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Abstract— Harmonic state estimation (HSE) is used to locate of harmonic voltages and currents in power networks with
harmonic sources and estimate harmonic distributions in pwer  synchronized measurements. But due to the high expense
transmission networks. When only a limited number of har- o harmonic instruments and installation of communication
monic meters are available, existing HSE methods have lingd h | | limited b fh . t i
effectiveness due to observability problems. This paper deribes c anr_1e S, only a imiteéd number of harmonic meters are aval
a new system-wide harmonic state estimator that can reliayl able in power networks [23]. In other words, the number of
identify harmonic sources using fewer meters than unknown measurements are only slightly greater or even fewer thatn th
state variables. Note there are only a small number of simuét-  of unknown state variables. It often results in ill-conaiited
neous harmonic sources among the suspicious buses. Tradial 4 gjngylar measurement matrix in harmonic state estimatio

observability analysis is extended to general underdeterined hich liabl timate wh . tandast |
estimation when considering the sparsity of state variable It which may cause unrefiable estimate when using standastl lea

is shown that the underdetermined HSE can become observable Square (LS) estimator [3].
with proper measurement arrangements by applying the sparisy To overcome the difficulty, a singular value decomposition

of state variables. The harmonic state estimation is formuted (SVD) based method [5] is proposed to estimate state vasabl
as a constrained sparsity maximization problem based on L1- i, opservaple islands while the rest of the state variables

norm minimization. It can be solved efficiently by an equivaént . K | der t L t . i
linear programming. Numerical experiments are conducted @ '€Man UNKNOWN. In Orderto minimize meter requirements as

the IEEE 14-bus power system to test the proposed method. Well as to avoid ill-conditioned measurement matrix, otim
The underdetermined system contains nine meters and thiren meter placement is addressed in [7], [8], [9], [10]. The appl

suspicious buses. The results show that the proposed spdysi cation of HSE to an actual power system is described in [11],
maximization approach can reliably identify harmonic sources in where eight synchronized phasor measurements are usesl whil

the presence of measurement noises, model parameter dewt state variables are seven unknown nodal harmonic current
and small non-zero injections.

Index Terms— Power system harmonics, state estimation, wide- injections. Other approaches, such as artificial neuralorits
area measurements, sparsity, sparsity representation, wierde- [12], cascade correlation network [25], Kalman filters [13]

termined system, observability, waveform distortion, hamonic  [14], [15], are proposed for Harmonic State Estimation in
pollution, meter placement transmission networks. In [16], [17], independent compne
analysis is used to estimate general load injections and har
monic injections. In [24], it is pointed out that measuremen
noises have substantial effect on the accuracy of underdete

N recent years, the proliferation of power electronic desic mined HSE.

and nonlinear loads in power systems has led to increasinespite these efforts, it is still a challenge to estimate
concern about the distortion of the sinusoidal waveform @éliably all network state variables in even moderate staeqy
voltage and current in transmission networks due to harmomietworks when provided fewer measurements than suspicious
pollution. Harmonic pollution is recognized as an impottamodes.
factor in the degradation of power quality, which may shorte  An important bit of information about harmonic sources
equipment life and interfere with communication and contrgs their spatial sparsity, that is, large harmonic injetsio
devices [1]. In consequence, the IEEE Recommended Practgiear sparsely in the power networks. Alternatively, iapat
[2] recommends practices for utilities and customers tatlimsparsity means that the simultaneous number of large hacmon
the harmonic contents in power networks. To effectivelg-all sources is much smaller than the number of suspicious buses
viate harmonic pollution, it is important to identify harmio in practical power systems while their size and location are
sources and estimate the distribution of harmonic voltages ynknown before state estimation.
currents by real-time measurements. _ By utilizing the sparsity, this paper shows that the under-

The task of harmonic state estimation (HSE) [3], [4] is t@etermined estimation problem can be solved uniquely via
locate major harmonic sources and to estimate the disibutsparsity maximization. This paper is a continuation of our
of harmonic voltages and currents by partial system-widgforts in [18]. The precision of estimates are enhanced by
measurements. Currently it is feasible to measure the phasgsing L; norm constraint instead df.. norm in [18]. Some

. . , important practical considerations are further inveséda
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I. INTRODUCTION



gramming tools. Section V addresses meter placement awdnsource buses (floating buses) are reduced during pre-
Section VI gives the results of several numerical experisierprocessing steps. The measurement errors are assumeeé-as ind
using the IEEE 14-bus harmonic test system. pendently and identically distributed (i.i.d.) normaltdisution
with small variance.

