

CMU 18-100 S'15 L21-1 © 2015 J. C. Hoe

## 18-100 Lecture 21: Boolean Logic

James C. Hoe Dept of ECE, CMU April 7, 2015

Today's Goal: Introduce Boolean logic

Announcements: Read Rizzoni 12.3 and 11.5

HW8 due Thursday

Office Hours: Wed 12:30~2:30

Handouts: Lab 11 (on Blackboard)

Electrical & Computer ENGINEERING

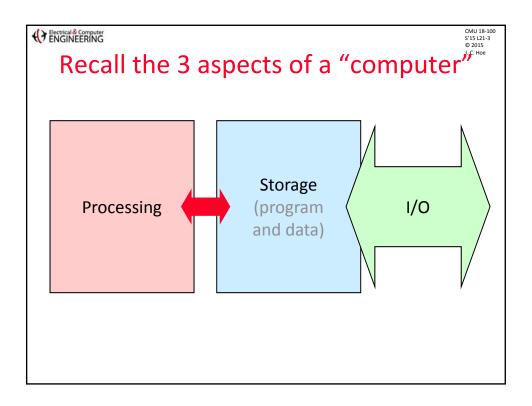
CMU 18-100 S'15 L21-2 © 2015 J. C. Hoe

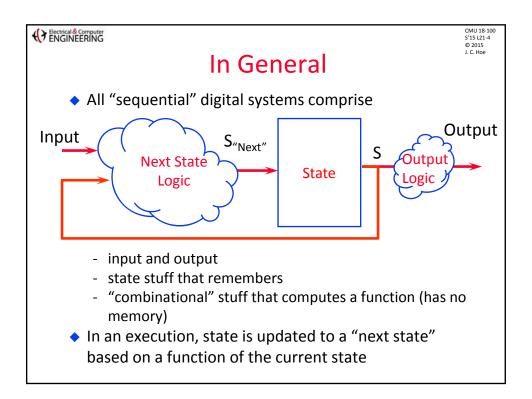
#### To Wrap up AVR

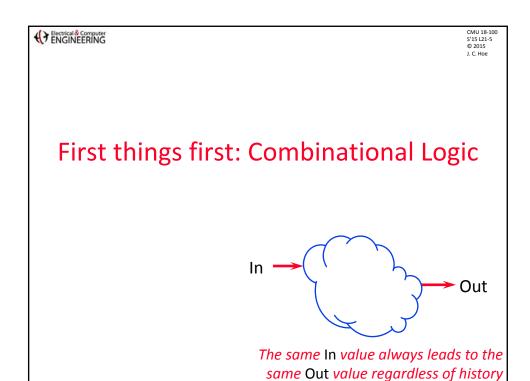
- To be a hacker, you also need to know
  - subroutine calls, in particular recursive calls
  - exception handling
  - I/O
  - how to hand optimize code

Feel free to read the AVR documents on Blackboard

- Big picture to keep in mind
  - you will see assembly programming in much greater detail in 213/240/34{8,9}/447 etc.
  - most of you will not code in assembly for a living; this is more about understanding the underlying concepts
  - once you learn one ISA you can learn the rest
    - some ISAs are uglier than others
    - AVR is not a pretty one.







## Electrical & Computer CMU 18-100 ST15 121-6 © 2015 J. C. Hoe

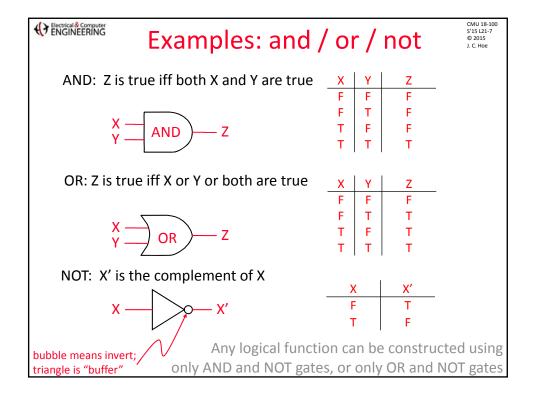
## Combinational Logic

 ◆ A combinational logic circuit has an output that is a "function" of its inputs

- What do you mean by "function"?
  - unique mapping from input values to output values
  - in this context implies
    - the same input values produce the same output value every time

output

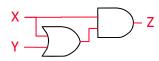
- same output for different input values is okay
- no memory (does not depend on the history of input values)
- Later on we will learn, a "sequential" circuit's output depends on the current and the history of its inputs



