
CMU 18-447
S’09 L13-1
© 2009
J. C. Hoe

18-447 Lecture 13:
Branch Prediction

James C. Hoe
Dept of ECE, CMU

March 4, 2009

Announcements: Spring break!!
Spring break next week!!
Project 2 due the week after spring break
HW3 due Monday after spring break
(no more homework until week 12)

Handouts:

CMU 18-447
S’09 L13-2
© 2009
J. C. Hoe

IFPC

t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth IFPC

t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth ID
IFPC+4

first opportunity to decode Insth
should we correct now?

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth ID ALU
ID

IFPC+8

Insth branch condition and target
evaluated in ALU

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth ID ALU
ID

IFPC+8

ALU
ID

IFtarget

MEM

When a branch resolves
- branch target (Instk) is fetched
- all instructions fetched since

insth (so called “wrong-path”
instructions) must be flushed

Control Speculation: PC+4

Insth is a branch

CMU 18-447
S’09 L13-3
© 2009
J. C. Hoe

Performance Impact

correct guess ⇒ no penalty ~86% of the time
incorrect guess ⇒ 2 bubbles
Assume
 no data hazards
 20% control flow instructions
 70% of control flow instructions are taken
 IPC = 1 / [1 + (0.20*0.7) * 2] =

= 1 / [1 + 0.14 * 2] = 1 / 1.28 = 0.78

penalty for
a wrong guess

probability of
a wrong guess

Can we reduce either of the two penalty terms?

CMU 18-447
S’09 L13-4
© 2009
J. C. Hoe

Making a Better Guess
For ALU instructions
 can’t do better than guessing nextPC=PC+4
 still tricky since must guess nextPC before the current

instruction is fetched
For Branch/Jump instructions
 why not always guess in the taken direction since 70%

correct
 again, must guess nextPC before the branch instruction

is fetched (but branch target is encoded in the
instruction)

⇒ Must make a guess based only on the current fetch PC !!!
⇒ Fortunately,

- PC-offset branch/jump target is static
- We are allowed to be wrong some of the time

CMU 18-447
S’09 L13-5
© 2009
J. C. Hoe

Branch Target Buffer (Oracle)
BTB (Oracle)
 a giant table indexed by PC
 returns the guess for nextPC

When encountering a PC for
the first time, store in BTB
 PC + 4 if ALU/LD/ST
 PC+offset if Branch or Jump
 ?? if JR

Effectively guessing branches
are always taken
IPC = 1 / [1 + (0.20*0.3) * 2]

= 0.89

Instruction
Memory

BTB

PC

CMU 18-447
S’09 L13-6
© 2009
J. C. Hoe

BTB (Reality)

BTB with
2N entries

BTB idx

PC

unused

N-bit

“Hash” PC into a 2N entry table
On collision, BTB returns something meaningless and
possibly (since 80% of entries all hold PC+4) wrong

How big should this table be?

nPC

CMU 18-447
S’09 L13-7
© 2009
J. C. Hoe

Tagged BTB

BTB

BTB idx

tag
table

1 0

PC+4

nextPC

=

Only store branch instructions (save 80% storage)
Update tag and BTB for the new branch after each collision

tag

CMU 18-447
S’09 L13-8
© 2009
J. C. Hoe

Even Better Guess
We can get 100% correct on non-branch instructions
Can we do better than 70% on branch instructions?
 We get 90% right on backward branch (dynamic)
 We only get 50% right on forward branch (dynamic)

What pattern can we leverage on forward branches?
a given static branch instruction is likely to be
highly biased in one direction (either taken or not
taken
 80~90% correct if we always guessed the same outcome as

the last time the same branch was executed
 IPC = 1 / [1 + (0.20*0.15) * 2] = 0.94

CMU 18-447
S’09 L13-9
© 2009
J. C. Hoe

Branch History Table and Target Buffer

BTB

BTB idx

N-bit
tag

table

1 0

PC+4

nextPC

=

The 1-bit BHT entry is updated with the true
outcome after each execution of a branch

tag

BHT

taken?

CMU 18-447
S’09 L13-10
© 2009
J. C. Hoe

Branch Prediction State Machine

predict
taken

predict
not

taken

actually
not taken

actually
taken

actually
taken

actually
not taken

CMU 18-447
S’09 L13-11
© 2009
J. C. Hoe

2-Bit Saturation Counter

pred
taken

11

pred
taken

10

pred
!taken

01

pred
!taken

00

actually
taken

actually
taken

actually
!taken

actually
!taken

actually
!taken

actually
!taken

actually
taken

actually
taken

CMU 18-447
S’09 L13-12
© 2009
J. C. Hoe

2-Bit Hysteresis Counter

pred
taken

pred
taken

pred
!taken

pred
!taken

actually
taken

actually
taken actually

!taken

actually
!taken

actually
!taken

actually
!taken

actually
taken

actually
taken

Change prediction after 2 consecutive mistakes

“weakly
taken”

“strongl
y

taken”

“weakly
!taken”

“strongl
y

!taken”

CMU 18-447
S’09 L13-13
© 2009
J. C. Hoe

State-Machine-Based Predictors
2-bit predictor can get >90% correct
 IPC = 1 / [1 + (0.20*0.10) * 2] = 0.96
 any “reasonable” 2-bit predictor does about the same

Adding more bits to counters does not help much
more
Major branch behaviors exploited
 almost always do the same thing again and again (>80%)

• 1-bit and 2-bit predictors equally effective
 occasionally do the opposite once (5~10%)

• 2 misprediction with a 1-bit predictor
• 1 misprediction with a 2-bit predictor

 miscellaneous (<10%)
• some could be captured with more elaborate predictors
• what does Amdahl’s law say about this? (be careful!!)

