18-100 Lecture 19:
Intro to AVR Assembly Programming

James C. Hoe
Dept of ECE, CMU
March 26, 2015

Today’s Goal: Get ready for Lab 9

Announcements: HW#7 due today
Midterm 2 next Tuesday!!

Handouts: Lab 9 (on Blackboard)
Atmel 8-bit AVR ATmega8 Databook (on Blackboard)
Atmel 8-bit AVR Instruction Set Manual (on Blackboard)

((a, Electrical & Computer CMU 18-100
ENGINEERING 15192
© 2015
J.C. Hoe

Computer System Abstraction Layers

[r)) - users-and problems -
) Applications
~ - - - prog.languages - -
oo < Compilers resource
— 0S ~ “virtualization ~ ~ ~
o - - hw/sw-interface - -
Q9 q Architecture (ISA)
|< eVl)) ————datapath—————
D) o< Microarchitecture _
— - - —registers,-ALU - - -
Digital Design
- - - digitallogic- - - -
o ..
~ Circuits
o - transistors, signals- -
0 Devices/Physics
\H / y - - atoms, electrons - -

To use an abstraction properly you must
understand the limits of the abstraction

CMU 18-100

*0' Eﬁﬁ“%?ﬁmg §15119-3
©2015

What is a Computer?

¢ Computer, 2. a. A calculating-machine; esp. an
automatic electronic device for performing
mathematical or logical operations; freq. with
defining word prefixed, as analogue, digital,
electronic computer.
--- Oxford English Dictionary

O EveiEERRe T
©2015

So what makes a computer ==
a computer?

Storage

Processing ” (program

and data)

The fact that programs are stored in
memory like data is very important

4 ERGNEERRG S

©2015

ENIAC: “first” electronic digital computer™
(Eckert and Mauchly, 1946)

¢ 18,000 vacuum tubes

¢ 30ton, 80 by 8.5 feet

¢ 1900 additions per second

¢ 20 10-decimal-digit words
(100-word core by 1952)

¢ programmed by 3000
switches in the function
table and plug-cables

from The ENIAC Museum, (became Stored program in
http://www.seas.upenn.edu/~museum/ 1948)

(0, Electrical & Computer CMU 18-100
ENGINEERING S151156
©2015
J.C. Hoe

Your Computer: Atmel ATmega8

¢ ~5$3.00 each
- may be ~10K gates
- clock up to 16MHz
- 1KB Data SRAM (8-bit words)
- 8KB Program Memory (Flash)

[image from Wikipedia]

& BTW, a modern high-end CPU
(e.g., Intel Xeon)
- billions of transistors (10+
cores)
- many GHz (approaching 100
GFLOPs/sec)
- 10s of MB in just caches

CMU 18-100

(B, Electrical & Computer
ENGINEERING S151197
©2015
I T 8 1.C. Hoe
‘ Data Bus 8-bit
state |
Program Status
I/O ngfgm ‘_| Counter |'" I and Control I
Memory
Unit
g Instruction General PN !
Register Purpose SP|
Instruction Watchdog
Decoder - Timer
o &
= k7]
@ 2
Control Lines 3 2 Comparator
< ot
3 8
o =
= °
L
[T
EEPROM
Page 9 Atmel 8-bit AVR ATmega8 Databook v
((a, Electrical & Computer CMU 18-100
ENGINEERING s1s1108
©2015
J.C. Hoe

Seeing the Big Picture

LI, G Minutes

12 7%

“. gy, |
\\\\“5\ - f{,{/
. .

&
$
£

[images from Wikipedia]

a, Electrical & Computer CMU 18-100
) ERGiNEERING 150199
© 2015

Stored Program Architecture -
[Burks, Goldstein, von Neumann, 1946]

¢ By far the most common architectural paradigm
¢ Memory holds both program and data
- instructions and data in a linear memory array
- instructions can be modified just like data
¢ Sequential instruction processing
1. program counter (PC) identifies the current instruction
2. instruction is fetched from memory
3. instruction execution causes some state (e.g. memory)
to be updated as a specific function of current state
4. program counter is advanced (according to instruction)

repeat

01 2345...