CMU 18-100 S'15 L21-8 © 2015

#### Boolean Algebra: Big Picture

- An algebra on
  - two values (usually denoted as True vs False or 1 vs 0)
  - the operators AND (·), OR (+), NOT
- A useful formalism to represent and reason about combinational logic functions
- For example,



- combinational logic above can be expressed as Z=X·(X+Y)
- using rules of Boolean algebra, the above expression can be simplified to Z=X

## Rules of Boolean Algebra (Table 12.11)

1. 0+X=X

6. 1·X=X

"." means AND

2. 1+X=1

5. 0·X=0

"+" means OR

3. X+X=X

7. X·X=X

4. X+X'=1

8. X·X'=0

9. (X')'=X

10. X+Y=Y+X

11.  $X \cdot Y = Y \cdot X$ 

(commutativity)

12. X+(Y+Z)=(X+Y)+Z

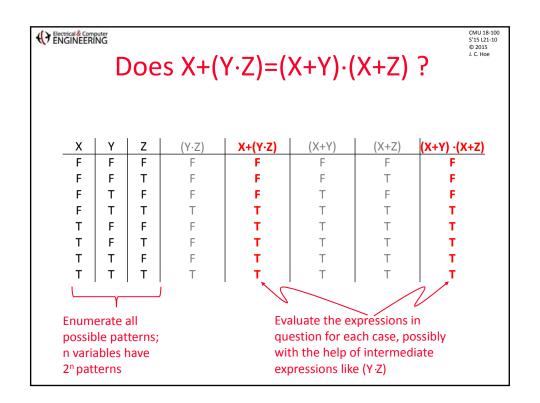
13.  $X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z$ 

(associativity)

14.  $X \cdot (Y+Z) = X \cdot Y + X \cdot Z$ 

(14).  $X+(Y\cdot Z)=(X+Y)\cdot (X+Z)$  (distributive)

- The above is a standard set of rules that can be easily shown by "perfect induction"
- Notice the symmetry between the left and right columns with respect to substitutions of 0 by 1, + by · and vice versa



CMU 18-100 S'15 L21-11 © 2015 J. C. Hoe

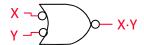
#### **Duality**

- ◆ Is that a truth table for AND or OR?
  - Ans. depends on The means true or false
  - if neans true then OR
  - if means false then AND

| Χ        | Υ        | Z        |
|----------|----------|----------|
| 1        | -        | 7        |
| 7        | <b>@</b> | 7        |
| <b>P</b> | <b>-</b> | 7        |
| <b>7</b> | <b>@</b> | <b>@</b> |

AND and OR are duals





⇒ De Morgan's Theorem

$$X' \cdot Y' = (X+Y)'$$
  
 $X'+Y' = (X \cdot Y)'$ 

⇒ For every rule, there is a "dual" rule where AND and OR are exchanged and 0 and 1 are exchanged

Electrical & Computer ENGINEERING

CMU 18-100 S'15 L21-12 © 2015 J. C. Hoe

#### Does X+XY=X?

 Instead of perfect induction, we can also prove algebraically using proven rules, e.g.,

$$X+X\cdot Y$$
=  $1\cdot X+X\cdot Y$  rule 6
=  $X\cdot 1+X\cdot Y$  rule 11
=  $X\cdot (1+Y)$  rule 14
=  $X\cdot 1$  rule 2
=  $1\cdot X$  rule 11
=  $X$  rule 6

#### Does XY+YZ+X'Z=XY+X'Z?

Electrical & Computer ENGINEERING

### Rules of Boolean Algebra (Table 12.11)

15. X+X·Y=X

16.  $X \cdot (X+Y) = X$ 

(absorption)

- 17. (X+Y)(X+Z)=X+YZ
- (17). XY+XZ=X(Y+Z)
- 18. X+X'Y=X+Y
- (18).  $X \cdot (X' + Y) = XY$
- 19. XY+YZ+X'Z=XY+X'Z
- (19). (X+Y)(Y+Z)(X'+Z)=(X+Y)(X'+Z)
- DM. $(A+B+C+...)' = A' \cdot B' \cdot C'...$  (DM).  $(A \cdot B \cdot C \cdot ...)' = A' + B' + C' + ...$ 
  - The above and other rules can be derived from the basic set, as we did for Rules 15 and 19