In practical power systems, it is observed that the distribu

_ ) ) ) ) tion of harmonic sources hapatial sparsitythat is significant
In this paper, the harmonic analysis model in [19] is usefgrmonic sources appear at only a small fraction of buses

that is, harmonic sources modeled as current sources; trag)gyltaneously. Denoting the nodal harmonic current tigec
mission equipments as equivalentircuits; rotation machines yector byz, sparsity means

as constant impedance; harmonic filters as shunt impedance;

aggregate linear loads as impedance determined by their [xlly < s 3)
power in fundamental frequency. The phase shift effect Where||-|| is the L, norm, which equals to the number of
transformers on harmonic current is also considered. Aebu o - arq Oentries in the state vecter.gives the maximum
are partitioned into nonsource buses, which have neitte 19, , \her of simultaneous harmonic sources.> s for the

injections nor power electronics devices, and suspiciois®$, |,nderdetermined systems considered in this paper.

which may have harmonic sources. However, the location OfConsidering the spatial sparsity of harmonic sources, the

actual harmonic sources is unknown before state estimatiq monic state estimation problem is formulated as con-
Non-source buses are reduced during the pre-processy® st@yained approximated sparsity maximization as follows:
Given harmonic current injection§ k) and harmonic nodal

Il. PROBLEM DESCRIPTION

admittance matrixy’ (), nodal harmonic voltage¥ () can min [zl @
be obtained by solving the harmonic power flow equations as subjectto ||z — Hx||, <¢
follows:

where Ly norm ||lz||, £ >°)_, |zx| is used to approximate

Ly norm, scalare > 0 controls the tolerance to residuals.

whereh stands for the harmonic order. The branch harmonii@ the following sections we will show that (4) can give an

currentsI,(h) can be obtained subsequently. accurate estimate to the underdetermined system (2) under
Harmonic state estimation is an inverse problem of hagertain conditions. . _ .

monic power flow. It estimates network state variables with A standard least-square (LS) estimator is unable to give a

available measurements. Since harmonic source injeg];mms reliable estimate for the underdetermined system. As cbtate

determine all other network variables uniquely) can be in Section I, the harmonic state estimator has only a limited

used as state variables. number of measurements. It means (2) either has low redun-
A subset of nodal voltage¥ (k) and branch currentk,(h) dancy (n = n + k, k is a small non-negative integer) or is

are chosen as measurements, with all nodal current injecti¢inderdeterminedr¢ < n). The estimate obtained by the LS

I(h) as state variables. Assume that network topology ag§timator,

parameters in all considered harmonic orders are known.

After splitting complex variables into real and imaginary _

. T —1 44T :
components, the relationship between measurements aed sta” = (I}I H.) H z. For the underdetermined case, Fhe
variables can be formulated as follows: matrix H* H is singular. It leads to unbounded estimation

errors. Even in the low-redundancy cagé’ H may become
z(h) = H(h)x(h) + e(h) (2) close to singular or ill-conditioned. It can cause the failof
LS estimator.

