a, Electrical & Computer CMU 18-100
) ERGiNEERING 15001
© 2015
J.C. Hoe

18-100 Lecture 24:
Sequential Logic Design

James C. Hoe
Dept of ECE, CMU
April 21, 2015

Today’s Goal: Start thinking about stateful stuff
Announcements: Read Rizzoni 12.6

HW 9 due

Exam 3 on April 30

Final Exam, Fri., May 8, 8:30~11:30, GHC 4401 Conflicts?
Handouts: HW 10 (on Blackboard)

HW 9 solutions (on Blackboard later on)

Lab 12 (on Blackboard later on)

CMU 18-100

(U' Eﬁglh&é?ﬁmm §'15124-2

Let’s refresh our memory....

J.C. Hoe

|II

¢ All “sequential” digital systems comprise

Input Output

S”Next"

utput
State Logic

Next State
— Logic

- input and output
- state stuff that remembers
- “combinational” stuff that computes a function (has no
memory)
¢ In an execution, state is updated to a “next state”
based on a function of the current state

CMU 18-100

*B, Electrical & Computer
ENGINEERING 15103
© 2015

Memory 101

¢ Pure combinational logic always go from a current
input to a current output without any looping back
There is no notion of time, past or future
¢ To remember, must somehow incorporate previous
values

& You mean like this? i ‘

Does it remember? What does it remember?
(It is easier to see if you associate a small
propagation delay with wires and gates)

CMU 18-100

L ERGNEERRE
A Better Try: the SR Latch :

¢ Keep in mind that S
- X+0=X = (X+0)’=x’

- X+1=1 = (X+1)=0
¢ Hint: S stands for “set”; R for “reset” . L Qq

¢ Consider

- S=0and R=0: the NORs simply act like inverters in the
feedback loop; Q is remembered

- S=1 and R=0: the top NOR’s output is forced to 0; the
bottom NOR inverts the feedback; Q is set to 1

- S=0and R=1: the bottom NOR’s output is forced to 0;
the top NOR inverts the feedback; Q is reset to O

- S=1and R=1:Just don’t do it
After asserting S or R, the resulting Q is remembered
when S and R are both deasserted again

If you feel brave try finding the “dual”

CMU 18-100

a, Electrical & Computer
) ERGiNEERING pefabyie

Level-Sensitive D Latch

J.C. Hoe

¢ Eis “latch enable”
- when E is asserted

Q follows D i QF—Q
combinationally E - —Do‘} R |
- when E is de-asserted | !
the last Q value is remembered T '
¢ Timing Diagram
E
\
D gl
Q 1
(0' Eﬁ%‘l‘i'fﬁ?ﬁ"fﬁﬁ glnzsi Lllzsz;ico
Edge-Triggered D Flip-Flop)
¢ Q follows D only
at the “instant” of D= D D |
rising edge of clock : Q QF—AQ

clk —>{ E ’—E

¢ Qindependent of D

at all other time oo
(master-slave)

¢ Timing Diagram

clk

o UL L
Q only make

“synchronous” q it
transitions

(L* Electrical & Computer CMU 18-100
ENGINEERING S151207
©2015
J.C. Hoe

Synchronous Finite State Machines

Input Senext” OFF Output
DFF S
DF
DFF
X
Clock

sr\)ecial “clock”
input symbol

CMU 18-100
§'15124-8

A ENGNEERRIE — .
ynchronous Timing (Simplified) =

clock period chosen to be
greater than worst-case T,

Global Clock I

|

S -5C

DFFs B "\
latch new Y .
state S T4 combinational propagation delay ~ No more changes to Sy,p;

Syexrsettles to a fxn of S

O

Electrical & Comy

ENGINEERING

Let’s play with this a bit first

CMU 18-100
§'15124-9
©2015

J.C. Hoe

€O

Electrical & Computer

ENGINEERIN

1-bit FSM Example

¢ Implied input: Reset, Clk
¢ Input
- 1-bit signal “Tick”
- you can vary its value over time, anytime you like, but
only the values at the rising clock edges matter
¢ Output
- 1-bit signal “Tock”
- Tock should be 0 after reset
- Tock should become 1 and stay 1 after Tick has been 1
(as sampled on a rising clock edge)

& What are the two states?
- Tick has never been 1 since reset
- not the above

CMU 18-100
§'15124-10
© 2015

J.C. Hoe

(0' Eﬁﬁ“%?ﬁmg i}/;s: L1123-711010
1-bit FSM Example _
____________________ f DFF with reset
Rst irst .
Tick , D 0 D Q Qi Tock
Clk clk T— |
Clk
Rst | \\ |
Tick | _ 1 _ _ \ UL S
Tock whatever
(0' Eﬁ%‘lﬁ%cé’ﬁ"fﬁﬁ AI/IZSL; sz}llgo

FSM as an Abstraction

O

Electrical & Comy

ENGINEERING S5 120 13

©2015
J.C. Hoe

State Transition Diagram

¢ A convenient FSM abstraction
¢ States (bubbles) Tick=0

- best to give each state a
meaningful “name”

- output value associated with
each state (Moore machines)

- one state is designated as the
initialization state

+ Transitions (edges)

- edges are predicated by input
conditions (i.e., follow this
edge if condition is met)

- each state must have
transitions for all possible
input values

=1L

“seen 1’s”
Tock=1

Tick=0 or Tick=1

€O

Electrical & Computer

ENGINEERIN

Let’s play a bit more

¢ New design: Tock should become 1 and stay 1 after
Tick has been 1 three consecutive times!