CMU 18-100 S'15 L21-15 © 2015 J. C. Hoe

#### **Application in Logic Minimization**

 Given f=X'Y'Z'+X'Y'Z+X'YZ+XYZ simplify the expression by algebraic manipulation

X'Y'Z'+X'Y'Z+X'YZ+XYZ

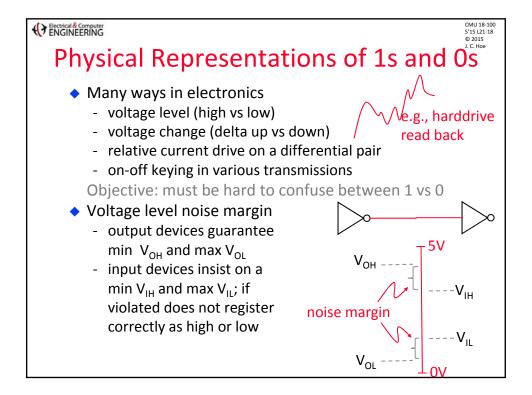
= X'Y'(Z'+Z)+(X'+X)YZ rule 14 =  $X'Y'\cdot1+1\cdot YZ$  rule 4 = X'Y'+YZ rule 6

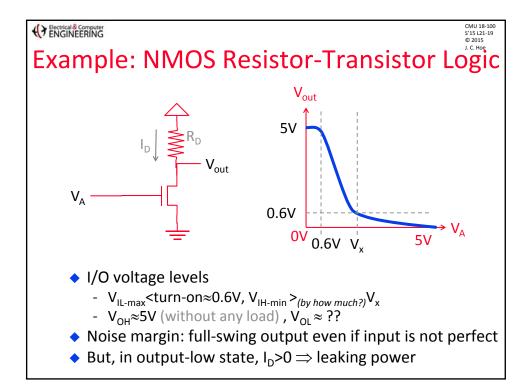
- Original expression required one 4-input OR gate and four 3-input AND gates
- Simplified expression requires one 2-input OR gate and two 2-input AND gates
- Can we do any better? If not, can we know for sure?

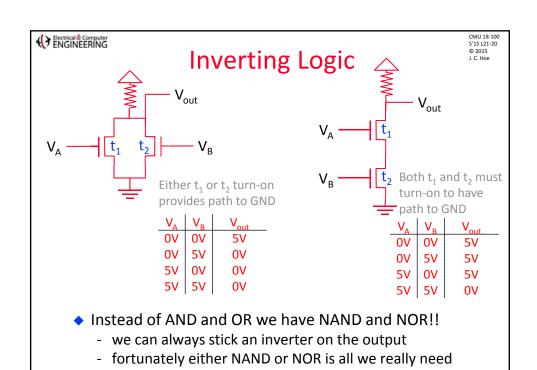
Winimize f=A'B'D+A'BD+BCD+ACD (Example 12.3 from Rizzoni)

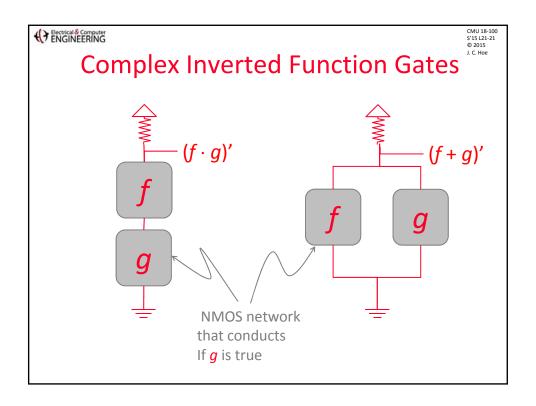
CMU 18-100 S'15 L21-17 © 2015 J. C. Hoe

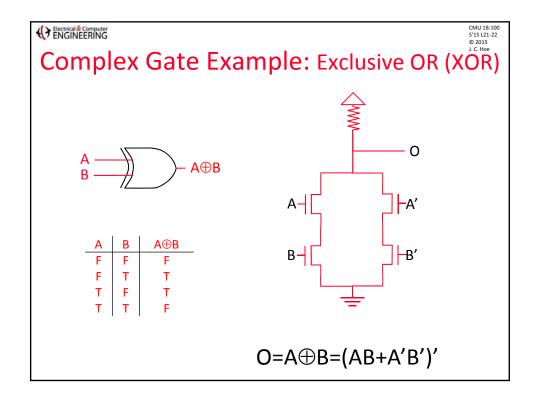
# Quick Peek Below the Digital Abstraction