Y (n)V (k) = I(h) (1)

min |z — Hz|, (5)

where
zZR TR ﬁR —ﬁz Ill. OBSERVABILITY ANALYSIS WITH SPARSITY PRIOR
N [ Zr } B { Tr } B { H;, Hp } Observability analysis determines the necessary conditio
) for the unigueness of estimates. An observable linear aftim
h harmonic order, generally requires full column rank of its measurement imatr
m nhumber of measurements, . In this section, it is shown that the underdetermined linear
n number of state variables at suspicious buses, gyt (2) can become observable when state variables are
z(h) m x 1 measurement vectqr, sparse. A closely related topic in signal processing isedall
H(h) m X n measurement matrix, _ optimally sparse representation.
x(h) n x 1 state variable vector with excluding
nonsource buses, .

e(h) m X 1 measurement error vector. A. Motivation

subscript g ; denote real and imaginary part respectively The linear systeny = Az (y is output) is non-observable
if A does not have full column rank. But if some prior

Underdeterimed systems are considered in this paper, ilmpwledge aboutr is available, the system may become
m < n. Branch current measurements are relatedxto observable. For instance, if it is known in advance that only
by the node-branch distribution factor matrix. Nodal vgita one entry ofx is nonzero, i.e.|z|, = 1, ann-step test can
measurements are relatecutdy the nodal impedance matrix.be conducted to find the exact solution if none of two columns



of A is linear dependent. Note that the location of nonzefthe conditions for its observability are given by the follogy
entry ofz is unknown before estimation. It is illustrated withtheorem:

the following example.

Definition 3 (Observability):A system isobservablef its

Suppose outpuy = [y1,%2]7 is generated by the linearinternal statex can be uniquely determined by its output

equation
y 0
[ ! } = Agx3®i, = o, g, 5] | d
Y2 0

where the internal state variahte' is 1-sparse. To obtain*
from y, a 3-step test is designed. At theth step, let
i=k

,Tl(-k) = Tk
xgk) =0 i#k
and check the corresponding mismatch vector
rF) =y — [a1, g,y a3]:13(k)
(6)

Obviously, if any two of the column vectoks;, o, a5 are
linearly independent, for any;, zo, x3, we must have

=Y — Tk

(@)

Y—our Y — Qaly F Y — Q313

Here only z, =

entry.

B. Sparsity Prior and Matrix Spark

Definition 1 (Sparsity):Vectorx is s-sparseif only s of its
entries are nonzero.

Remark 1:x is s-sparse < |lz||, = s. Note that this
definition does not provide any information about the exact

location of these non-zero entries.

d can achieve zero mismatch. Thus, th
unique solution is given by = [0,d, 0]”. Therefore, the
underdetermined system is observable if at least two colu
vectors are linearly independent wheras only one non-zero

mn

Definition 4 (S-Observability)A system iss-observablef
it is observable when its internal stateis at mosts-sparse,
i.e.[z|, < s.

Theorem 1 (Conditions on S-Observabilityjhe underde-
termined linear system (8) is observableafis at mosts-
sparse and < 3spark(A), where matrixA is known and
m <n.

Proof: (Proof by Contradiction.) According to the def-
inition of observability, (8) is observable if it has unique
solution. Assume we have non-unigssparse solutions and
d, ¢ # d, such that

{ y=Ac= Zf:l Ck; Ok, 9)
y=Ad= Zj:l dp,; 0y,
whereay,is the k;-th column of A. Easily to see

Zf:l Cr; Ok; + ijl(_dpj )apj =0 (10)

The left side of (10) is a linear combination of at mast
different column vectors. Becauspark(A) > 2s, any2s or
fess thares column vectors oA must be linearly independent.
Therefore (10) can never be true. The solution of (8) is uaiqu
An exhaustive search algorithm can find the unique solution.
It tests all of possible combinations efnon-zero entries of

x. Among all combinations

) = [kys -y TE.]

only the combination corresponding to the unique solutén

can satisfy the equation
Zj:l T, O, =Y (11)

The existence of the correct combination is guaranteed &y th

Sparsity prior therefore is referred to as the prior knowliniqueness of the solution. Since the combination nunibpr
edge about the maximum number of non-zero entries in tRefinite, the real solution can always be found within finite

unknown vector.

