
 - dates back to ATLAS, 1962
 - today in every modern desktop and server system
 - the average programmer doesn’t need to know about it
 You don’t need to know how big the cache is to write a “correct” program! (You may if you want a “fast” program.)

Modern Memory Hierarchy

Memory Abstraction

- Register File
 32 words, sub-nsec
- L1 cache
 ~32 KB, ~nsec
- L2 cache
 512 KB ~ 1MB, many nsec
- L3 cache,
- Main memory (DRAM), 6B, ~100 nsec
- Swap Disk
 100 GB, ~10 msec
Hierarchical Performance Analysis

- For a given memory hierarchy level i it has a technology-intrinsic access time of t_i
- The perceived access time T_i is longer than t_i
- Except for the outer-most hierarchy, when looking for a given address there is
 - a chance (hit-rate h_i) you "hit" and access time is t_i
 - a chance (miss-rate m_i) you "miss" and access time $t_i + T_{i+1}$
 - $h_i + m_i = 1$
- Thus
 \[T_i = h_i \cdot t_i + m_i \cdot (t_i + T_{i+1}) \]
 \[T_i = t_i + m_i \cdot T_{i+1} \]
- keep in mind, h_i and m_i are defined to be the hit-rate and miss-rate of just the references that missed at L_{i-1}

Hierarchy Design Compromises

- Recursive latency equation
 \[T_i = t_i + m_i \cdot T_{i+1} \]
- The goal: achieve desired T_1 within allowed cost
- $T_i \approx t_i$ is desirable but not necessary
- Keep m_i low
 - increase capacity C_i lowers m_i, but beware of increasing t_i
 - lower m_i by smarter management (replacement::anticipate what you don't need, prefetching::anticipate what you will need)
- Keep T_{i+1} low
 - faster lower hierarchies, but beware of increasing cost
 - introduce intermediate hierarchies as a compromise
Hierarchies bridge the difference between CPU speed and DRAM speed

- $T_{pclk} \approx T_{DRAM}$ ⇒ no hierarchy needed
- $T_{pclk} \ll T_{DRAM}$ ⇒ one or more levels of SRAM hierarchies to minimize T_1 while staying within cost

Intel P4 Example

- 90nm P4, 3.6 GHz
- L1 D-cache
 - $C_1 = 16K$
 - $t_1 = 4$ cyc int / 9 cycle fp
- L2 D-cache
 - $C_2 = 1024$ KB
 - $t_2 = 18$ cyc int / 18 cyc fp
- Main memory
 - $t_3 = \sim 50$ns or 180 cyc
- Notice
 - best case latency is not 1 anymore
 - worst case access latency are into 300+ cyc, depending exactly what happens

if $m_1=0.1$, $m_2=0.1$

if $m_1=0.01$, $m_2=0.01$

if $m_1=0.05$, $m_2=0.01$

if $m_1=0.01$, $m_2=0.50$
Aside: Why is DRAM slow?

- DRAM fabrication at the forefront of VLSI technology nodes, but scales with Moore’s law in capacity and cost, not speed
- Between 1980 ~ 2004 DRAM
 - 64K bit → 1024M bit (exponential ~55% annual)
 - 250ns → 50ns (linear)
 But, remember, this is a very deliberate choice.
 We can “engineer” faster DRAM if we needed to
- Memory capacity needs to grow linearly with CPU speed to keep a balanced system - Amdahl
- DRAM/processor speed difference reconciled through memory hierarchies (L1, L2, L3,)
 - L2 became common place in the 90s
 - L3 becoming common place in the 00s

Cache Basics
Cache

- Generically, any structure that “memoizes” frequently used results to avoid repeating the long-latency operations required to reproduce the results from scratch, e.g. a web cache

- Most commonly, an automatically-managed memory hierarchy based on SRAM
 - memoize in SRAM the most frequently accessed DRAM memory locations to avoid repeatedly paying for the DRAM access latency

Cache Interface

- Like the magic memory we assume in Lecture 8
 - present address, command, etc
 - most of the time result or side-effect valid after a short/fixed latency (1 cyc?)

- Except, cache may not be valid/ready on every cycle
 - the cache eventually must become valid/ready
 - what happens to the pipeline until then?
The problem

- Potentially $M = 2^m$ bytes of memory, how to keep the most frequently used ones in C bytes of fast storage where $C \ll M$
- Basic issues (intertwined)
 1. where to “cache” a memory location?
 2. how to find a cached memory location?
 3. granularity of management: large, small, uniform?
 4. when to bring a memory location into cache?
 5. which cached memory location to evict to free-up space?
- Optimizations

Basic Operation

Ans to (4): memory location brought into cache “on-demand”. What about prefetch?
Basic Cache Parameters

- Let $M = 2^m$ be the size of the address space in bytes
 - sample values: $2^{32}, 2^{64}$
- Let $G = 2^g$ be the cache access granularity in bytes
 - sample values: 4, 8
- Let C be the “capacity” of the cache in bytes
 - sample values: 16 KBytes (L1), 1 MByte (L2)

Direct-Mapped Cache (v1)

- M-bit address
- Let $t = \lg_2 M - \lg_2 (C)$

What about writes?
Storage Overhead

- For each cache block of G bytes, must also store additional “$t+1$” bits where $t = \log_2 M - \log_2(C)$
 - if $M=2^{32}$, $G=4$, $C=16K=2^{14}$
 $\Rightarrow t=18$ bits for each 4-byte block
 60% storage overhead
 16KB cache really needs 25.5KB of SRAM
- Solution: let multiple G-byte words share a common tag
 - each B-byte block holds B/G words
 - if $M=2^{32}$, $B=16$, $G=4$, $C=16K$
 $\Rightarrow t=18$ bits for each 16-byte block
 15% storage overhead
 16KB cache needs 18.4KB of SRAM
 15% of 16KB is small, 15% of 1MB is 152KB
 \Rightarrow larger block size for lower/larger hierarchies

Direct-Mapped Cache (final)

M-bit address

- $t = \log_2 M - \log_2(C)$
- Tag Bank
 - C/B-by-t bits
 - Tag Bank valid
 - Data Bank
 - C/B-by-B bytes
 - B bytes
- hit?
- data

let $t = \log_2 M - \log_2(C)$
Test yourself: What is wrong with this?

M-bit address

let \(t = \log_2 M - \log_2 (C) \)