CMU 18-447
S’09 L13-14
© 2009
J. C. Hoe

Path History

Branch outcome can be correlated to other
branches
Equntott, SPEC92

if (aa==2) ;; B1
aa=0;

if (bb==2) ;; B2
bb=0;

if (aa!=bb) { ;; B3
….

}

If B1 is not taken (i.e. aa==0@B3) and B2 is not taken (i.e.
bb=0@B3) then B3 is certainly taken

How do you capture this information?

CMU 18-447
S’09 L13-15
© 2009
J. C. Hoe

Gshare Branch Prediction [McFarling]

BTB

BTB idx

N-bit

tag
table

1 0

PC+4

nextPC

=

Global BHSR (Branch History Shift Register) tracks
the outcomes of the last M branch instructions

tag

BHT

taken?

xor
M-bit

BHSR

CMU 18-447
S’09 L13-16
© 2009
J. C. Hoe

Return Address Stack

The targets of register-indirect jumps have little
locality
 history-based predictors don’t work
 but a simple “stack” captures the usage pattern of

function call and return very well
Return Address Stack (RAS)
 the return address is pushed when a link instruction (e.g.,

JAL) is executed
 when the PC of a return instruction (e.g., JR) is

encountered predict nPC from the top of the stack and
pop

What happens when the stack overflows?
How do you know when to follow RAS vs BTB?

CMU 18-447
S’09 L13-17
© 2009
J. C. Hoe

Alpha 21264 Tournament Predictor

Make separate predictions using local history (per
branch) and global history (correlating all branches)
to capture different branch behaviors
A meta-predictor decides which predictor to believe

Better than 97% correct

[Fig 4, Kessler, IEEE Micro 1999]

CMU 18-447
S’09 L13-18
© 2009
J. C. HoeMultiple Predictors: PPC 604

instruction
cache BHT BTAC +2 +4

FA
R

Prediction Logic
(4 instructions)

Target Seq Addr

Prediction Logic
(4 instructions)

Target Seq Addr

Prediction Logic
(4 instructions)

Target Seq Addr

Exception Logic

PC

Target

+

fetch

decode

dispatch

branch
execute

complete

CMU 18-447
S’09 L13-19
© 2009
J. C. Hoe

Speculative Execution Summary

Each control flow instruction must carry the
predicted nextPC down the pipeline
When the control flow outcome of an instruction
certain, the predicted nextPC is checked
if nextPC was predicted correctly
 update BHT (reinforce prediction)
 do nothing more

if nextPC was predicted incorrectly
 update BHT and/or BTB
 flush all younger instructions in the pipeline
 restart fetching at the correct target

CMU 18-447
S’09 L13-20
© 2009
J. C. Hoe

Involving SW in Branch Prediction
Static branch hints can be encoded with every
branch
 taken vs. not-taken
 whether to allocate an entry in the dynamic BP hardware

SW and HW has joint control of BP hardware
 Intel Itanium has a “brp” (branch prediction) instruction

that can be issued ahead of the actual branch to preset the
state of the BTB

TAR (Target Address Register)
 a small, fully-associative BTB
 controlled entirely by “prepare-to-branch” instructions
 a hit in TAR overrides all other predictions
Why wait until the last instruction in the basic block to

calculate branch condition and target?

CMU 18-447
S’09 L13-21
© 2009
J. C. Hoe

cmp

Predicated Execution: If-conversion
Example: predication in Intel Itanium
 each instruction can be separately predicated
 64 one-bit predicate registers

each instruction carries a 6-bit predicate field
 an instruction is effectively a NOP if its predicate is false

Converts control flow into dataflow

br
else1
else2

br
then1
then2
join1
join2

p1 p2 ←cmp

join1

join2

else1p2

then2p1
else2p2

then1p1

Make sense if processors have lots
of spare resources and BP is hard

CMU 18-447
S’09 L13-22
© 2009
J. C. Hoe

Branch Prediction: the bottom-line

Given current PC, how to determine the next PC
waiting for anymore information would need stalls

The easy part
 the same PC always points to the same instruction

(barring self-modifying code)
 nextPC is always PC+4 for non-control-flow instructions,
 the target of a PC-offset control-flow is always the same

A memoization table can get these nearly100% right
The not so easy part
 taken versus not-taken decision is not static

• 90% of backward branches are taken (loops)
• 50% of forward branches are taken (if-then-else)

 a given branch “almost” “always” repeats itself

