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STOCHASTIC CONTINGENCY ANALYSIS
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ABSTRACT

|
A probabilistic -formulation for the steady state The method has been developed to be incorporat-
ed in a transmission system planning model. It con-

contingency analysis is presented. The formulation

takes into account load and generation datauncertain- siders a linear approximation for the network equa-

ties and considers the occurrences of contingencies tions and uses compensation methodsltosimulate con

as random variables, Result s are obtained in a direct tingencies. The results provided by the stochastic-

caleulat ion and presented in a compact formin terms contingency analysis are basically expected values
" of expected values, standard deviations and confi- and standard deviations of line flows.

dence intervals.

In on-line applications the method proposed can
be useful in the calculation of corrective actions
required to maintain a system in a preventive state”.
Deterministic approaches !~10 to this problem comsid-
er all the possible insecure cases as constraints to
the problem which highly penalizes the economic op-

Applicaions of the method in transmission system
planning designs and on-line security calculations
are envisaged. The method is developed using a lin-
ear model was tested on a 22 node system. Results

of tests are included.
eration of the system or whatever the objective func -
INTRODUCTION tion maybe. This is because none of the prespecified
contingencies may occur although the solution is

found for the case in which any of them can occur.
With the proposed method contingencies are included
according to probabilities. A recent paper16 for-

i.e. line outage, generator outage etc. As a result mulates probabilistic algorithms which trade off
of the contingencies simulated, both transient and power system operating cost with system security
effects.

steady state responses occur, this paper deals only
with steady st ate results. FORMULATION

Contingency analysis is a valuable tool for a re-
liable planning and secure operation of a power Sys-
tem. It is a study of the system under contingencies

Stochastic load flow

The main objedive of a deterministic contingen -
* ¢y analysis is to determine every situation inwhich 4-5
- that

‘operating limits of system components have been vi- It has been shown in recent papers
_olated because of prespecified contingencies. As ‘the is possible to model statistically load and generation

mmber of contingencies to be simulated in a real input data uncertainties in a load flow problem and to
-System  is usually very large fast and efficient calculate the variances of all the system variables .
methods have been developed -3, Due to the random Some of the important results and assumptions will be

- Ocurrence of outages it seems more natural and shown below.
Practical to assign a probability to every contingency
and to obtain an overall uncertainty interval, for
gjtry variable of interest, due to the combined ef-
theirof all th? .cs)ntingencies "weighted" according to
o inc§>robab111’c1es'. This approach is flexible enough J = A it + E (1)
2 1o ude uncer.tamhes in 1(313:% and generation data
sults afstochastw %oad flow . Therefore the re- where
the uno a S’FOCbastlc contingency analysis combine

ilitieger“cam‘c ies of nodal injections plus the proba- A is a constant matrix
tion, Itofl occurrence of events in a single calcula-
models as been proved through tests‘, with linear v is the vector of observed or forcasted
aﬂalysi; that the' rjes'ults of a stochastic contingency ~ tities
many | » brobabilistically encompass the results of
Y load flows whose data have been perturbed by Xt

€rror .
S and contingencies. ~
€  is the noise vector associated with the ob-

served or forcasted quantities

The load flow problem can be described by a set
of linear equations as

quan-

is the vector of state variables (true values)

It is assumed that the errors will be randomly

I3 7
the IEE2E2.]1; A paper recammended and approved by distributed around zero and that the covariance matrix
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applying the least squares process to (1) the estimate
obtained is

oo t -1 -1t -1
2,( = (A CE A) A CE Z 4)
The normal load flow formulation has Zero
degress of freedom 5 hence is not possible to  obtain
any error filtering. T herefore equation (4) becomes,
~ -1
x = A"y (5)
The covariance matrix of X is obtained as 11
cg = @ il At (6)
Let z be a linear function of x
z = H x (7)

The covariance matrix of z can be written as

C. = H Cg H' (8)

Ny

This matrix contains all the information regard-
ing variances and covariances of system variables
i.e. line flows etc.

Compensation method

The compensation method is nothing more than an
application of the superposition principle by whichany
change in the transmission system i.e. addition or
removal of lines, can be simulated by suitable injec-
tions into the system, without the removal or addition
of any lines. This method has proved 2-3 to be very
efficient in the simulation of contingencies.

