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Abstract: Many techniques have been proposed to solve the load flow problem probabilistically. The great
majority have only accounted for load-and generation data uncertainties, and therefore, the network configu-
ration has been considered fixed. So far, the effects of the configuration uncertainties due to the probabilistic
nature of the network have not been deeply analysed. The paper presents a new method for obtaining a
probabilistic load flow solution when network outages are modelled as a random variable. The proposed
technique is applied to a typical power system and the results discussed.

List of principal symbols

= network configuration
h = load flow functions
active power
reactive power
voltage magnitude
state random vector (voltages and angles)
input random vector (power injections)
output random vector (power flows)
unavailability
voltage angle
expected value
standard deviation
variance scaling factor
= partial derivative
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1 introduction

Probabilistic load flow (PLF) is a subject of continuing
interest [1-13]. The usefulness of the PLF technique is due
to its ability to assess adequacy indices such as the prob-
ability of a line flow being greater than its thermal rating,
and the probability of a busbar voltage being outside its
operational constraints. These indices are obtained when
the probabilistic nature of load, generation and network is
analysed for power networks operating under steady-state
conditions. This analysis can be carried out by Monte
Carlo simulation (MCS) techniques, analytical methods, or
by a combination of both.

Theoretically, there is no constraint for the MCS
method. For instance, the exact nonlinear power flow
equations can be used, statistical dependence between
loads and generation can be easily considered, probability
of different network configurations can be taken into
account etc. On the other hand, the MCS method requires
a large number of trials to ensure results of reasonable
accuracy. This means that a huge amount of storage and
computing time is necessary. To reduce the computational
effort, linearised power flow equations can be used when
-the input uncertainty level is not very large and the degree
of nonlinearity in the load flow functions is reasonably
small. ‘
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Whereas MCS methods only use the law of large
numbers to justify their results, analytical methods use
much more elaborate techniques and are based on prob-
ability theory. Owing to the inherent complexity of the
analytical solution, the following assumptions have been
considered by most PLF algorithms:

(a) linear load flow equations

(b) independence between input parameters

(c) constant network configuration.

Therefore the accuracy of the analytical methods is also
limited because of the assumptions used to overcome the
inherent difficulties. The main analytical methods can be
summarised as follows.

The use of linearised power flow equations about an
expected operating point [1-6] can be considered, in terms
of accuracy, to be a reasonable assumption for a wide
range of input uncertainties. As these uncertainties become
very large, a more elaborate algorithm [7], or even an
MCS technique using the exact load flow equations,
should be used. Assumptions (a), (b) and (c) mean the PLF
solution becomes a sum of independent random variables
weighted by sensitivity coefficients. Consequently, the solu-
tion is obtained by a convolution process which can be
efficiently carried out using fast Fourier transform algo-
rithms [14]. However, there are various reasons for correl-
ations to exist between nodal powers [8-10]. For example,
correlation between generation exists because of the need
to balance the active system power. This balance is
achieved according to the utility’s operating policy which
includes economic dispatch, redispatch and load shedding.
A direct analytical solution to this was not realisable
owing to the complexity of the problem, because even a
very simple criterion of economic dispatch means that an
extra nonlinearity must be included in the PLF analysis.
This solution was efficiently achieved by combining the
convolution method with MCS techniques using the linear
power flow equations [10]..

The network configuration is assumed to be a fixed par-
ameter in the great majority of PLF methods. Consequent-
ly, the probability of the basic configuration is assumed to
be unity, and therefore the probability of losing any
network element, such as transmission lines, transformers
etc., is neglected. However, for a given operating point
(load and generation strategy), there are several possible
network configurations. Therefore assumption (c) may be
considered unrealistic, particularly when the power uncer-
tainties are small.

So far, only a few formulations [11-13] have considered
the effects of network outages in the PLF analysis. Refer-
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ence 13 did not assign a probability to every contingency,
and so it is not possible to. obtain an overall uncertainty
interval, for every variable of interest, owing to the com-
bined uncertainty effects from nodal powers and network.
It will be shown in this paper that the probabilistic model
used in References 11 and 12 have deficiencies. Also, these
References have used a DC model for power flow equa-
tions, which is another restriction.

