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Abstract— Harmonic state estimation (HSE) is used to locate
harmonic sources and estimate harmonic distributions in power
transmission networks. When only a limited number of har-
monic meters are available, existing HSE methods have limited
effectiveness due to observability problems. This paper describes
a new system-wide harmonic state estimator that can reliably
identify harmonic sources using fewer meters than unknown
state variables. Note there are only a small number of simulta-
neous harmonic sources among the suspicious buses. Traditional
observability analysis is extended to general underdetermined
estimation when considering the sparsity of state variables. It
is shown that the underdetermined HSE can become observable
with proper measurement arrangements by applying the sparsity
of state variables. The harmonic state estimation is formulated
as a constrained sparsity maximization problem based on L1-
norm minimization. It can be solved efficiently by an equivalent
linear programming. Numerical experiments are conducted in
the IEEE 14-bus power system to test the proposed method.
The underdetermined system contains nine meters and thirteen
suspicious buses. The results show that the proposed sparsity
maximization approach can reliably identify harmonic sources in
the presence of measurement noises, model parameter deviations
and small non-zero injections.

Index Terms— Power system harmonics, state estimation, wide-
area measurements, sparsity, sparsity representation, underde-
termined system, observability, waveform distortion, harmonic
pollution, meter placement

I. I NTRODUCTION

I N recent years, the proliferation of power electronic devices
and nonlinear loads in power systems has led to increasing

concern about the distortion of the sinusoidal waveform of
voltage and current in transmission networks due to harmonic
pollution. Harmonic pollution is recognized as an important
factor in the degradation of power quality, which may shorten
equipment life and interfere with communication and control
devices [1]. In consequence, the IEEE Recommended Practice
[2] recommends practices for utilities and customers to limit
the harmonic contents in power networks. To effectively alle-
viate harmonic pollution, it is important to identify harmonic
sources and estimate the distribution of harmonic voltagesand
currents by real-time measurements.

The task of harmonic state estimation (HSE) [3], [4] is to
locate major harmonic sources and to estimate the distribution
of harmonic voltages and currents by partial system-wide
measurements. Currently it is feasible to measure the phasors
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of harmonic voltages and currents in power networks with
synchronized measurements. But due to the high expense
of harmonic instruments and installation of communication
channels, only a limited number of harmonic meters are avail-
able in power networks [23]. In other words, the number of
measurements are only slightly greater or even fewer than that
of unknown state variables. It often results in ill-conditioned
or singular measurement matrix in harmonic state estimation,
which may cause unreliable estimate when using standard least
square (LS) estimator [3].

To overcome the difficulty, a singular value decomposition
(SVD) based method [5] is proposed to estimate state variables
in observable islands while the rest of the state variables
remain unknown. In order to minimize meter requirements as
well as to avoid ill-conditioned measurement matrix, optimal
meter placement is addressed in [7], [8], [9], [10]. The appli-
cation of HSE to an actual power system is described in [11],
where eight synchronized phasor measurements are used while
state variables are seven unknown nodal harmonic current
injections. Other approaches, such as artificial neural networks
[12], cascade correlation network [25], Kalman filters [13],
[14], [15], are proposed for Harmonic State Estimation in
transmission networks. In [16], [17], independent component
analysis is used to estimate general load injections and har-
monic injections. In [24], it is pointed out that measurement
noises have substantial effect on the accuracy of underdeter-
mined HSE.

Despite these efforts, it is still a challenge to estimate
reliably all network state variables in even moderate size power
networks when provided fewer measurements than suspicious
nodes.

An important bit of information about harmonic sources
is their spatial sparsity, that is, large harmonic injections
appear sparsely in the power networks. Alternatively, spatial
sparsity means that the simultaneous number of large harmonic
sources is much smaller than the number of suspicious buses
in practical power systems while their size and location are
unknown before state estimation.

By utilizing the sparsity, this paper shows that the under-
determined estimation problem can be solved uniquely via
sparsity maximization. This paper is a continuation of our
efforts in [18]. The precision of estimates are enhanced by
usingL1 norm constraint instead ofL∞ norm in [18]. Some
important practical considerations are further investigated.