Definition 2 (Spark):The spark of matrix A is defined as

steps. This completes the proof. [ ]
Theorem 1 indicates that if the state vecidr has at most

the smallest possible number of its columns that are ligead non-zero entries, then it is possible to use not less than

dependent. [20]

Remark 2:For instance, « if in the matrix A =

independent measurements to estimatéf the corresponding
A satisfiesspark(A) > 2s. In other words, it is possible to

(a1, 02, @3], (@1, @), (@1, a3) @nd (e, as) all are linearly  estimate am-dimensional sparse vector with (2s < m <

independent, anfvq, az, ae3) are linearly dependent, thes
has spar. In general, for amn-by-n matrix A, spark(A) =

s, if all of its m x (s — 1) submatrices have full column rank
and at least one of itss x s submatrices is singular. Clearly,

for any matrix A without zero columns2 < spark(A) <
Rank(A) + 1.

C. Observability of Underdetermined Systems

Motivated by the example, the observation can be gener

ized to general underdetermined linear systems

(8)

Ymx1 = Amxn Tnx1

wherey € C™ denotes measurable output,e C" denotes

state variablesA € C™*" is a known matrix, andn < n.

n) measurements with proper measurement arrangements.

IV. STATE ESTIMATION BY SPARSITY MAXIMIZATION

Note that among all solutions to underdetermined system (8)
there is only one satisfyinfz||, < 3spark(A). Alternatively,
the sparsest solution is the unique solution when sparsity p
is applied. This leads to the following corollary:

Corollary 1 (The sparsest solution is uniquélith  the

al-~—", .
sparsity prior

1
lell, < spark(A)
the sparsest solution for (8) is also the unique solution.

Corollary 1 is applied to harmonic state estimation with the
sparsity prior of source distribution. Thus, the HSE prabie



to find the sparsest solutiaf while minimizing the residual The unique solution Wrong solution

|z — H#|. It is formulated as follows: T2 / %2 Q; Z
min T
i Iy 12 /\
subjectto ||z — Hzx||, <¢ > >
X 0 0
When measurement noises are negligible, (12) become: l * \/ X
sparse representation problem [20],
. O<p<1 — —
min ||z||, subjectto z = Hz (13) P p=1 p=2
x [IxIl, Il [xIl,

The observability of the underdetermined state estimagor i
guaranteed by choosmg a proper measurement mBfrsuch Fig. 1. lllustration thatl.; norm minimization can produce the unique solu-

that tion given byL,, (0 < p < 1) norm minimization problemming, .z, |z1|”+
spark(H) > 2s (14) |w2|”,st.d121 + poz2 =c.

wheres is the maximum possible number of simultaneous ma-

jor harmonic sources in the network. Moreover, the COMes3n of 1 norm minimization problems share the same solution.

of a solution can be checked by testing the sparsity Comd't'q:urthermore,Lo norm is approximated by., norm when

Il < spark(H)/2. | | P 0,
However, it is difficult to obtain the global optima of (12) \yhen measurement noise exists, (15) is replaced by (4).

by standard convex programming because the problem (¥} nymerical experiments show that the estimate from (4) is
has a combinatorial nature. The naive strategy used in t@pe under small model and measurement disturbances if th
proof of Theorem 1 for locating the harmonic sources is {Q,qerdetermined estimator isobservable.

test all possible comb|nat|0ns_o§f source location@ < s) . The optimization problem (4) can be cast into a standard
and choose the sparsest one with lower-than-threshotiligsi ;o4 programming problem (see Appendix for details),akhi

The drawback of the naive strategy is that even whes ., pe solved reliably by simplex methods or interior point
a moderate number, it has to test an exponential numbern%thods[ZZ]

potential combinations, which i8;_, (). For instance, when

s =5, n = 100, the number is around.9 x 107.