CMU 18-100

4.? Eﬁ%ﬂ\fﬁ?ﬁm& §'15 L19-10

An Instruction Set Architecture

J. C. Hoe

¢ Abstracting a processor/computer as
- program visible state
* memory, registers, program counters, etc.
- set of instructions to modified state; each prescribes
¢ which state elements are read as operands
¢ which state elements are updated and to what new
values
e where is the next instruction
¢ Other details
- instruction-to-binary encoding B
- data format and size .
- how to interface with the outside world? =3
- protection and privileged operations
- software conventions

=1

~

MTTdeTe

i}

(IR

((), Electr l.:al&i:am CMU 18-100
ENGINEERING ,, S15u911

AVR” Program Visible State =
(ones we care about for now)

Program Data

Memory Memory

0x000 0x000 .
0x001 0x001 [16-bitPC |

0002

0x003
OxOFE

OxO5F . .
0X060 Register File
~ 0x061 RO
0x062 R1

.)
OxXFFC S

OxFFD 0x45D
OXFFE Ox45E R29
OXFFF Ox45F R30
R31
-4K (212) 16-bit words -1K (219) 8-bit words 32 8-bit words
-each instruction -between 0x060~0x45F
either 1 or 2 words -what’s in 0x000~0x05F?
((), Electr l.:al&i:a CMU 18-100
ENGINEERIN S15L19-12

©2015

AVR Instruction Example: ADD "~

ADD - Add without Carry

Description: a prose description of what ADD does

Adds two registers without the C Flag and places the result in the destination register Rd.
a formal description of what
Operation: S .
(i) Rd < Rd + Rr happens when ADD is executed

how it looks

in assembl Q‘Syn!ax: Operands: Program Counter:
Py ADD Rd,Rr O0=<d=<31,0=r=3 PC+ PC+1
16-bit Opcode:
| 0000 ; ird | adda | rrrr |

binary encoding

- “ADD” = 000011 in bit[15:10] Note:

- d=bit[8],bit[7:4] -2 input 1 output function, but

- r=bit[9],bit[3:0] Rd is used as both src and dest
Page 17 Atmel 8-bit AVR Instruction Set Manual - what is this “carry”?

Electr l.:al&i:a CMU 18-100
L) ERENEERN 159 3
©2015
Other ALU Instructi
Mnemonics | Operands | Description | Operation
— —
ARITHMETIC AND LOGIC INSTRUCTIONS.
ADD Rd, Rr Add two Registers Rd « Rd + Rr
ADC Rd, Rr Add with Carry two Registers Rd+« Rd+Rr+C
ADW Rl K Add to Word RdhRE « Rdh Rdl + K
SuUB Rd, Rr Sublract two Registers. Rd + Rd-Rr
SUBI Rd. K Sublract Constant from Register Rd « Rd - K
SBC Rd. Rr Subtract with Carry two Registers Rd+ Rd-Rr-C
SBCI Ra.K Subiract with Carry Constant frem Reg Rd + Rd-K-C
SBIW Rdl.K Subtract immediate from Word Rdh:Rd + Rdh:Rdl - K
AND Rd, Rr Logical AND Regisiers Rd + Rd « Rr
ANDI Rd. K Logical AND Register and Constant Rd + Rd«K
OR Rd. Rr Logical OR Registers Rd + Rd v Rr
ORI Rd. K Logical OR Register and Constant Rd+ Rdw K
ECR Rd. Rr Exclusive OR iSters Rd « Rd & Rr
COM Rd One's Complement Rd « OxFF - Rd
NEG Rd Two's Complement Rd + 0w00 - Rd
SBR Rd.K Set Bais) in Regrster Rd « Rdv K
CBR Rd.K Clear Bitis) in Regster Rd + Rd = {0xFF - K}
INC Rd Rd+Rd+1
DEC Rd [Rd+ Rd-1
TsT Re Test for Zero o Minus Rd + Rd s Rl
CLR Rd Clear Register Rd + Rd & Rd
SER Rd Set Register R+ OxFF
MUL Rd, Rr Multiply Unsigned R1-R0 « RA % RT
MULS Rd. Rr Multiply Signed R1:R0 « Rdx Rr
MULSU Ra. Rr Muttiply Signed with Unsigned R1R0 o R x Rr
FMUL Ré.Rr Fractional Mulbiply Unsgned RIR0« (RdxRn<< 1
FMULS Rd, Rr Fractional Multiply Signed R1RD « (Rd xR << 1
L FMULSY Rd Rr Eractional Multioly Signed with Unsigned R1RD« (RdxRr) << 1
Page 282 Atmel 8-bit AVR ATmega8 Databook
Electr kal&co CMU 18-100
L) ERENEERN 159 4
©2015
J.C. Hoe

