ENGINEERIN 151201
© 2015
J.C. Hoe

*(), Electrical & Computer CMU 18-100

18-100 Lecture 20:
AVR Programming, Continued

James C. Hoe
Dept of ECE, CMU
April 2, 2015

Today’s Goal: You will all be ace AVR hackers!

Announcements: Midterm 2 can be picked up in lab and at the HUB
Office Hours: Wed 12:30~2:30

Handouts: HWS8 (on Blackboard, due next Thursday)
Lab10 (on Blackboard)

) ENGINEERING Sisu02

““AVR” Program Visible State &

(ones we care about for now)

Program Data
Memory Memory
0x000 0x000 -
0x001 0x001 [16-bit PC |
8X88§ 8-b status
X
OXOFE
Ox05F

0x060 Register File

~ 0x061 RO

0x062 R1
N

OxFFC S

OxFFD 0x45D
OXFFE Ox45E R29
OXFFF Ox45F R30
R31
1K (212) 16-bit words -1K (21°) 8-bit words 32 8-bit words
Gb/- h instruction -between 0x060~0x45F

@Lb 1 or 2 words -what’s in 0x000~0x05F?

a, Electrical & Computer CMU 18-100
) ERGiNEERING 15120

AVR Data Types

J.C. Hoe

¢ The 8-bit data word (in register or memory) can
represent
- acollection of 8 bits
- an “unsigned” integer value between 0 and 255
- a “signed” integer value between -128 and 127

¢ Questions
- how do you represent integer values as bits?
- what if | want to represent a value greater than 2557
- why -128 but only 127 in option 3?
- if showed you an 8-bit data word in a register, how do
you know which interpretation to apply?
- what about fractions and real numbers?

4}, Electrical & Computer CMU 18-100
ENGINEERING 5151204
©2015
J.C. Hoe

Representing Unsigned Integers

¢ How to represent 0~255 with 8-bits
- 8 bits has 28 =256 different patterns of eight 1s and Os
- any one-to-one assignment of integer values to
patterns is “correct”

¢ A conventional mapping based on counting is
convenient in most cases

- 00000000, 00000001, 00000010, OOO00011,

00000100, 00000101, 00000110, OOO00111,

00001000, 9,,~251,.... 11111011,

11111100, 11111101, 11111110, 11111111,

CMU 18-100

) ENGNERRING
Intuition: a 4-bit example

J.C. Hoe
b’0000=0
b’1111=15

b’0001=1

b’1110=14
b’0010=2
b’1101=13 | 001123
4-bit=16 values
b’1100=12 (whether signed b’0100=4
or unsigned)
b'1011=11 b’0101=5
b’1010=10 b’0110=6
b’1001=9 b’0111=7
b’1000=8
¢ What it means to “carry”?
) ENGINEERING S151206

2015
J.C. Hoe

Unsigned Integer Representation

¢ Ingeneral, letb b, ,..b,b,b,represent an n-bit
unsigned integer
- its valueis n-1 — weight of the i’th digit
2'b
i=0 value of the i'th digit
- a finite representation between 0 and 2"-1
- eg,1011,=8,,+2,,+1,,=11,,

¢ Often written in hexadecimal for compactness
- to convert, starting from the right, map 4 binary digits at
a time into a corresponding hex digit {0~9,a~f}; and vice
versa

- e.g.,1010_1011,, =ab,,

two

O

Electrical & Comy

ENGINEERING
© 2015
J.C. Hoe

CMU 18-100
§'15120-7

Representing Signed Integers

¢ How to represent -128~127 with 8-bits
- any one-to-one assignment of integer values to the 256

patterns is “correct”
- probably makes sense that 0,, to 127,, should be
00000000, to 01111111,
¢ What about -1 to -128?
¢ The logical extension is to count down from O,

-1,,11111111,; -2=11111110,; -3,,=11111101,;
-4,,-11111100,; -5,,=11111011,; -6,,=11111010,;

-126,,=10000010,; -127,,=10000001,; -128,,=10000000,

This scheme is called “2’s complement”