This paper is organized as follows: Section II gives a
description of the problem. In Section III, the theory for ob-
servability analysis in underdetermined systems is described.
Section IV formulates harmonic state estimation as a sparsity
maximization problem that can be solved using linear pro-
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gramming tools. Section V addresses meter placement and
Section VI gives the results of several numerical experiments
using the IEEE 14-bus harmonic test system.

II. PROBLEM DESCRIPTION

In this paper, the harmonic analysis model in [19] is used,
that is, harmonic sources modeled as current sources; trans-
mission equipments as equivalentπ-circuits; rotation machines
as constant impedance; harmonic filters as shunt impedance;
aggregate linear loads as impedance determined by their
power in fundamental frequency. The phase shift effect of
transformers on harmonic current is also considered. All buses
are partitioned into nonsource buses, which have neither load
injections nor power electronics devices, and suspicious buses,
which may have harmonic sources. However, the location of
actual harmonic sources is unknown before state estimation.
Non-source buses are reduced during the pre-processing stage.

Given harmonic current injectionsI(h) and harmonic nodal
admittance matrixY (h), nodal harmonic voltagesV (h) can
be obtained by solving the harmonic power flow equations as
follows:

Y (h)V (h) = I(h) (1)

whereh stands for the harmonic order. The branch harmonic
currentsIb(h) can be obtained subsequently.

Harmonic state estimation is an inverse problem of har-
monic power flow. It estimates network state variables with
available measurements. Since harmonic source injectionscan
determine all other network variables uniquely,I(h) can be
used as state variables.

A subset of nodal voltagesV (h) and branch currentsIb(h)
are chosen as measurements, with all nodal current injections
I(h) as state variables. Assume that network topology and
parameters in all considered harmonic orders are known.
After splitting complex variables into real and imaginary
components, the relationship between measurements and state
variables can be formulated as follows:

z(h) = H(h)x(h) + e(h) (2)

where

z =

[

zR

zI

]

x =

[

xR

xI

]

H =

[

H̃R −H̃I

H̃I H̃R

]

h harmonic order,
m number of measurements,
n number of state variables at suspicious buses,
z(h) m × 1 measurement vector,
H(h) m × n measurement matrix,
x(h) n × 1 state variable vector with excluding

nonsource buses,
e(h) m × 1 measurement error vector.
subscript R,I denote real and imaginary part respectively

Underdeterimed systems are considered in this paper, i.e.,
m < n. Branch current measurements are related tox

by the node-branch distribution factor matrix. Nodal voltage
measurements are related tox by the nodal impedance matrix.

Nonsource buses (floating buses) are reduced during pre-
processing steps. The measurement errors are assumed as inde-
pendently and identically distributed (i.i.d.) normal distribution
with small variance.

In practical power systems, it is observed that the distribu-
tion of harmonic sources hasspatial sparsity, that is significant
harmonic sources appear at only a small fraction of buses
simultaneously. Denoting the nodal harmonic current injection
vector byx, sparsity means

‖x‖0 ≤ s (3)

where‖·‖0 is the L0 norm, which equals to the number of
non-zero entries in the state vector.s gives the maximum
number of simultaneous harmonic sources.m > s for the
underdetermined systems considered in this paper.

Considering the spatial sparsity of harmonic sources, the
harmonic state estimation problem is formulated as con-
strained approximated sparsity maximization as follows:

min
x

‖x‖1

subject to ‖z − Hx‖1 ≤ ε
(4)

whereL1 norm ‖x‖1 ,
∑n

k=1 |xk| is used to approximate
L0 norm, scalarε > 0 controls the tolerance to residuals.
In the following sections we will show that (4) can give an
accurate estimate to the underdetermined system (2) under
certain conditions.

A standard least-square (LS) estimator is unable to give a
reliable estimate for the underdetermined system. As stated
in Section I, the harmonic state estimator has only a limited
number of measurements. It means (2) either has low redun-
dancy (m = n + k, k is a small non-negative integer) or is
underdetermined (m < n). The estimate obtained by the LS
estimator,

min
x

‖z − Hx‖2 (5)

is x̂ = (H
T
H)

−1
HT z. For the underdetermined case, the

matrix HT H is singular. It leads to unbounded estimation
errors. Even in the low-redundancy case,HT H may become
close to singular or ill-conditioned. It can cause the failure of
LS estimator.