To avoid the difficulties involved in the sparsity maximiza- V. METERPLACEMENT

tion problem (12), there is a series of efforts (generalizted  From Theorem 1, the spark of measurement maftx
[21] and [20]) for finding an approximation of (12) by replactetermines the observability of the underdetermined Byste

ing x|, with other functionsg(z). In particular,g() = Proper meter placement is needed to make the system observ-
|, is favored due to its simplicity. The correspondingble. Fixing the number of simultaneous harmonic sources
constrainedZ; norm minimization problem is L, the meter placement problem is to find the subset: of
min |z||, subjectto z = Hzx (15) (k > 2L) candidate measurements that make the spark of the
x

corresponding measurement matrix greater thAnThus:
The conditions on the equivalence of (13) and (15) are

established by the following theorem [20]. m_iny Hycﬂo (18)
Definition 5 (Coherence): Coherencef a matrix A = subject to spark(H_y) > 2L
[a1,. .., ) IS dpfmed as the maximum absolute inner pro%herey is m, x 1 meter selectory; — 1 indicates that the
uct between unitary column vectors ith candidate meter is chosem, = 0 means metei is not
w(A) 2 max (o, ;) (16) chosen;H . is an Mme X 0 complex matrix, which represents
1<i#j<n the pool ofm,. candidate measurements.

Since optimal meter placement is not the primary focus of
Theorem 2 (Equivalence of (13) and (15)j: (13) has this paper, a simple greedy search method is used for meter

uniqgue solutionz* and placement [18]. When the number of meters is fixed, the
1 1 algorithm is:
o'l < 3 (1+ =5 ) 17) | |
2 1(A) 1) Deternmi ne the nmaxi mum nunber of
thenx* is also the unique solution of (15). si mul t aneous harnoni ¢ sources in the
Remark 3:A proof of this theorem is provided in [20]. network. Denote it as s;
This theorem indicates that we can uUsgnorm minimization 2) Establish the harnonic adnittance
(15) to replacely norm minimization (13) if the solution is matri x Y (h). Set nodal harnonic
sparse enough. Note that the sparsity bound condition (17) i injection as state variabl es x;
Theorem 2 is conservative. 3) Establish candi date neasurenent
The equivalence ofly-norm and L; norm minimization matrix H and conpute u(H);

is illustrated by the 2-variable example shown in Fig. 1. 4) Renove t he meters whose renoval
Intuitively, Fig. 1 illustrates that whefi < p < 1, the family causes the least increase of u(H);



5) Repeat Step 3 and Step 4 until the T 13 TL_ 14
pl aced nmeters are reduced to the
pre-set number;

6) Checki ng the extended observability 12
of H according to Theorem 1;

7) Repeat Step 1 through Step 6 for each
har noni ¢ or der;

8) Choose the meter group such that
the systemis s-observable for each
har moni ¢ orders.

11 10

The proposed meter placement algorithm is tested in the
IEEE 14-bus test system shown in Fig. 2. As a result of the
placement, a nine-meter group is chosen as shown in Fig 2.
The group measures the harmonic currents through line 1-5, 2
3,3-4,6-12, 7-8,9-14, 10-11, 13-12 and 13-14. The caledlat
spark of the corresponding complex measurement matrix is
10. As a result of Theorem 1, the underdetermined estimator

can handle up te < 10/2 = 5 simultaneous complex-valued ggNNEDIE'?\\Ig%IIQ?SS IEEE 14-BUS
harmonic sources without the presence of noises. ¢ HARMONIC METERS SYSTEM

VI. NUMERICAL EXPERIMENTS AND DISCUSSION Fig. 2. IEEE 14-bus test system with nine meters

IEEE 14-bus test system [19] is used to test the proposed
method. It is the benchmark system for harmonic study in TABLE |
three-phase balanced transmission networks. AssumedadksnoEXPERIMENT 1: ROOT MEAN SQUARE ERRORS BETWEEN ESTIMATED AND
except node 7 (it is a non-source bus) can have harmonicSIMULATED VALUES. Vi (%), Va, Ins(%) AND 14, ARE THERMS
source injections. Thus there are 13 suspicious nodesdebr e ERROR OF VOLTAGE MAGNITUDE VOLTAGE ANGLE, INJECTION

harmonic order, two harmonic sources are randomly placed in MAGNITUDE AND INJECTION ANGLE, RESPECTIVELY
the network. Only 9 meters, shown in Fig. 2, are used by
the proposed algorithm. They all take the measurements for [ 5th [ 7th [ Iith [ 13th | 17th | 19th [ 23rd [ 25th

branch harmonic currents. The meter placement scheme is the; (%) ]| 0.18 [ 0.13] 0.32] 0.19 [ 0.45] 1.50 | 0.11 | 0.69

result of the placement algorithm described in Section V. _faC) |l 005] 0.06 | 005 ] 0.05 [ 0.06 | 0.21 | 0.01 | 0.19
o A p . Var(%) || 0.03 ] 0.01 | 0.15 | 0.02 | 0.04 | 0.08 | 0.02 | 0.19