CMU 18-100
§'15120-8

rical & Computer
) EREINERRING
2015

2’s Intuition: a 4-bit example

b’0000=0 (as 2’s),0 (as unsigned)
b’1111=-1,15

b’0001=1,1

b'1110=-2,14
b’0010=2,2

b’1101=-3,13
b’0011=3,3

4-bit=16 values

b’1100=-4,12 (whether signed b’0100=4,4
or unsigned)
b'1011=5,11 b'0101=5,5
b’1010=-6,10 b’0110=6,6
b’1001=-7,9 b’'0111=7,7

b’1000=-8,8

¢ How does AVR’s ADD know it is adding 2’s or unsigned?
¢ What it means to overflow?

a, Electrical & Computer CMU 18-100
) ERGiNEERING 151209

©2015

2’s-Complement Number Representation

& Letb ;b ,..b,b b represent an n-bit signed integer
- itsvalueis

n-2
-2""b,,+> 2
i=0

- afinite representation between -2"1and 2"1-1

- e.g., assume 4-bit 2's-complement
b’'1011=-8+2+1=-5
b’'1111=-8+4+2+1=-1

¢ To negate a 2’s-complement number

- add 1 to the bit-wise complement

- assume 4-bit 2’s-complement
(-b’1011) = b’0100 + 1 = b’0101 = 5
(-b’0101) = b’1010 + 1 = b’1011 = -5
(-b’1111) = b’0000 + 1 = b’0001 = 1
(- b’0000) =b’1111 + 1 =b’0000 = 0O

) ENGINEERING $1512010
© 2015
J.C. Hoe
Status Register
3 2 1 0
I 2

don’t worry about 774

& V', N, Z, ‘C" are arithmetic flags automatically
updated after each ALU-class instructions
- Z:set if the last result was zero,
- N:setif the last result was negative (2’s complement)
- V:setif the last op caused an overflow (2’s comp)
- C:setif the last op caused a carry (unsigned)

Page 11 Atmel 8-bit AVR ATmega8 Databook

CMU 18-100

) ENGNERRING
What about larger integers

¢ A 16-bit integer can be held using two 8-bit registers

¢ Add/sub need to be emulated using multiple native 8-
bit operations

¢ Suppose 16-bit A’s upper/lower bytes are in r17/r16
and 16-bit B’s upper/lower bytes are in r19/r18

add r16, r18 ; sets C flag if carry
adc r17, r19 ; incorporates C flag In sum

A-upper A-lower
B-upper <+ | B-lower
+ Chag < SUM-lower
Cflag <— sum-upper

Extensible to larger integers but commensurately more expensive

CMU 18-100

(U. Electrical & Computer
ENGINEERIN $15 L2012
© 2015

General Instruction Classes

¢ Arithmetic and logical operations
- fetch operands from specified locations
- compute a result as a function of the operands
- store result to a specified location
- update PC to the next sequential instruction
¢ Data movement operations
- fetch operands from specified locations
- store operand values to specified locations
- update PC to the next sequential instruction
¢ Control flow operations
- fetch operands from specified locations
- compute a branch condition and a target address
- if “branch condition is true” then PC < target address

5@
L, . .
% else PC <— next seq. instruction

S

CMU 18-100

((.? Eﬁ%‘l“&t?ﬁrﬁ.&; §'15120-13

Control Flow Instructions

J.C. Hoe

Assembly Code
Control Flow Graph - .
¢ C-Code (linearized)
block A code A
{ code block A } : :
if X==Y then if X==Y if X!=Y
{codeblockB} e N\ [ake goto
else block B block C codeB
{ code block C} H e °
{ code block D }) ¢ goto
\ / code C
block D H
! S code D
these things are called basic blocks :
O EeiEERG i

2015
J.C. Hoe

Control Flow: Jump!

RJMP - Relative Jump

Description:

Relative jump to an address within PC - 2K +1 and PC + 2K (words). For AVR microcontrollers
microcontrollers with Program memory not exceeding 4K words (8K bytes) this instruction
can address the entire memory from every address location. See also JMP.

Operation:
(i) PC«—PC+k+1
Syntax: Operands: Program Counter:
(i) RJIMP k 2K <k < 2K PC«—PC+k+1
16-bit Opcode:
| 1100 | ik | wkkk | kkkk |

Note: Jump target is specified as an offset from PC+1, but, fortunately, in
P assembly programs, you can specify the label of an “absolute” target
@b/- instruction and the assembler will figure out the offset. (example later)

%
Page . ~el 8-bit AVR Instruction Set Manual

CMU 18-100

) ENGINEERING

Control Flow: Branch?

