

18-447 Lecture 7: Performance -how to summarize & compare

James C. Hoe Dept of ECE, CMU February 9, 2009

Announcements: Midterm 2/16 in class, Lectures 1~7 Read P&H Ch 5 for next Lecture

Handouts: MIPS R4000 ISA Manual on BlackBoard

Electrical & Computer

CMU 18-447 S'09 L7-5 © 2009 J. C. Hoe

Pseudo FLOPS

 Scientific computing community often use pseudo FLOPS as performance metric

nominal # of floating point operations

- program runtime
 e.g. FFT of size N has nominally 5N log₂(N) FP operations
- Is this a good, fair metric to compare machine + algorithm combinations?
 - not all FFT algorithms have the same FP OP count
 - not all FP OPs are equal (FADD vs FMULT vs FDIV)

Ans: yes, but only as long as you are talking about computing the same problem

Summarizing Performance

 When comparing two computers X and Y, the relative performance of X and Y depends strongly on what X and Y are asked to do

- X may be m% faster than Y on application A
- X may be n% (where m!=n) faster than Y on application B
- Y may be k% faster than X on application C

Which computer is faster and by how much?

- depends on which application(s) you care about
- if you care about several applications, then it also depends their relative importance
- Many ways to summarize performance comparison into a single quantitative measure
 - some may even be meaningful for exactly your purpose
 - but you have to know when to do what
 - when in doubt, present the complete story

										18-447 L7-16 09
Normalized Performance										Hoe
 Support 	ose									
- A _o takes		1s on X;		10s on Y;		c	and 20s			
- A ₁ †	- A ₁ takes		1000s on X;		100s on Y; c		and 20s on Z			
- A ₀ +	- $A_0 + A_1 =$		1001s on X;		110s on Y; c		and 40s on Z			
	normalized to X		normalized to Y			normalized t		to Z	1	
	Х	У	Ζ	Х	У	Ζ	Х	У	Ζ	
Time _{A0}	1	10	20	0.1	1	2	0.05	0.5	1	
Time _{A1}	1	0.1	0.02	10	1	0.2	50	5	1	
										•
AM of ratio	1	5.05	10.01	5.05	1	1.1	25.03	2.75	1	
GM of ratio	1	1.0	0.63	1.0	1	0.63	1.58	1.58	1	
	10-		le the effe		11-11-1		Lines		D - #	
[Computer Architecture: A quantitative approach. Hennessy and Patterson]										

CMU 18-447 S'09 L7-17 © 2009 J. C. Hoe