Assembly Programming 101

¢ Break down high-level program constructs into a

sequence of elemental operations

¢ E.g. High-level Code
f=Cg+h)-(Ci+])
¢ Assembly Code
- suppose g, h,i,jareinrl5, rl6,rl7, rl18and do not
need to be preserved
add ri5,
add ri7,
sub ri5,

rl6
ris
ri7v

ris g+h
rl7z i+]
ri5 = f

What if we do want to preserve r15~r18?

Electrical & Computer

ENGINEERIN

General Instruction Classes

¢ Arithmetic and logical operations
- fetch operands from specified locations
- compute a result as a function of the operands
- store result to a specified location
- update PC to the next sequential instruction
Data movement operations
- fetch operands from specified locations
- store operand values to specified locations
- update PC to the next sequential instruction
¢ Control flow operations
- fetch operands from specified locations
- compute a branch condition and a target address

if “branch condition is true” then PC «— target address

CMU 18-100
§'15119-15
©2015

J.C. Hoe

else PC < next seq. instruction

rical & Computer
) ERGiNEERING

Move “Immediate” to Register

LDI - Load Immediate

Description:

Loads an 8 bit constant directly to register 16 to 31.

Operation:
(i) Rd « K

Syntax: Operands: Program Counter:
(i) LDI Rd.K 16<d<31,0<K=255 PC« PC+1

16-bit Opcode:

| 1110 | KKEK | ddda | KKK |

Note:

CMU 18-100
§'15119-16
©2015
J.C. Hoe

Rd can only be r16~r31 because in order to give you an 8-bit immediate,

there are only 4 bits left to specify Rd

Page 20 Atmel 8-bit AVR Instruction Set Manual

((a, Electrical & Computer CMU 18-100
ENGINEERING 1501917
© 2015

J.C. Hoe

Move Register to Register (Copy)

MOV - Copy Register

Description:

This instruction makes a copy of one register into another. The source register Rr is left
unchanged, while the destination register Rd is loaded with a copy of Rr.

Operation:
(i) Rd « Rr

Syntax: Operands: Program Counter:
(i) MOV Rd,Rr 0<d<31,0<rs31 PC+« PC+1
16-bit Opcode:
| 0010 | 1ird | dddd | rrrr |

We wait until next time to see “load” (i.e., move memory
to register) and “store” (i.e., move register to memory)

Page 101 Atmel 8-bit AVR Instruction Set Manual

CMU 18-100

(B, Electrical & Computer
ENGINEERING S5 L1918
© 2015

Assembly Programming 102

¢ Break down high-level program constructs into a
sequence of elemental operations

¢ E.g. High-level Code
f=Cg+h)-(Ci+])

¢ Assembly Code
- suppose g, h,i,jareinrl5, rl6,rl7, r18 and should be
preserved; put result fin r19; assume r20 is “free”

rical & Computer
) ERGiNEERING

CMU 18-100
§'15119-19
©2015

J.C. Hoe

Control Flow Instructions

Control Flow Graph

¢ C-Code
block A
{ code block A’} E
if X==Y then if X==Y
{ code block B } T“V False
else block B block C
{ code block C } . :
{ code block D } \ H
block D

these things are called basic blocks

Assembly Code
(linearized)
code A

if XI=Y
goto

code B
[]

goto

code C
code C

code D

rical & Computer
) ERGiNEERING

Control Flow: Jump!