J.C. Hoe

BREQ - Branch if Equal

Description:

Conditional relative branch. Tests the Zero Flag (£) and branches relatively to PC if Z is set.
This instruction branches relatively to PC in either direction (PC - 63 < destination < PC + 64).
The parameter k is the offset from PC and is represented in two's complement form.

(Z=1)then PC «~ PC + k + 1, else PC « PC + 1

Syntax: Operands: Program Counter:
(i) BREQ k -64 < k = +63 PC«PC+k+1
PC « PC + 1, if condition is false
16-bit Opcode:
| 1111 | 00kk | kkkk | k001 |
Note:

- Like in RIMP, a branch target is also PC-relative
- (2=1) is the branch condition. What the heck is Z?

Page 29 Atmel 8-bit AVR Instruction Set Manual

CMU 18-100

*0' Eﬁ%‘lﬁ?ﬁ"ﬁg $15 120416
Status Register
3 2 1 0
v | N | 2z c |

don’t worry about 774

® ‘'Z','N’, V', ‘C’ have corresponding branch
instructions
- BREQ/BRNE, BRMI/BRPL, BRVS/BRVC, BRCS/BRCC

¢ Eg,
- after “SUB Rx, Ry” or “CP Rx, Ry”, Z is set if Rx==Ry
- BREQ taken if Rx==Ry, BRNE taken if Rx!=Ry

Page 11 Atmel 8-bit AVR ATmega8 Databook

trical & Computer
) ERGiNEERING

CMU 18-100
§'15120-17
©2015

J.C. Hoe

Assembly Programming 201

¢ E.g. High-level Code
if (i == j
e =
else
e =
f==e
¢ Assembly Code

- suppose e, f, g, h,i,jareinr,, r,r, r,r

Ccp r, r

j E]
brne L1 :
mov r., Iy :
rjmp L2 :

L1: mov r., I >

L2: mov rg, T

e £

test
fail
) then then
g
h else
join
ir T

; set status flags

if il=j skip to L1 (else)
assembler computes offset
e gets g

skip to L2 (join)

e gets h

; F gets e

rical & Computer
A EREINEERR

CMU 18-100
§'15120-18
© 2015
J.C. Hoe

Assembly Programming 202

¢ High-level Code
i=0; j=10;
while (i !
i++;
3

¢ Give it try. Pick your own free registers after

before

) test
=D A done?

loop
body
go back

((a, Electrical & Computer CMU 18-100
ENGINEERIN 1512019

Assembly Programming 202

J.C. Hoe

before
¢ High-level Code
i=0; j=10; test
while (i != j) { done?
i++; loop
b body
T go back
¢ Give it try. Pick your own free registers after
Idi r;, O ; r; =0
Idi r;, 10 ; r; = 10
loop:
Ccp ri, rj ; set NZCV on r;-r;
breq done ; r;==r; then done
inc r; ; =Tl
rjmp loop ; go again
done:
O EeiEERG e

2015
J.C. Hoe

Load Instruction (Absolute Addr)

LDS - Load Direct from Data Space

Description:

Loads one byte from the data space to a register.

A 16-bit address must be supplied. Memory access is limited to the current data segment of 64K bytes.

Operation:
0] Rd « (k)
Syntax: Operands: Program Counter:
0] LDS Rd .k 0=d=31,0=<k= 65535 PC«PC+2
32-bit Opcode:

Note:

-32-bit instruction with
16-bit immediate specifying an
“absolute address”

Page 95 Atmel 8-bit AVR Instruction Set Manual | -Recall memory SRAM is 1K words

((a, Electrical & Computer CMU 18-100
ENGINEERING s15 12021
© 2015

J.C. Hoe

Store Instruction (Absolute Addr)

STS - Store Direct to Data Space

Description:
Stores one byte from a Register to the data space.

A 16-bit address must be supplied. Memory access is limited to the current data segment of 64K bytes.