III. O BSERVABILITY ANALYSIS WITH SPARSITY PRIOR

Observability analysis determines the necessary conditions
for the uniqueness of estimates. An observable linear estimator
generally requires full column rank of its measurement matrix.
In this section, it is shown that the underdetermined linear
system (2) can become observable when state variables are
sparse. A closely related topic in signal processing is called
optimally sparse representation.

A. Motivation

The linear systemy = Ax (y is output) is non-observable
if A does not have full column rank. But if some prior
knowledge aboutx is available, the system may become
observable. For instance, if it is known in advance that only
one entry ofx is nonzero, i.e.,‖x‖0 = 1, an n-step test can
be conducted to find the exact solution if none of two columns
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of A is linear dependent. Note that the location of nonzero
entry ofx is unknown before estimation. It is illustrated with
the following example.

Suppose outputy = [y1, y2]
T is generated by the linear

equation

[

y1

y2

]

= A2×3x
∗
3×1 = [α1, α2, α3]





0
d
0





where the internal state variablex∗ is 1-sparse. To obtainx∗

from y, a 3-step test is designed. At thek-th step, let
{

x
(k)
i = xk i = k

x
(k)
i = 0 i 6= k

and check the corresponding mismatch vector

r(k) = y − [α1, α2, α3]x
(k)

= y − αkxk (6)

Obviously, if any two of the column vectorsα1, α2, α3 are
linearly independent, for anyx1, x2, x3, we must have

y − α1x1 6= y − α2x2 6= y − α3x3 (7)

Here only x2 = d can achieve zero mismatch. Thus, the
unique solution is given byx(2) = [0, d, 0]T . Therefore, the
underdetermined system is observable if at least two column
vectors are linearly independent whenx has only one non-zero
entry.

B. Sparsity Prior and Matrix Spark

Definition 1 (Sparsity):Vectorx is s-sparseif only s of its
entries are nonzero.

Remark 1:x is s-sparse⇔ ‖x‖0 = s. Note that this
definition does not provide any information about the exact
location of these non-zero entries.

Sparsity prior therefore is referred to as the prior knowl-
edge about the maximum number of non-zero entries in the
unknown vector.

Definition 2 (Spark):The spark of matrix A is defined as
the smallest possible number of its columns that are linearly
dependent. [20]

Remark 2:For instance, α if in the matrix A =
[α1, α2, α3], (α1, α2), (α1, α3) and(α2, α3) all are linearly
independent, and(α1, α2, α3) are linearly dependent, thenA
has spark3. In general, for anm-by-n matrixA, spark(A) =
s, if all of its m× (s− 1) submatrices have full column rank
and at least one of itsm× s submatrices is singular. Clearly,
for any matrix A without zero columns,2 ≤ spark(A) ≤
Rank(A) + 1.

C. Observability of Underdetermined Systems

Motivated by the example, the observation can be general-
ized to general underdetermined linear systems

ym×1 = Am×n xn×1 (8)

wherey ∈ Cm denotes measurable output,x ∈ Cn denotes
state variables,A ∈ Cm×n is a known matrix, andm < n.

The conditions for its observability are given by the following
theorem:

Definition 3 (Observability):A system isobservableif its
internal statex can be uniquely determined by its outputy.

Definition 4 (S-Observability):A system iss-observableif
it is observable when its internal statex is at mosts-sparse,
i.e. ‖x‖0 ≤ s.

Theorem 1 (Conditions on S-Observability):The underde-
termined linear system (8) is observable ifx is at mosts-
sparse ands < 1

2spark(A), where matrixA is known and
m < n.