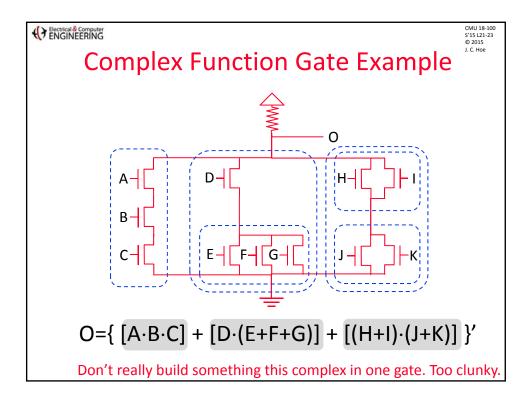


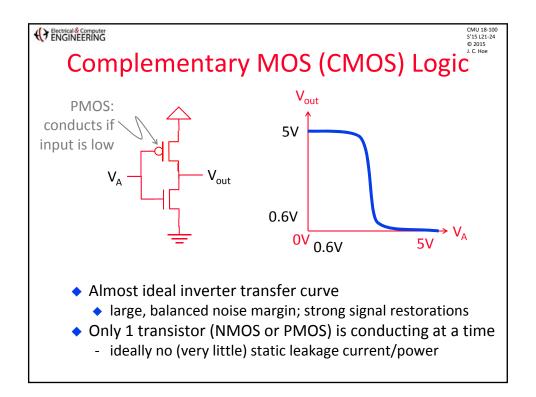


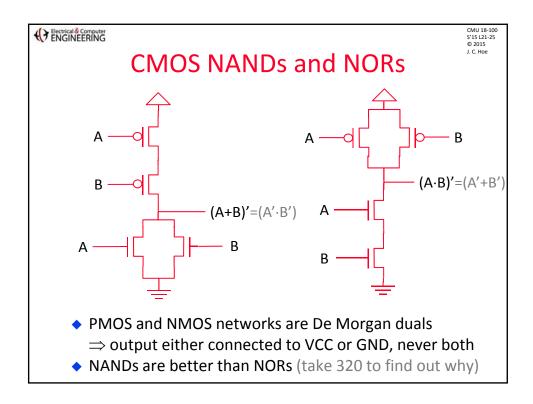


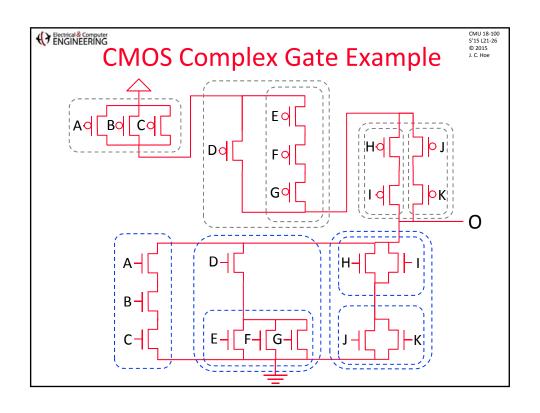












# WENGINEERING MINIMIZE f=A'B'D+A'BD+BCD+ACD S15 121-27 O 2015 C. Hoe (Example 12.3)

#### A'B'D+A'BD+BCD+ACD

= A'D(B'+B)+BCD+ACDrule 14 = A'D+BCD+ACD rule 4 and 6 = (A'+AC)D+BCDrule 14 = (A'+C)D+BCDrule 18 = A'D+CD+BCDrule 14 = A'D+CD(1+B)rule 14 = A'D+CDrule 2 and 6 = (A'+C)Drule 14

(AVI 18-100 \$15 English Englis

#### Does XY+YZ+X'Z=XY+X'Z?

XY+YZ+X'Z  $= XY \cdot 1 + YZ \cdot 1 + X'Z \cdot 1$ rule 6 = XY(Z+Z')+YZ(X+X')+X'Z(Y+Y')rule 4 = XYZ+XYZ'+YZX+YZX'+X'ZY+X'ZY' rule 14 = XYZ+XYZ'+XYZ+X'YZ+X'YZ+X'Y'Zrule 11 = XYZ+XYZ+XYZ'+X'YZ+X'YZ+X'Y'Zrule 10 = XYZ+XYZ'+X'YZ+X'Y'Zrule 3 = XY(Z+Z')+X'Z(Y+Y')rule 14  $= XY \cdot 1 + X'Z \cdot 1$ rule 4 = XY+X'Zrule 6

This one is tricky