Compensating injections in a system like (1) can
be obtained as

=D Al p+rl)yl pt aly (9)

~

Ye

~

where

D 1is a connection matrix that simulates the con-
tingenci es, each colum has only two non-zero ele-
ments i.e. 1,-1. There is a column for every line

outage. '

term
simu-

E is a diagnonal matrix, each diagonal
equals the impedance of the line required to
late the change.

It is important to note in (9) that the compensa-
ting injections are expressed as a linear function of
the original injections and that yc is also a random
vector.

Probabilistic line outage simulation

Based on the compensation method principles a
random vector (y,) of nodal injections is. used to
simulate contingencies probabilistically. It is
defined as

y, = 0 with probability (1-p)
~ . i

~

Yo with probability (pi)

NS
i

~ ~

p; is the probability of the event which involye
S

the contingency simulated.

It can be said that there is a probability (p3) that
the compensating inyections, (y.), will appear i th
system and a probability (1-pj) that any compensatj e‘
injection is present, A

It is assumed that the probability of line Outage
occurrence is known and that every outage is statistj. |
cally independent. There fore the probability of an
event which involves an outage can be obtained readily
i.e. product of probabilities.

Estimated line flows

‘,

Real power line flows can be expressed as alinear'

function of voltage phase angles using an approxit,

mated model 13, Estimated values for these flows |
that include the effects of contingencies and load )
and generation uncertainties can be cbiained as |

follows.

Estimated line flows without any contingency con -
sidered can be written as

-~ ~
F = Y, & (10)
where
Y;, is a matrix that relates real power line

flows and phase angles, it is made up of ele
ments of the admittance matrix

: !
The estimated change in line flows for very cor’

tingency can be expressed as
!

A~ A <1
AF; = Yy, Ax; it
where
- 1 (12)
A x = A yzi
hence v
A : }
_.1 '
Axi = Ay, pi 1)
subscript i refers to the ith contingency
Therefore total estimated line flows can be ¥
ten as
~ A ~
(4
Fi = F +§ AF;



Line flow variances
Line flow variances can be obtained using the lin-
or relationship between the total flow in a line Ff_J s

and the line flow without outages ¥; , and the
 change in line flow due to contingencies AFj/i

let us define

g=(111,,.1)
g and

AFJ = (F,] AFJ/I AFJ/Z PES 'AFJ/H)

~

:h_ence, th can be written as

F;, = gAFt (15)
j ~ o~
' therefore the variance of Ft can be obtained as
' j
Var (Fy ) = gCAF gt (16)
J ~ ~ ] ~
where
CAF‘ is the covariance matrix of the random
~ J vector A Fj

A line flow without any contingency considered
- carbe expressed in terms of nodal injections as

Fy =y, Al y =y ¥ 1
~ ~ ~ ~
. where
zL is a row vector of Y in (10)

hence the variance of F; can be obtained as

J
Var (Fj) = ypo Cg YE& (18)
r~ ~J

b T-he change in line flow due to a contingency can
€ written, from (11) and (12), as shown below.

_ -1
AFJ/I = YL A yzi (19)
~S ~
hence
-1 . s
AFj/i = 1, A yci with probability  p;

AFj/i = 0 with probability 1 - p;
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let

[ - -1
AFg; sw A v eo)

~

therefore the variance of AFj/i can be obtained as

i 2
Ver (AF;;;) = p; Var (AEG;) +p; (1-py) (AFj7; )% a1)

The variance of AF;f/i can be written in terms
of CE as follows. Let us write (9) in a compact form

as

Ve, Gi y (22)
~ ! ~
then (20) can be written as
AFS,. = At gy (23)
ili T L i
_ -1
let b =yLA TGy
"~ 7~
hence ¢
c
Var AFj/i =Y Ce Yy (24)
~ r~

All the diagonal terms of CAp; have beendefired
in (18), (21) and (23). Most of the‘off-diagonal terms
are zero or of a negligible value due to the line out-
age independence assumption and because of the mul-
tiple product of probabilities involved.

The covariance calculation between Fj and
AFj/i can be written as

c
Cov (Fj :AFj/i):pi Cov (Fj ’AFj/i) (25)
from (17) and (23)

c
AFj;i = om Gi v
~

~
therefore

Cov (Fj, AFJg/i) =ya Celya Gi)lc (26)

It is important to note that although the number of
contingencies can be very large, the probability of n
simultaneous line outages is negligible for n> 2, so
the number of events to consider is reduced.Appendix
I shows simplified expressions for line flow estimated
values and variances considering only single outages.