Proof: (Proof by Contradiction.) According to the def-
inition of observability, (8) is observable if it has unique
solution. Assume we have non-uniques-sparse solutionsc and
d, c 6= d, such that

{

y = Ac =
∑s

i=1 cki
αki

y = Ad =
∑s

j=1 dpj
αpj

(9)

whereαki
is theki-th column ofA. Easily to see
∑s

i=1 cki
αki

+
∑s

j=1(−dpj
)αpj

= 0 (10)

The left side of (10) is a linear combination of at most2s
different column vectors. Becausespark(A) > 2s, any2s or
less than2s column vectors ofA must be linearly independent.
Therefore (10) can never be true. The solution of (8) is unique.

An exhaustive search algorithm can find the unique solution.
It tests all of possible combinations ofs non-zero entries of
x. Among all combinations

x(k) = [xk1
, . . . , xks

]

only the combination corresponding to the unique solutionx∗

can satisfy the equation
∑s

i=1 xki
αki

= y (11)

The existence of the correct combination is guaranteed by the
uniqueness of the solution. Since the combination number

(

n
s

)

is finite, the real solution can always be found within finite
steps. This completes the proof.

Theorem 1 indicates that if the state vectorx∗ has at most
s non-zero entries, then it is possible to use not less than2s
independent measurements to estimatex∗ if the corresponding
A satisfiesspark(A) > 2s. In other words, it is possible to
estimate ann-dimensional sparse vector withm (2s < m <
n) measurements with proper measurement arrangements.

IV. STATE ESTIMATION BY SPARSITY MAXIMIZATION

Note that among all solutions to underdetermined system (8)
there is only one satisfying‖x‖0 < 1

2spark(A). Alternatively,
the sparsest solution is the unique solution when sparsity prior
is applied. This leads to the following corollary:

Corollary 1 (The sparsest solution is unique):With the
sparsity prior

‖x‖0 <
1

2
spark(A)

the sparsest solution for (8) is also the unique solution.
Corollary 1 is applied to harmonic state estimation with the

sparsity prior of source distribution. Thus, the HSE problem is
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to find the sparsest solution̂x while minimizing the residual
‖z − Hx̂‖. It is formulated as follows:

min
x

‖x‖0

subject to ‖z − Hx‖1 ≤ ε
(12)

When measurement noises are negligible, (12) becomes a
sparse representation problem [20],

min
x

‖x‖0 subject to z = Hx (13)

The observability of the underdetermined state estimator is
guaranteed by choosing a proper measurement matrixH such
that

spark(H) > 2s (14)

wheres is the maximum possible number of simultaneous ma-
jor harmonic sources in the network. Moreover, the correctness
of a solution can be checked by testing the sparsity condition:
‖x‖0 ≤ spark(H)/2.

However, it is difficult to obtain the global optima of (12)
by standard convex programming because the problem (12)
has a combinatorial nature. The naive strategy used in the
proof of Theorem 1 for locating the harmonic sources is to
test all possible combinations ofk source locations(k ≤ s)
and choose the sparsest one with lower-than-threshold residual.
The drawback of the naive strategy is that even whens is
a moderate number, it has to test an exponential number of
potential combinations, which isΣs

k=1

(

n
k

)

. For instance, when
s = 5, n = 100, the number is around7.9 × 107.

To avoid the difficulties involved in the sparsity maximiza-
tion problem (12), there is a series of efforts (generalizedin
[21] and [20]) for finding an approximation of (12) by replac-
ing ‖x‖0 with other functionsg(x). In particular,g(x) =
‖x‖1 is favored due to its simplicity. The corresponding
constrainedL1 norm minimization problem is

min
x

‖x‖1 subject to z = Hx (15)

The conditions on the equivalence of (13) and (15) are
established by the following theorem [20].

Definition 5 (Coherence): Coherenceof a matrix A =
[α1, . . . , αn] is defined as the maximum absolute inner prod-
uct between unitary column vectors

µ(A) , max
1≤i6=j≤n

|〈αi, αj〉| (16)

Theorem 2 (Equivalence of (13) and (15)):If (13) has
unique solutionx∗ and

‖x∗‖0 <
1

2

(

1 +
1

µ(A)

)

(17)

thenx∗ is also the unique solution of (15).
Remark 3:A proof of this theorem is provided in [20].

This theorem indicates that we can useL1 norm minimization
(15) to replaceL0 norm minimization (13) if the solution is
sparse enough. Note that the sparsity bound condition (17) in
Theorem 2 is conservative.