Operation:
(i) (k) « Rr

Syntax: Operands: Program Counter:
(i) STSk.Rr 0<r=31,0=k=65535 PC+PC+2

32-bit Opcode:

| 1001 | oo1d | ddad | 0000 |
l kkkk I kkkk] kkkk I kkkk I

Note:

-32-bit instruction with
16-bit immediate specifying an
“absolute address”

-Recall memory SRAM is 1K words

Page 150 Atmel 8-bit AVR Instruction Set Manual

CMU 18-100

(0. Electrical & Computer
ENGINEERING $15 L2022
2015

Assembly Programming 301 1.C.Hoe

¢ E.g. High-level Code
A[8] =h + A[O]

where A is an array of integers (1-byte each here)
¢ Assembly Code

- suppose A is at location 0x100; h is r;,

- Suppose ry,, is a free register

Ids ry,. Ox100 ; ry,, = A[O]
add Viemps Th > Vtemp = h + A[O]
sts 0x108, Feemp > A[8] = Vemp

CMU 18-100

O

trical & Computer
§'15120-23

GINEERING
© 2015
J.C. Hoe

Assembly Programming 302

¢ High-level Code

sum = A[O]J+A[1]+A[2]+A[3] (case 1)
where A is an array of integers (1-byte each)
¢ Vs, sum=0; (case 2)

for(i=0; i < 100; i=i+l)
sum = sum+ A[i];
¢ Assembly Code
- suppose A is at location 0x100; sum and iareinr,,, I;

- suppose r., is a free register

QO

CMU 18-100

Electrical & Co
§'15120-24
©2015

ENGINEERING
J. C. Hoe

Array Access in a Loop

A[0]
Al1]
A[2]

¢ If memory address is hardcoded in the instruction,

how do you read A[1] in the second iteration?
- “self-modifying code”: load the instruction word;

increment by 1; store it back
- or, allow addresses to come from a data register where

they can be manipulated like data

CMU 18-100

(0, Electr kal&ca
ENGINEERIN §15120-25
©2015

J.C. Hoe

Load Instruction (Indirect Addr)

LD - Load Indirect from Data Space to Register using Index X

Description:
Loads one byte indirect from the data space to a register.

The data location is pointed to by the X (16 bits) Pointer Register in the Register File. Memory access is
limited to the current data segment of 64K bytes.

Operation: Comment:

(i) Rd « (X) X: Unchanged
Syntax: Operands: Program Counter:

(i) LD Rd, X 0=d=31 PC &« PC+1
16-bit Opcode:

| (i) | 1001 | 000d | ddad I 1100 |

Note:
- X is R26 (low byte) and R27 (high byte) viewed together as a 16-bit address
- LD supports two variants that perform arithmetic on X,
pre-increment LD Rd, X+ and post-decrement LD Rd, -X
-Also works with Y (R28,R29) and Z (R30, R31)

Page 87 Atmel 8-bit AVR Instruction Set Manual

€O

CMU 18-100

Electrical & Comy ll‘r
§'15120-26

ENGlNEER
2015

J.C. Hoe

Store Instruction (Indirect Addr)

ST - Store Indirect From Register to Data Space using Index X

Description:
Stores one byte indirect from a register to data space.

The data location is pointed to by the X (16 bits) Pointer Register in the Register File. Memory access is
limited to the current data segment of 64K bytes.

Operation:
(i) (X) « Rr

Syntax: Operands:
(i) ST X, Rr Dsrs31

16-bit Opcode :

[[| 1001 | 001r | rrrer | 1100 |

Note:

- Like LD, supports two variants that perform arithmetic on X,
pre-increment ST X+, Rd and post-decrement ST —X, Rd

- Also works with Y (R28,R29) and Z (R30, R31)

Page 144 Atmel 8-bit AVR Instruction Set Manual

*(a, Electrical & Computer CMU 18-100
ENGINEERING 1512027

©2015

Addressing Modes in AVR

immediate mode:
put the constant k
into Rd

LDI R

Data

Memory
(copy value

an adgre from memor
s Y (a
LDS RW ./N S
use the constant k (a valuef~=
as an address to W\,

identify a memory froarmemory
location o

(5
akg/(/@/ Register File

combine contents
of two registers
into a 16-bit
address to identify
a memory location

LD R

indirect mode:
XorY, orZnames
a register pair

*(), Electrical & Computer CMU 18-100
ENGINEERING 51512028

Assembly Programming 303

J.C. Hoe

¢ E.g. High-level Code
sum=0;
for(i=0; i < 100; i=i+l)
sum = sum+ A[i];
where A is an array of integers (1-byte each)
¢ Assembly Code