Line flow confidence limits

4

Although is possible, in special cases 1 , to ob-
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tain the probability density function for line flows,

in general this is not always possible nor convenient
because of the large amount of work involved in the
computations. However the variance of a linear com-
bination of random variables whose covariance matrix
is known can always be calculated regardless the type
of distributions involved., The variance of a random
variable gives an indication of the dispersion of the
probability density function around the expected value.
Even in cases where the actual shape of the density
function is not available the Chebychev inequality 15
gives a bound on the probability that a random vari-
able will be within k standard deviations of its mean.
Hence the standard deviation can be considered as a
rather natural unit for the probability law of a random
variable. Line flow variability was obtained in terms
of standard deviations for a probability based on the
Chebychev's bound.

Tests

A 22 node system was used to test the proposed
method. This system is a planning alternative for the

Mexican 220/400 KV network, Appendix II  contains
all the test system data.
A Monte Carlo simulation program was devel-

oped in order to have a reference to compare the re-
sults of the stochastic contingency analysis program .
It was considered in the simulation that line outages
were statistically independent. Line outage probabil-
ity was assumed proportional to the transmission line
length. Standard deviations for load and  generation
input data values were assumed as 3.33% of the input
data values. Table I presents some of the results ob-
tained. It is important to point out that although the
stochastic contingency analysis results were obtained
including only single line outages, the standarddevia-
tions obtained by both methods are very close, this
is because the contribution of simultaneous outages to
the variance calculation has very small effect due to
the product of probabilities. Line flow standard de-
viations for the case in which line outage = probabili-
ties are zero i.e. line flow variability due to the load
and generation uncertainties, are shown in table II. A
comparison between tables I and II show a small ef-

fect in the estimated flows and a substantial differ-

ence in the standard deviations due to the line outage

occurrences. Table III presents results for the case
in which line flow standard deviations are due only to

line outages i.e. nodal injection variance is zero.
Line flow variability is shown in all the tables for a

90% probability bound. It is important to note  that

some maximum line flow values will not be included

within the variability shown, this is becausethe prob-

ability of occurrence is very small.,

CPU computer time required to perform the sto-
chastic contingency analysis was 8 seconds on a IBM
370/1145 computer. The Monte Carlo simulationtook
36 minutes (10000 cases) to obtain comparable resuls.

Future developments

The stochastic contingency analysis presented
will be incorporated into a transmission system plan-
ning modell , it will replace a maximum flow algo-
rithm and a Monte Carlo simulation program that

were jointly used to obtain loss-of load expected val. .
ues.

The use of a non-linear model is under investig,.
tion and will be reported in the future.

TABLE I

Power flow estimated values and standard deviationg
from a stochastic contingency analysis (S.C.A)  ang_

Monte Carlo simulation program (M.C.5). Results
include line outage probabilities and nodal injections
uncertainties
Line Estimated Standard Line Flox
Yiow (MW) | Deviation (MW) [Variability
S.C.A M.C.s|S.C.A M.C.S (MW)
13- 2{161.9 161.6 33.1 33.0 | 102.8
5- 41 35.8 35.8 6.1 6.4 18.9
6- 81421.4 421.5 71.8 7.1 222.6
8-151{306.8 | 307.1 60.2 61.6 | 186.6
11-10|146,0 145.9 39.4 40.9 | 122.,1
12- 11278.,6 278.1 47.3 50,1 146,.6
1-11{129.1 128.6 33.1 33.8 102.6
16-171229.0 229.1 36.3 37.8 112.5
18-16 64.7 64.9 20.6 21.6 63.9
20-19 {477.9 | 477.6 74,5 76.1 | 230.9
19-18 {322.6 | 322.2 65.6 66.0 | 203.4
18-171260.9 | 260.1 41.5 43.0 | 128,5
21-171502,5 502.3 72,0 75.6 223.2
15-21 1583.9 | 583.5 125.6 125.1 | 389.4
1-14 ] 47.7 47.5 8.2 8.5 25.4 |
TABLE II
Power flow estimated values and standard deviations

from a S.C.A and M.C.S. Results include only nodal :
injections uncertainties

Line Estimated Standard Line FIOWW"
Flow (MW) | Deviation (MW) |Variability
s.C.A M.C.S}S8.C.A M.C.S (MW) |3