The equivalence ofL0-norm andL1 norm minimization
is illustrated by the 2-variable example shown in Fig. 1.
Intuitively, Fig. 1 illustrates that when0 < p ≤ 1, the family

0<p<1 p=1 p=2

The unique solution Wrong solution

||x||2||x||1||x||p

x1

x2

x1

x2

x1

x2

000

Fig. 1. Illustration thatL1 norm minimization can produce the unique solu-
tion given byLp (0 < p < 1) norm minimization problem:minx1,x2

|x1|
p+

|x2|
p , s.t.φ1x1 + φ2x2 = c.

of Lp norm minimization problems share the same solution.
Furthermore,L0 norm is approximated byLp norm when
p → 0.

When measurement noise exists, (15) is replaced by (4).
Our numerical experiments show that the estimate from (4) is
stable under small model and measurement disturbances if the
underdetermined estimator iss-observable.

The optimization problem (4) can be cast into a standard
linear programming problem (see Appendix for details), which
can be solved reliably by simplex methods or interior point
methods[22].

V. M ETER PLACEMENT

From Theorem 1, the spark of measurement matrixH

determines the observability of the underdetermined system.
Proper meter placement is needed to make the system observ-
able. Fixing the number of simultaneous harmonic sources
L, the meter placement problem is to find the subset ofk
(k > 2L) candidate measurements that make the spark of the
corresponding measurement matrix greater than2L. Thus:

miny ‖y‖0

subject to spark(HT
c y) ≥ 2L

(18)

wherey is mc × 1 meter selector,yi = 1 indicates that the
ith candidate meter is chosen,yi = 0 means meteri is not
chosen;Hc is an mc × n complex matrix, which represents
the pool ofmc candidate measurements.

Since optimal meter placement is not the primary focus of
this paper, a simple greedy search method is used for meter
placement [18]. When the number of meters is fixed, the
algorithm is:

1) Determine the maximum number of
simultaneous harmonic sources in the
network. Denote it as s;

2) Establish the harmonic admittance
matrix Y (h). Set nodal harmonic
injection as state variables x;

3) Establish candidate measurement
matrix H and compute µ(H);

4) Remove the meters whose removal
causes the least increase of µ(H);
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5) Repeat Step 3 and Step 4 until the
placed meters are reduced to the
pre-set number;

6) Checking the extended observability
of H according to Theorem 1;

7) Repeat Step 1 through Step 6 for each
harmonic order;

8) Choose the meter group such that
the system is s-observable for each
harmonic orders.

The proposed meter placement algorithm is tested in the
IEEE 14-bus test system shown in Fig. 2. As a result of the
placement, a nine-meter group is chosen as shown in Fig 2.
The group measures the harmonic currents through line 1-5, 2-
3, 3-4, 6-12, 7-8, 9-14, 10-11, 13-12 and 13-14. The calculated
spark of the corresponding complex measurement matrix is
10. As a result of Theorem 1, the underdetermined estimator
can handle up tos < 10/2 = 5 simultaneous complex-valued
harmonic sources without the presence of noises.

VI. N UMERICAL EXPERIMENTS AND DISCUSSION

IEEE 14-bus test system [19] is used to test the proposed
method. It is the benchmark system for harmonic study in
three-phase balanced transmission networks. Assume all nodes
except node 7 (it is a non-source bus) can have harmonic
source injections. Thus there are 13 suspicious nodes. For each
harmonic order, two harmonic sources are randomly placed in
the network. Only 9 meters, shown in Fig. 2, are used by
the proposed algorithm. They all take the measurements for
branch harmonic currents. The meter placement scheme is the
result of the placement algorithm described in Section V.

The artificial harmonic injections are treated as “actual”
harmonic sources, labeledI(act). “Actual” nodal harmonic
voltagesV (act) are calculated by the harmonic power flow
using the “actual” harmonic injections.

The measurement data are generated by solving the har-
monic power flow equation (1) with given harmonic admit-
tance matrices and current injections. Measurement noisesare
added if necessary. Measurement errors are modeled as i. i. d.
(independently and identically distributed) normal distribution
with zero mean.