RJMP — Relative Jump

CMU 18-100
§'15119-20
©2015
J.C. Hoe

Description:

Relative jump to an address within PC - 2K +1 and PC + 2K (words). For AVR microcontrollers
microcontrollers with Program memory not exceeding 4K words (8K bytes) this instruction
can address the entire memory from every address location. See also JMP.

Operation:
(i) PC«—PC+k+1
Syntax: Operands: Program Counter:
(i) RJIMP k 2K <k < 2K PCePC+k+1
16-bit Opcode:
| 1100 | ik | wkkk | kkkk |

Note: Jump target is specified as an offset from PC+1, but, fortunately, in
assembly programs, you can specify the label of an “absolute” target
instruction and the assembler will figure out the offset. (example later)

Page 117 Atmel 8-bit AVR Instruction Set Manual

CMU 18-100

a, Electrical & Computer
) ERGiNEERING 1511921

©2015
J.C. Hoe

That is enough for Lab 9

QN

CMU 18-100

-5l & Computer
GINEERING 1511922
© 2015

¢ InLab 9, you will tie PINB (as input) L -1 11111
to dip-switches and PORTD (as output) e e

tric.

to LEDs PINB _
¢ The instruction “in Rx, PINB” will load _i:"
the value at PINB into Rx PORTD T '

¢ “out PORTD, Rx” will copy the contents |l|L f
of Rx to output PORTD (and hold) #'42¥##%T%#5F

N i i R il U

¢ They are the only I/O operations you need know about
¢ Please do not feel free to experiment

When you fiddle with 1/0, it is no longer an
abstraction. Very real bad things can happen!!

Electrical & Computer CMU 18-100

) ENGINEERTN e

©2015
J.C. Hoe

Lab 9 Starter Code__ .o
addres
.equ PINB=0x03 main: <
.equ DDRB=0x04 in r16,PINB
.equ PORTB=0x05 mov r17,r16 |
.equ PIND=0x09 andi r16,0x0f
.equ DDRD=0x0a Isrrl7 compute
.equ PORTD=0x0b Isrr17 < quff
Isrr17
.org 0x0000 Isr r17
entry: add r16,r17 d‘sp\at\’put
Idi r16,0xFF out PORTD,r16< " czin
out DDRD,r16 rimp main 90!
Idi r16,0x00
out DDRB,r16 -figure out what the example does
Idi r16,0xff -try it out for real on the board
out PORTB,r16 -modify “compute stuff” to do
what Lab 9 asks for
DO NOT change the above!! -demo your program on the board
4 ERGNEERRG S

©2015
J.C. Hoe

Now back to the regularly
scheduled program

CMU 18-100

((.y Eﬁ‘a‘rl&Echﬁipﬁl&; §'15119-25

Control Flow: Branch?

J.C. Hoe

BREQ - Branch if Equal

Description:

Conditional relative branch. Tests the Zero Flag (Z) and branches relatively to PC if Z is set.
This instruction branches relatively to PC in either direction (PC - 63 < destination < PC + 64).
The parameter k is the offset from PC and is represented in two's complement form.

(Z=1)thenPC« PC+k+1,else PC« PC+1

Syntax: Operands: Program Counter:
(i) BREQ k -64 < k = +63 PC«PC+k+1
PC « PC + 1, if condition is false
16-bit Opcode:
| 1111 | 00Kk | wikk | k001 |

Note:
- Like in RIMP, a branch target is also PC-relative
- (2=1) is the branch condition. What the heck is Z?