The artificial harmonic injections are treated as “actualy; =y 502 [0.01 [ 003 | 0.02 | 0.02 | 0.11 | 0.01 | 0.08

harmonic sources, labelefi®®?. “Actual” nodal harmonic

voItagesV(“Ct) are calculated by the harmonic power flow

using the “actual” harmonic injections.

The measurement data are generated by solving the Har-Experiment 1 (Noiseless Measurements)
monic power flow equation (1) with given harmonic admit- |n the experiment, we assume the measurement noise is
tance matrices and current injections. Measurement naiges zero. We set the tolerance parametef equation (4) to 0.001.
added if necessary. Measurement errors are modeled as i. Fgt each harmonic order, harmonic sources can appear at any
(independently and identically distributed) normal digition two buses except the non-source bus 7. The proposed state
with zero mean. estimation algorithm (4) is conducted for each harmonieord

The harmonic state estimation is repeated for each harmonige estimated and simulated injection magnitude and veltag
order to obtain the injection estimal&*") . Then the estimated magnitude are compared in Fig. 3. The root mean square
harmonic nodal voltagev(e“) are calculated using harmonicerrors (RMS) of voltage magnitud®, (%), voltage angle
power flow (1) and estimated current injections. Va(°), injection magnitudd (%), and injection angld 4 (°)

The state estimator only uses the measurements and ma&ach harmonic order are listed in Table I. From Table I , the
surement matrices. Other information such as the locatiasstimation errors are almost zero for voltages and injastio
magnitude and number of harmonic sources are unknowrbreover both the location and the magnitude of unknown
before state estimation is finished. The program is codgérmonic sources are identified correctly and precisely.
using Matlab 7.0 . Simplex method is used to solve linear
programming (25), see Appendix.

The root mean square errors (RMS) of voltage magnitu
Vi (%), voltage angleVy, injection magnitudel,, (%), and Experiment 2 is designed to test the stability of the progdose
injection anglel 4 in each harmonic order are used to compawggorithm in the presence of measurement noises. The mea-
estimated and simulated values, where the RMS injectisorement noises are zero-mean normal distribution &4th
errors are averaged by the number of major sources and Rbt&ndard deviation. Set the tolerance paramets0.001. All
voltage errors by the total node number. the other settings are the same as that in experiment 1. Two

& Experiment 2 (Noisy Measurements)
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Fig. 3. Results of experiment 1: comparison of estimated simdilated the magnitude of nodal harmonic current injestiand voltages in each harmonic
order with noiseless measurements and accurate model @@ranfor IEEE 14-bus test system.

TABLE I
EXPERIMENT2: ROOT MEAN SQUARE ERRORS BETWEEN ESTIMATED AND
SIMULATED VALUES. Va7 (%), Va(°), Ins (%) AND I4(°), ARE THERMS
ERROR OF VOLTAGE MAGNITUDE VOLTAGE ANGLE, INJECTION In experiment 1 and 2, the model parameters are assumed
MAGNITUDE AND INJECTION ANGLE, RESPECTIVELY accurate. However, in real power systems, the network har-

monic parameters can only be obtained in limited precisions

[5th [ 7th [ 1ath | 13th | 17th [ 10th | 23rd | 25th  Additionally, harmonic injections at all other buses are as
T (%) || 393 1.97 | 227 | 7.37 | 482 | 329 | 2.04 | 538  sumed to be zero except those having major sources. Strictly
Ta(®) 032 0.05] 057 | 274] 159 | 1.08 | 1.15 | 031  gpeaking, it is only partially true because some other buses

“2‘44((0?) 3:411; g:gz 8:3; 3:32 é:g% g:ig 8:23 i:iz may _have small but_ non-zero harmonic injections.