The harmonic state estimation is repeated for each harmonic
order to obtain the injection estimateI(est). Then the estimated
harmonic nodal voltagesV (est) are calculated using harmonic
power flow (1) and estimated current injections.

The state estimator only uses the measurements and mea-
surement matrices. Other information such as the location,
magnitude and number of harmonic sources are unknown
before state estimation is finished. The program is coded
using Matlab 7.0 . Simplex method is used to solve linear
programming (25), see Appendix.

The root mean square errors (RMS) of voltage magnitude
VM (%), voltage angleVA, injection magnitudeIM (%), and
injection angleIA in each harmonic order are used to compare
estimated and simulated values, where the RMS injection
errors are averaged by the number of major sources and RMS
voltage errors by the total node number.

c

G

G

G

c

c c

Fig. 2. IEEE 14-bus test system with nine meters

TABLE I

EXPERIMENT 1: ROOT MEAN SQUARE ERRORS BETWEEN ESTIMATED AND

SIMULATED VALUES . VM (%), VA , IM (%) AND IA , ARE THE RMS

ERROR OF VOLTAGE MAGNITUDE, VOLTAGE ANGLE, INJECTION

MAGNITUDE AND INJECTION ANGLE, RESPECTIVELY.

5th 7th 11th 13th 17th 19th 23rd 25th

IM (%) 0.18 0.13 0.32 0.19 0.45 1.50 0.11 0.69
IA(◦) 0.05 0.06 0.05 0.05 0.06 0.21 0.01 0.19
VM (%) 0.03 0.01 0.15 0.02 0.04 0.08 0.02 0.19
VA(◦) 0.02 0.01 0.03 0.02 0.02 0.11 0.01 0.08

A. Experiment 1 (Noiseless Measurements)

In the experiment, we assume the measurement noise is
zero. We set the tolerance parameterǫ of equation (4) to 0.001.
For each harmonic order, harmonic sources can appear at any
two buses except the non-source bus 7. The proposed state
estimation algorithm (4) is conducted for each harmonic order.
The estimated and simulated injection magnitude and voltage
magnitude are compared in Fig. 3. The root mean square
errors (RMS) of voltage magnitudeVM (%), voltage angle
VA(◦), injection magnitudeIM (%), and injection angleIA(◦)
in each harmonic order are listed in Table I. From Table I , the
estimation errors are almost zero for voltages and injections.
Moreover both the location and the magnitude of unknown
harmonic sources are identified correctly and precisely.

B. Experiment 2 (Noisy Measurements)

Experiment 2 is designed to test the stability of the proposed
algorithm in the presence of measurement noises. The mea-
surement noises are zero-mean normal distribution with5%
standard deviation. Set the tolerance parameterε as0.001. All
the other settings are the same as that in experiment 1. Two
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Fig. 3. Results of experiment 1: comparison of estimated andsimulated the magnitude of nodal harmonic current injections and voltages in each harmonic
order with noiseless measurements and accurate model parameters for IEEE 14-bus test system.

TABLE II

EXPERIMENT 2: ROOT MEAN SQUARE ERRORS BETWEEN ESTIMATED AND

SIMULATED VALUES . VM (%), VA(◦), IM (%) AND IA(◦), ARE THE RMS

ERROR OF VOLTAGE MAGNITUDE, VOLTAGE ANGLE, INJECTION

MAGNITUDE AND INJECTION ANGLE, RESPECTIVELY.

5th 7th 11th 13th 17th 19th 23rd 25th

IM (%) 3.93 1.97 2.27 7.37 4.82 3.29 2.04 5.38
IA(◦) 0.32 0.05 0.57 2.74 1.59 1.08 1.15 0.31
VM (%) 1.17 2.07 0.44 1.86 1.31 0.32 0.89 2.33
VA(◦) 0.43 0.51 0.23 0.46 0.67 0.16 0.39 1.42

harmonic sources are placed in two randomly selected buses
in each harmonic order. The proposed estimation algorithm is
performed to obtain injection estimate for each harmonic order.
Nodal voltages are calculated using the estimated injection
afterward. Estimated and simulated the magnitude of nodal
harmonic injections and voltages are compared in Fig. 4.