13- 2159.5 159.8 14,6 14.9 43.8

5- 4 36.0 36.0 2.1 2.2 6.3

6~ 8 418.5 418.6 21.8 22.4 65.4
8-151303.5 303.4 28.1 25.9 84.3
11-10| 145.2 145.1 17.2 16.4 51.6
12- 1(276.9 276.8 17.6 17.3 52.8
1-11]130.7 130.7 17.3 17.1 51.9

16-17] 228.9 228.7 20.9 22.0 62.7

18-16{ 63.9 63.8 11.0 10.9 33.0

20-19478.,9 | 479.0 18.4 18.7 55.2

19-18] 318.5 318.6 31.4 31.9 94.2

18-17] 259.6 259.6 23.6 25.1 70.8

21-17] 500.6 -f 500.5 23.3 20.9 69.9

15-21 | 573.1 573.1 28.9 26.6 86.7

1-14| 47.5 47.6 3.7 3.8 11.1
CONCLUSIONS

Load and generation uncertainties and pr'obabili; ‘
ties of outage occurrence can be included in a singlé ;
formulation that allows the calculation of estimate




values, variances and confidence intervals for real
- power line flows.

The number of contingencies to consider in the
- gtudy is limited, because sirnultaneous outages involve
multiple products of probabilities which cause that
. many terms in the calculations are negligible. It was
- found in preliminary tests on a 22 node system that
only single contingencies need to be considered to ob-
 tain results comparable to those obtained by Monte
Carlo simulations,

Stochastic contingency analysis results can be ef-
ficiently used in Power System planning studies as
they are expressed in probabilistic terms,

Considerable computer time savings can result
' from the use of the proposed method, compared L0
" the time required by the simulations often used in
- planning studies.

TABLE III

: Power flow estimated values and standard deviations
fromaS.C.A and M.C.S. Results include only
line outage probabilities.

Line Estimated Standard Line Flow

Flow (MW) Deviation (MW)|Variability
S.C.A M.C.S. S.C.A M.C.5| (MW)
13-2 [161.9 161.7 29.5 28.8 88.6
b1 5-4 35,8 35.8 5.8 5.4 17.3
6-8 [421,4 421 .6 68.3 69.0 | 204.8
13-151306.8 305 .9 53.0 52.8 } 158.,9
11-10(146,0 146 .1 35.4 35.7 | 106.2
12-1 1278.6 278.5 43.9 43.2 | 131.5
1 :-111129.1 129.1 28.0 7.8 84,2
16-17{229,0 229.2 29.6 29.5 88.9
18-16| 64.7 64,5 17,3 17.3 52.0
19-201477.9 477 .8 72.1 70.9 | 216.3
[19-18)322,6 322.5 57.3 56.6 | 172,0
18-17|260.9 260.8 34.0 34.2 | 101.9
Bl-17]502.5 502.6 68,0 69,1 | 204.2
15-21{583.9 583.,7 122.0 120.4 | 366.2
1-14| a7.7 47.8 7.3 7.2 21.9

APPENDIX I

_ Assume a system with 3 lines and consider the
following notation.

v Lines in  Lines out Event Estimated
Service  of service  probability flow
02,3 - pa=(1-p1)(1-pa)(1-pg) Fgr
2,3 1 pp, =p1 (1-pg)(1-p3) F;
1,3 2 pe=pa(l-py)(1-p3) Fo
;’ 2 3 pd=p3(1—p1)(l—p2) F3
" 1,2 pe=p1p2(l-py) Fr,2
; 1,3 pr=p 1P3{1-p2) 1,3
: 2,3 Pg=P2p3(1-py) Fog 3
1,2,3 P, "P1PoP3 ) F112J3
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The total estimated flow in line 1 can be

written as
Fi =Py Fop ¥ P, Fy #Pc Fg 7pq Fg +pg Fy o+
prFy 3 *pg Fa 3 +p, Fr 2,3 (I-1)

Equation (I-1) can be expressed in terms of the
estimated flow without outages (Fg4) as

Fi=pg Fgp tppFgr + AFy) +p (Fge+ A Fy) +
PqFgr + A Fg) +p (Fgp A Fy o) +
PrFgp + A Fy 5) +p (Fgp+ AFy 5) +

ph(st+AF1,2,3> (I-2)

expressing F, in terms of the line outage probabili-

ties

Fy =Fgf-p; For + (py - Py Py ¥y PaP3) AFy+
(p3 - P3 P; - Pg Py * P; Po P3) A Fg +
Py Py = Py Py P AFy 5 (1-3)

neglecting products of probabilities

Fy =@ -p)) Fgp+py AFy +pg AF3 (1-4)