This experiment is to test the robustness of the proposed
method under less ideal conditions, including the existenc
of small modeling deviations, noisy measurements and small
non-zero sources.

H is constructed by disturbing each element Hf by
adding i.i.d Gaussian noises with zero mean and 5% standard

harmonic sources are placed in two randomly selected busesiation. & is used in (4) to obtain estimates. The trig
in each harmonic order. The proposed estimation algorithmis used to generate “actual” harmonic voltages and currents
performed to obtain injection estimate for each harmondeor “Actual” harmonic injections consisting of 2 major injeatis
Nodal voltages are calculated using the estimated injectiand 11 small injections are randomly placed at 13 buses with
afterward. Estimated and simulated the magnitude of nodsale injection at one bus. Note that the locations of major
harmonic injections and voltages are compared in Fig. 4. harmonic injections are different for each harmonic ordiee
magnitudes of the 11 small injections are generated by zero-
The results show that all harmonic sources in all harmonigean normal distribution with% standard deviation relative
orders are identified correctly with small differences frdma to the largest injection. Their angles are randomly chosam f
simulated values. Listed in Table Il, the RMS errors of vpdta 0° to 360° . Other settings are the same as those in experiment
magnitude V,, (%), voltage angleV,, injection magnitude 2. The measurement noises in Experiment 3 are generated in
I (%), and injection anglel4 in each harmonic order arethe same way as those in Experiment 2.
also small. Fig. 5 shows the comparison of estimated and simulated

C. Experiment 3 ( Inaccurate Model + Noisy Measurements
+ Small Nonzero Harmonic Sources )




= g
k3 =
= 5 0.2
© 01 e
£ S 0.1
£ 0.05 £
& o S
5 5

©
= <
o . S 0.2
£ " E
< 005 5 01
=
n 0 Ug) 0

3
= (]
£ 0.05 )
=
(=) 0 10 = 0.1
57 113 1719y bus number 0

Harmonic order
Harmonic order
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TABLE Il
EXPERIMENT3: ROOT MEAN SQUARE ERRORS BETWEEN ESTIMATED AND
SIMULATED VALUES. Vs (%), Va, In (%) AND I 4, ARE THERMS
ERROR OF VOLTAGE MAGNITUDE VOLTAGE ANGLE, INJECTION
MAGNITUDE AND INJECTION ANGLE, RESPECTIVELY.

To enhance the estimate accuracy, an additional leastesquar
estimator can be conducted after identifying the locatibn o
harmonic sources.

Although three-phase balanced power network models is
used in proposed algorithm and numerical experimentsether

is no fundamental difficulty to extend the proposed method
| 5th | 7th | 1tth | 18th | 17th | 19th | 23rd | 25th ., three-phase unbalanced systems. In unbalanced systems,
I (%) | 840 | 4.82 1 061 | 1261 065 | 4411 1621 425  }5th the measurements and the state variables become three-
T4(°) 171 233|086 0.71 | 1.39 | 0.28 | 2.34 | 2.22 A g
V(%) || 3.06 | 1.85 | 20.6 | 6.24 | 5.89 | 1.98 | 4.08 | 2.71 phase quantities. And the measurement matrix can be made
Va(®) 189]054] 130552 [ 154 ] 053] 214 567  according to the three-phase parameters and topology of the
unbalanced network.
Further work will focus on the following issues:

harmonic injection and voltage magnitudes. The RMS errors1) Fast analysis of S-observability and optimal meter place

of Var(%),Va(®), Ins(%), andI4(°) in each harmonic order ment;

are listed in Table IIl. The results show that all major hanico ~ 2) Efficient implementation of the proposed method in real
sources in all harmonic order are located correctly thohghet large-scale power networks;

are 12.58% and 16.23% injection magnitude errors in 13rd and3) Harmonic state estimation considering three-phase un-
23rd harmonics. balanced power network models;

4) Reduction of the effect of gross errors and modeling
. ) errors on estimate.