The results show that all harmonic sources in all harmonic
orders are identified correctly with small differences fromthe
simulated values. Listed in Table II, the RMS errors of voltage
magnitudeVM (%), voltage angleVA, injection magnitude
IM (%), and injection angleIA in each harmonic order are
also small.

C. Experiment 3 ( Inaccurate Model + Noisy Measurements
+ Small Nonzero Harmonic Sources )

In experiment 1 and 2, the model parameters are assumed
accurate. However, in real power systems, the network har-
monic parameters can only be obtained in limited precisions.
Additionally, harmonic injections at all other buses are as-
sumed to be zero except those having major sources. Strictly
speaking, it is only partially true because some other buses
may have small but non-zero harmonic injections.

This experiment is to test the robustness of the proposed
method under less ideal conditions, including the existence
of small modeling deviations, noisy measurements and small
non-zero sources.

Ĥ is constructed by disturbing each element ofH by
adding i.i.d Gaussian noises with zero mean and 5% standard
deviation.Ĥ is used in (4) to obtain estimates. The trueH

is used to generate “actual” harmonic voltages and currents.
“Actual” harmonic injections consisting of 2 major injections
and 11 small injections are randomly placed at 13 buses with
one injection at one bus. Note that the locations of major
harmonic injections are different for each harmonic order.The
magnitudes of the 11 small injections are generated by zero-
mean normal distribution with5% standard deviation relative
to the largest injection. Their angles are randomly chosen from
0◦ to 360◦ . Other settings are the same as those in experiment
2. The measurement noises in Experiment 3 are generated in
the same way as those in Experiment 2.

Fig. 5 shows the comparison of estimated and simulated
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Fig. 4. Results of experiment 2: comparison of estimated andsimulated the magnitude of nodal harmonic injections and voltages in each harmonic order
for IEEE 14-bus test system when measurement noises obey zero-mean normal distribution with 5% standard deviation.
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Fig. 5. Results of experiment 3: comparison of estimated andsimulated nodal harmonic voltage magnitudes and current injections in each harmonic order
for IEEE 14-bus test system with small modeling deviation, two large sources, 11 small non-zero sources and noisy measurements.
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TABLE III

EXPERIMENT 3: ROOT MEAN SQUARE ERRORS BETWEEN ESTIMATED AND

SIMULATED VALUES . VM (%), VA , IM (%) AND IA , ARE THE RMS

ERROR OF VOLTAGE MAGNITUDE, VOLTAGE ANGLE, INJECTION

MAGNITUDE AND INJECTION ANGLE, RESPECTIVELY.

5th 7th 11th 13th 17th 19th 23rd 25th

IM (%) 3.40 4.82 0.61 12.6 0.65 4.41 16.2 4.25
IA(◦) 1.71 2.33 0.86 0.71 1.39 0.28 2.34 2.22
VM (%) 3.06 1.85 20.6 6.24 5.89 1.98 4.08 2.71
VA(◦) 1.89 0.54 13.0 5.52 15.4 0.53 2.14 5.67

harmonic injection and voltage magnitudes. The RMS errors
of VM (%),VA(◦), IM (%), andIA(◦) in each harmonic order
are listed in Table III. The results show that all major harmonic
sources in all harmonic order are located correctly though there
are 12.58% and 16.23% injection magnitude errors in 13rd and
23rd harmonics.

D. Discussion

The numerical experiments show that the proposed under-
determined estimator is capable of identifying the harmonic
sources reliably when considering noisy measurements and
small model parameter errors. Moreover the calculated nodal
voltage phasors using estimated injections are very close to the
simulated values. Thus all state variables of the network are
obtained with satisfactory precisions. Since Theorem 1 is also
valid for overdetermined systems, our numerical results (not
listed here) show that the proposed algorithm is able to obtain
accurate estimate for ill-conditioned overdetermined systems
while least square estimator fails and SVD estimator obtains
a reliable estimate only for partial networks.