The variance of Ft can be expressed as

Var(Fy) = p, BE)” +p, BEF)? +p, BFy” +

2 2 2
pq E(F3) +p, E(Fl,z) +tpp E(Fy 3)" +
2 2

2
B BTy, 5) e BTy 5 51 - 070"

expanding each term in (I-5)

Var (Fy) = P, [Var Fgp + (st)zj + Py [Var Fpo+
®)% ] +p, [varFy v )" ]+
Pq [ Var Fq +(F3)2 ] + P L Var Fy
+(Fy 2)2 ] + by E Var F 3+(F1’3)2]
+py [Var Fy 5+ @y ) Jimy [VarFy 5
w7 5 27 - @)? (1-6)

expressing (I-6) in terms of the variance of Fg¢ and
simplifying terms

2
Var(Fy) = Var Fgp + (pb+pe+pf+ph) [ Fgp) -
Var Fet]t p, [ Var ATy +2Cov(Fyp, AFp)+

(A Fz)zj + Py EVar A Fs +2Cov (Fy, AFB)-F

(AFH? |+
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+ pg [ Var AFy 5+ 2Cov(Fgy AF2,3) +

(AFp 92 -, - Fgp? -7

neglecting products of probabilities and  simplifying

(I-7) becomes
2 .
Var Fy = (1-py) Var Fge + pl(st) + Py [:Var AFy +
2
2 Cov(Fgp AF H(AF3) ]+ ps [VarpFg +

2 Cov(Fgr, AF3)+<.,3F3)2] (1-8)

APPENDIX IT

Test System Line Data

Test System Load and Generation Data

Node

Load
W)

Ceneration | Node

D

Load
(M)

Generatjq,
(i)

HOW@ITOUL&EwN

e

SLACK 12 200 g3
175 230 13 433 7o8
60 631 W 195 100
115 43 15 267 953
251 200 16 bug Sy
363 443 17 623 102
267 79 18 1us 158
716 712 19 851 %
145 107 20 209 1671
1108 392 21 198 360
1104 953 22 98 20

3545

Line Nodes Resistence Reactance Line (utage
Connected p-u. p-u. Probability

1 2 3 .0067 .0u69 .010

2 2 3 .0067 .0u69 014

3 5 6 . 0561 .3901 .010

4 5 6 .0561 . 3901 .018

5 7 8 .0u08 .2630 .010

6 7 8 .0u08 .2630 .015

7 8 15 .0362 .0983 .010

8 10 11 .0137 .0916 .027

9 10 12 .0068 0747 .010
10 12 1 .0060 .0755 .010
11 11 1 .0080 .0509 .025
12 16 17 .0039 L0514 .010
13 16 18 .0053 .0335 .022
14 19 20 .0026 .0367 .018
15 13 19 .0040 .053u .010
16 17 18 L0041 .0540 .017
17 1 17 .0017 .0222 .010
18 1 17 .0016 L0131 .014
139 1 17 .0063 .0395 .026
20 21 17 . 00uL .0362 .018
21 21 1 .04l . 0540 .010
22 21 15 .0095 . 0645 .010
23 22 € .0050 . 034y .010
24 22 6 .0050 . 034k .010
25 1y 1 .0357 .2250 . 010
26 13 2 .0075 .0619 .010
27 13 2 .00875 .0619% .025
28 Y 5 .0197 L1642 .010
29 Y 5 .0197 L1642 .016
30 6 8 .0c81 .0557 .010
31 6 8 .0081 .0557 .017
32 8 3 L0240 .1633 .010
33 8 15 .0362 .0983 .021
34 10 11 .0045 . 0606 .010
35 12 1 .0060 .0755 .019
36 11 1 .0038 .0539 .017
37 11 1 ,0073 .0u98 .010
38 16 18 .0053 .0335 .010
338 19 20 .0026 .0367 .016
uo0 19 20 .0027 .03u8 .010
b1 18 19 .00u0 L0534 .023
U2 17 18 .0041 .0540 .010
u3 1 17 .0017 .0222 .022
[1h) 1 17 .00u0 .0322 .021
45 14 1 .0357 .2250 .01y
ug 21 17 .O0LY .0362 .010
y7 21 15 L0040 .0521 .023
ug 22 3 .0050 .0337 .010
43 22 3 .0050 .0337 .019
50 8 9 L0240 L1633 .010

L

(1

(4)

(6)

—
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