D. Discussion

The numerical experiments show that the proposed under-
determined estimator is capable of identifying the harmoni
sources reliably when considering noisy measurements and his paper proposes a systematic approach to identify
small model parameter errors. Moreover the calculated Ino@&d estimate harmonic sources in power networks when the
voltage phasors using estimated injections are very ctotieet number of harmonic meters is less than the number of un-
simulated values. Thus all state variables of the netwoek dfnown state variables. In such an underdetermined system,
obtained with satisfactory precisions. Since Theorem 1sig afull observability cannot be ensured via traditional olser
valid for overdetermined systems, our numerical resulat (n@bility approaches. It leads to the failure of existing teas
listed here) show that the proposed algorithm is able toiobtgquare based methods. First a new harmonic state estirsator i
accurate estimate for ill-conditioned overdeterminedesys constructed by considering nodal harmonic injections atest
while least square estimator fails and SVD estimator obtaiMariables. Then, by exploiting the spatial sparsity of hamro

VIl. CONCLUSION

a reliable estimate only for partial networks. sources, the underdetermined system can become observable
If replacing theL; norm in the constraint in (4) b¥, norm, under proper measurement arrangements. Then the estimatio
we have a new estimator: problem is formulated as a sparsity maximization problem
which can be solved efficiently by linear programming.
mﬂin [E2IR The proposed algorithm is tested in a three-phase balanced

(19) |EEE 14-bus harmonic test system. The results show that
the algorithm can obtain reliable harmonic estimate for the
: underdetermined system with 13 unknown sources and only 9
where scalar > 0 controls the tolerance to residuals. Another X
. : . - meters when small measurement noises and model parameter
variant[18] of (4) can be obtained if we use the Infinity norm ="~ " :
deviations appear. In comparison, least-square baseddeth
L to replacel;. ) . .
are unable to produce reliable estimates because theyreequi
min |||, the number of meters greater or equal to the total number of
- (20) suspicious buses, which is 13 in this case.
. By combining the new observability analysis and the spar-
where scalan > 0 controls the tolerance to residuals. Ousjty maximization algorithm, the paper provides a strict ap
simulation results show that (19f4)>(20) in terms of the proach for establishing a system-wide harmonic state agim
accuracy of estimate while all of the three locate harmonjg large power systems at low cost. Such a harmonic state
sources correctly. _ estimator can provide critical real-time information tarremt
(4) is preferred to (19) because the main task for HSE figarmonic related problems. The proposed method can also

to identify harmonic sources reliably and both (4) and (19e applied to enhance the robustness of low-redundancyfill
have the same capability for achieving that task. But (4) cadnditioned harmonic state estimation.

be solved efficiently and reliably by linear programming lehi

to solve (19) needs general convex programming. Moreover,
(4) is chosen instead of (20) because (4) gives more accurate
estimate while both of them can be solved effectively indine  The optimization problem (4) can be converted into a linear
programming. programming. Giving (4) as the following

subject to |z — Hezl||, < 72

subjectto ||z — Hz| <7

APPENDIX



(7]

ming ||,
subject to Irll, <e (21)
z—Hx=r (8]

By representinge andr by their positive and negative entries

respectively 9]

T = T,—T,
=Ty, —T, (22) 0]
Ty LyyTys Ty = 0
(21) takes the form
min Sy (@, +a,) 1y
Loy 9oy 3T, 5T
D=1 (ry,+ry) <e (23)
subject to z—H(z,—x,)=1r,—T, [12]
Ty LyyTyys Ty = 0
Define a(2n + 2m) x 1 vector [13]
y = [w::, :Bg, rg, 'PZ]T (24) 4
We obtain the equivalent linear programming
min, cly [15]
T
. dys<e (25)
subject to Fy==z [16]
y=>0
where [17]
c £ [11><'n.’ 11><n’ O1><m’ lem]T
d é [01><n’ Ol><n7 11><m7 11><m]
F é [ Hm><n _men Ame _Ame ] [18]
(26)
wherel is an all-one vector) is an all-zero vectorA is an [19]

identity matrix.
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