Page 29 Atmel 8-bit AVR Instruction Set Manual

CMU 18-100

((3 Eﬁ:&.l ?Eﬁme 212505159—26
Status Register

J.C. Hoe
7 6 5 4 3 2 1 0

ey v T vz T]

don’t worry about 7~4

e V', 'N’,Z’, ‘'C’ are arithmetic flags automatically
updated after each ALU-class instructions
- Z:set if the last result was zero,

Each has corresponding branch instructions
- BREQ/BRNE,
¢ Eg,
- after “SUB Rx, Ry” or “CP Rx, Ry”, Z is set if Rx==Ry
- BREQtaken if Rx==Ry, BRNE taken if Rx!=Ry
Page 11 Atmel 8-bit AVR ATmega8 Databook

trical & Computer
) ERGiNEERING

Assembly Programming 201

¢ E.g. High-level Code
if (i == j
e =
else
e =
f==e
¢ Assembly Code

- supposee, f, g, h,i, jareinr,,r Fgr P T

cp r, r

j E]

brne L1 ;

symbolic =
mov r, Iy :

address rjmp L2 .

/0b35\§§L1: mov rg, Iy ;

L2: mov rg, T

e £

CMU 18-100
§'15119-27
©2015

J.C. Hoe

test
fail
) then then
g
h else
join
ir T

; set status flags

if il=j skip to L1 (else)

; assembler computes offset
; egets g

skip to L2 (join)
e gets h

; F gets e

trical & Computer
) ERGiNEERING

Assembly Programming 202

¢ E.g. High-level Code
i=0; j=10;
while (1 !
i++;

¥

¢ Give it try. Pick your own free registers

CMU 18-100
§'15119-28
©2015
J.C. Hoe

before

) test
=D { done?

loop
body
Go back

after

Q&

trical & Computer

Ci
GINEERING

CMU 18-100
§'15119-29
©2015

J.C. Hoe

Useful ALU Instructions

¢ ADD Rd, Rr — Add registers Rd<-Rd+Rr
¢ ADC Rd, Rr — Add registers w. carry Rd¢-Rd+Rr+C
¢ SUB Rd, Rr — Subtract registers Rd<-Rd-Rr
¢ AND Rd, Rr — AND registers Rd<-RdeRr
¢ OR Rd, Rr — ORregisters Rd<-Rd|Rr
¢ INC Rd — Increment register Rd<-Rd+1
¢ DEC Rd — Decrement register Rd<-Rd-1
¢ LSL Rd — Left shift register Rd<-Rd<<1
¢ LSR Rd — Right shift register Rd<-Rd>>1
¢ ASR Rd — Right shift register Rd<-Rd>>1
(sign-extend)
¢ ADIW Rd, k — 16-bit add register- R(d+1):Rd=

immediate R(d+1):Rd+k

4 EREREERRE ey
Useful Data Movement e
Instructions
¢ LDI Rd,K — Load Immediate Rd<-K
¢ LDS Rd,k — Load from SRAM Rd<(k)
¢ LD Rd,X — Load registerindirect Rd<&-(X)
¢ STS k,Rr — Store datato SRAM (k)&Rr
¢ ST X,Rr — Store register indirect (X)¢Rr
¢ IN Rd,P — Read from port Rd<-P
¢ OUT P,Rr — Write to port P<&<Rr

QO

Electrical & Computer

ENGINEERING

Useful Control Flow Instructions

¢ RIMP k

— Jump to k,
where k is a memory address (label)

¢ CP Rd,Rr — Subtract Rd by Rr and set status flag

¢ BREQ k

¢ BRNE k

¢ BRMI k

¢ BRPL k

but does not update Rd
— Branch to k if Z is set

(branch if Rd==Rr following CP Rd, Rr)
— Branch to k if Z is clear

(branch if Rd!=Rr following CP Rd, Rr)
— Branch to k if S is set

(branch if Rd<Rr following CP Rd, Rr)
— Branch to k if Sis clear

(branch if Rd>=Rr following CP Rd, Rr)

CMU 18-100
§'15119-31
©2015

J.C. Hoe