- suppose A is at location 0x100; sum and iareinr,, 1,

CMU 18-100

a, Electrical & Computer
) ERGiNEERING 1512029
© 2015

Assembly Programming 303

¢ E.g. High-level Code
sum=0;
for(i=0; i < 100; i=i+l)
sum = sum+ A[i];
where A is an array of integers (1-byte each)

¢ Assembly Code
- suppose A is at location 0x100; sum and iareinr,, ,r,

1di r26,0x00 1d reemp> X
Idi r27,0x01 add rgyn, TFeemp
Idi rg,,, 0x0 inc r;)
Idi r;, O0x0 adiw r26, 1
test: cpi r;, 100) rjmp test
brpl done done:
A ENGNEERRE s

J.C. Hoe

Assembly Programming 304

¢ High-level Code
sum=0;
for(i=0; i < 100; i=i+1)
sum = sum+ A[i];
¢ Optimized Assembly Code dr of A\100\

1di r26, 108(0x0100)
Idi r27, hi8(0x0100)

Idi r,,. OxO
Idi r,,., hi8(0x0164)

loop:
Id reg,, X+ : auto-increment X

add rsum’ r-temp

cpi r26, 108(0x0164); 1 never calculated
CPC 127, Typper ; explicitly

brne loop ; transformed while loop

rical & Computer
) ERGiNEERING

CMU 18-100
§'15120-31
©2015

J.C. Hoe

Is it better? By how much?

“Literal Version”

Idi r26,0x0
Idi r27,0x1
Idi r,,,, Ox0
Idi r,, Ox0

test: cpi r;, 100
brpl done
1d Memps X
?‘dd rsum’ rtemp
inc r;
adiw r26, 1
rjmp test
done:

note: brpl=2 cyc if taken

R N

NNRRRRR

cyc
cyc
cyc
cyc

cyc
cyc
cyc
cyc
cyc
cyc
cyc

¢ Basic metrics of goodness
- staticinst count=11
(how many you see)

- dynamic inst count=
4+100x7+2=706
(how many executed)

- cycles=4+100x9+3=907

Atmel ISA manual specifies
effective delay in cycles
for the instructions
(simulator tells you too)

A ENGNERRiNG

CMU 18-100
§'15120-32
2015

J.C. Hoe

Is it better? By how much?

“Hacker Version”

Idi r26, 108(0x100)
Idi r27, hi8(0x100)

Idi r 0x0

sum?

1di rye, hi8(0x164);

loop:
Id reemp, X+
add rsum! rtemp

cpi r26, 108(0x164)

CcpC r27, rypper
brne loop

note: brpl=1 cyc if not taken

cyc
cyc
cyc
cyc

N N

cyc
cyc
cyc
cyc
cyc

NRREN

¢ static inst count=9
~20% reduction
¢ dynamicinst count=
4+100x5=504
~30% reduction
¢ cycles=4+100x7-1=703
~22% reduction

FYI, a good compiler will be
closer to Hacker than Litera

CMU 18-100

4.? Eﬁ%ﬂ\fﬁ?ﬁm& §'15120-33

To Wrap up
¢ To be a hacker, you also need to know
- subroutine calls, in particular recursive calls
- exception handling
- 1/0
- how to hand optimize code
Feel free to read the AVR documents on Blackboard
Big picture to keep in mind
- you will see assembly programming in much greater
detail in 213/240/34x/447 etc.
- most of you will not code in assembly for a living; this
is more about understanding the underlying concepts
- once you learn one ISA you can learn the rest
* some ISAs are uglier than others
¢ AVR is not a pretty one.

4}, Electrical & Computer CMU 18-100
ENGINEERING 51512034

Terminologies

J.C. Hoe

¢ Instruction Set Architecture
- the machine behavior as observable and controllable by
the programmer
¢ Instruction Set
- the set of commands understood by the computer
¢ Machine Code
- instructions encoded in binary format
- directly consumable by the hardware
¢ Assembly Code
- instructions expressed in “textua
e.g. addrl, r2
- converted to machine code by an assembler
- one-to-one correspondence with machine code

III

format