If replacing theL1 norm in the constraint in (4) byL2 norm,
we have a new estimator:

min
x

‖x‖1

subject to ‖z − Hx‖2 ≤ τ2
(19)

where scalarτ > 0 controls the tolerance to residuals. Another
variant[18] of (4) can be obtained if we use the Infinity norm
L∞ to replaceL1.

min
x

‖x‖1

subject to ‖z − Hx‖∞ ≤ η
(20)

where scalarη > 0 controls the tolerance to residuals. Our
simulation results show that (19)>(4)>(20) in terms of the
accuracy of estimate while all of the three locate harmonic
sources correctly.

(4) is preferred to (19) because the main task for HSE is
to identify harmonic sources reliably and both (4) and (19)
have the same capability for achieving that task. But (4) can
be solved efficiently and reliably by linear programming while
to solve (19) needs general convex programming. Moreover,
(4) is chosen instead of (20) because (4) gives more accurate
estimate while both of them can be solved effectively in linear
programming.

To enhance the estimate accuracy, an additional least square
estimator can be conducted after identifying the location of
harmonic sources.

Although three-phase balanced power network models is
used in proposed algorithm and numerical experiments, there
is no fundamental difficulty to extend the proposed method
to three-phase unbalanced systems. In unbalanced systems,
both the measurements and the state variables become three-
phase quantities. And the measurement matrix can be made
according to the three-phase parameters and topology of the
unbalanced network.

Further work will focus on the following issues:

1) Fast analysis of S-observability and optimal meter place-
ment;

2) Efficient implementation of the proposed method in real
large-scale power networks;

3) Harmonic state estimation considering three-phase un-
balanced power network models;

4) Reduction of the effect of gross errors and modeling
errors on estimate.

VII. C ONCLUSION

This paper proposes a systematic approach to identify
and estimate harmonic sources in power networks when the
number of harmonic meters is less than the number of un-
known state variables. In such an underdetermined system,
full observability cannot be ensured via traditional observ-
ability approaches. It leads to the failure of existing least
square based methods. First a new harmonic state estimator is
constructed by considering nodal harmonic injections as state
variables. Then, by exploiting the spatial sparsity of harmonic
sources, the underdetermined system can become observable
under proper measurement arrangements. Then the estimation
problem is formulated as a sparsity maximization problem
which can be solved efficiently by linear programming.

The proposed algorithm is tested in a three-phase balanced
IEEE 14-bus harmonic test system. The results show that
the algorithm can obtain reliable harmonic estimate for the
underdetermined system with 13 unknown sources and only 9
meters when small measurement noises and model parameter
deviations appear. In comparison, least-square based methods
are unable to produce reliable estimates because they require
the number of meters greater or equal to the total number of
suspicious buses, which is 13 in this case.

By combining the new observability analysis and the spar-
sity maximization algorithm, the paper provides a strict ap-
proach for establishing a system-wide harmonic state estimator
in large power systems at low cost. Such a harmonic state
estimator can provide critical real-time information to correct
harmonic related problems. The proposed method can also
be applied to enhance the robustness of low-redundancy/ill-
conditioned harmonic state estimation.

APPENDIX

The optimization problem (4) can be converted into a linear
programming. Giving (4) as the following
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minx ‖x‖1

subject to

{

‖r‖1 ≤ ε
z − Hx = r

(21)

By representingx andr by their positive and negative entries
respectively







x = xu−xv

r = ru−rv

xu, xv, ru, rv ≥ 0
(22)

(21) takes the form

min
xu,xv,ru,rv

∑n

k=1 (xu +xv )

subject to







∑n

k=1 (ru +rv ) ≤ ε
z − H(xu −xv ) = ru−rv

xu, xv, ru, rv ≥ 0

(23)

Define a(2n + 2m) × 1 vector

y = [x
T

u , xT
v , rT

u , rT
v ]

T (24)

We obtain the equivalent linear programming

miny cT y

subject to







dT y ≤ ε
Fy = z

y ≥ 0

(25)

where










c , [11×n, 11×n, 01×m, 01×m]
T

d , [01×n, 01×n, 11×m, 11×m]T

F ,
[

Hm×n −Hm×n Λm×m −Λm×m

]

(26)
where1 is an all-one vector,0 is an all-zero vector,Λ is an
identity matrix.
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