Tick=1
Tick=0 Tick=1 Tick=1 Tick=1 or Tick=0

Tick=0 I

Tick=0

What if | want Tock=1 only right after each time Tick has
been 1 three consecutive times; Tock=0 at all other
times

CMU 18-100

CMU 18-100
§'15124-14
2015

J.C. Hoe

CMU 18-100

(U, Electrical & Computer
ENGINEERING 1512015

Realizing an FSM

J.C. Hoe

¢ State assignment
- require at least n=|_lg2N—| bits Q,, 4,...,Q, to encode an
FSM with N states (each bit is a D flip-flop)
- assign each state to an unique encoding
- choice of encoding can affect the size of combinational
next-state logic (don’t worry about it in 18-100)
¢ Next-state logic
- computes the next state value D, ,,...,D,as a function
of the FSM input and current state Q, ,,...,Q,
¢ “Moore-style” Output logic
- computes the FSM output as a function of current
state Q, ;,...,Q, - -
D Q 0
— State

I
-
Q

CMU 18-100

(U. Electrical & Computer
ENGINEERIN $15 L2016

Tick-Tock Example

J.C. Hoe

¢ 2 states, hence a 1-bit FSM .
- “no1’s” when Q,=0 Tick=0

2.1

- “seen1’s” when Qg =1

¢ Next-state logic truth table

0 o0]o0 =
0 11 %
1 0 1 =
1 1|1

.0

“seen 1’s

¢ Output logic truth table
Tock=1

Tock
0 0
1]1 Tick=0 or Tick=1

Electrical & Computer

) ENGINEERTN

Three 1’s Example

next-state logic

CMU 18-100
§'15124-17
©2015

J.C. Hoe

state assignment Q9 T'gk %1 %0 output logic
state |Q, Q, 0 0 410 1 Q
noinfo| 0 O 0 1 0|0 O 0 0O
sawl | 0 1 11 o 0 10
sawll| 1 0 1 o 0|0 0 1 0]o0
sawlll| 1 1 111 1 1 1)1
0|1 1
SRR I
Tick=1
Tick=0 Tick=1 or Tick=0
O EeiEERG
’ J.C. Hoe
Three 1’s Example
Dy Tick D, Tick
0 /1\ 0 0 0 0 /1\ 0
o] o W] o o | T
Qo Qo
Rst
|\
rst,
Q,Q,+Q,’ - Tick 'Q Q
AN I_
o Tock
Fst |
Q,Q,+Q, Tick+Q, Tick e Q,
o

rical & Computer
) ERGiNEERING

¢ LookingforOsand1s.....
computer science; look up “regular expressions” on

Wikipedia)

Why FSMs?

(this is actually serious

¢ Simple computation/calculations

al]

NN

—

CMU 18-100
§'15124-19
©2015

J.C. Hoe

~
sum

¢ The first and foremost practical use is to sequence
the control of a “datapath” or a “system”

rical & Computer
) ERGiNERRNG

Atmel ATmega8 Datapath

<€

Page 9 Atmel 8-bit AVR ATmega8 Databook

Daia Bus ¢8R
Slalus
Fiash ‘_I Progeam
Program Counter | and Conirod I
Kemony
Intermupe
Generat e s
Pugese eht
Unit
. ,i Watchdog I
o 2 Timer
| €
I
Cenlre! Lines b 2 Gompataior
= &
G 3
g ;o]
o 1 B Mocluted
o Lo
EEPROM g

EQ Lines g

A\

CMU 18-100
§'15124-20
2015

J.C. Hoe

trical & Computer
) ERGiNEERING

FSM-D

¢ datapath = combinational logic and registers to
carry out computation (puppet)

CMU 18-100
§'15124-21
©2015

J.C. Hoe

¢ FSM = combinational logic and registers for control

and sequencing (puppeteer)

inputs I AN —>
outputs
: \ / \ /z | E
I FSM datapath :
1 S
! 5 @ g 5 @ :
I < !
| !
clock — ' Iy
1
e e e e e e e e e e e
O EeiEERG ey

SR Latch “Dual”

S

s
Lip=8

© 2015
J.C. Hoe