A new PLF algorithm is proposed in this paper that
accounts for the probabilistic contingency effects of
network elements.

2 Problem formulation

Any change in the network of power systems will alter the
set of functions relating inputs and outputs. Therefore each
probability density function (PDF) from the output
random vector will change and so will the technical and
economic decisions. Two basic sources of variation can be
identified. The first is the variation in the actual par-
ameters defining lines, transformers or other components.
For example, the inductance of a line changes with tem-
perature which is a random variable (RV). These changes
are normally assumed to be negligible so that the par-
ameter values of the network have a probability equal to
unity. The second source of variation is associated with the
availability or unavailability of components such as trans-
mission lines, transformers, switchgear etc., as all are
subject to outages due to faults and maintenance. In terms
of planning, such outages may be satisfactorily modelled as
RVs. Consequently each network configuration has an
associated probability; ie. it can be considered as an RV
which follows a discrete distribution. Therefore, for a given
configuration c, the load flow equations are

Y =g.(X0) 1)
Z, =h(X) -
where
Y = input random vector
X, = state random vector for configuration ¢

Z. = output random vector for configuration ¢

c

d., h. = load flow equations for configuration c

Linearising eqns. 1 and 2 around the expected value region
[5, 7], and considering configuration c, gives

X.=X.+A7Y €)
Z.=Z. +B,Y - )
where
X, =X2—4.7Y°
Z,=7Z°—B,Y°
-1

Jh
B =] — A
¢ [aXc X‘_=Xf:| ¢

Vectors X, and Z, are deterministic linear conditions. A4,
and B, are sensitivity coefficient matrices for configuration
¢. Vectors X° and Z° are obtained from a conventional
power flow using as input the expected value of vector Y,
ie. E{Y} = Y°, and configuration c.

As the main objective of this work is to model probabll-
istically the network contingencies, the components of the
input vector Y are assumed to be independent
[assumption (b)]. Therefore, for a given configuration c,
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the PDFs f5(x) and f;(z) tor components X ana z oI Vectors
X and Z, respectively, are evaluated by convolving the
input PDFs, weighted by sensitivity coefficients obtamed
from matrices 4, and B,.Thus

Jdx) = N(X¢, 0) » fi(ai 1) * fr(a5Y))
Cx Sulan Yo (5)

L[0T * f,(05Yy)

42 = N(Z:., 0) »

" fulbn X)) (6)

The vector X is interpreted as a normal random variable
N(, ) with expected value X, and standard deviation
equal to zero. The same applies to Z, .

Considering each possible network configuration to be
associated with a probability of occurrence, the problem
consists of combining statistically the PDFs obtained from
eqns. 5 and 6.

3 Methods of solution

First, the formulations proposed in Reference 11 and 12
are briefly analysed to identify their main deficiencies. This
analysis is followed by the proposed formulation.

3.1 Formulation 1 [11]

This formulation uses a DC model for the power flow
equations. The simulation of different contingencies is
carried out through the compensation method. Thus, any
change in the transmission system, i.e. addition or removal
of lines, can be simulated by suitable injections into the
system, without the removal or addition of any lines. The
DC model is the first restriction of this formulation
because only the variables related to the active power
(voltage angles and active flows) are considered.

The major defect of this formulation is the probabilistic
model used for the contingencies. Only first-order contin-
gencies are considered and the final active power flow F in
a given element e is a weighted summation of flows in this
element for each contingency analysed; i.e.

F:(L—iu)Frgiuji ™)

i=1
where F, = flow in the element e with the basic network
configuration (no outage case), F; = flow in the element e
when element i is on outage, u; = unavailability of element
i and n = number of clements (transmission lines and
transformers).

The weights used in eqn. 7 are, in fact, approximations
for the probabilities associated with the basic configu-
ration p, and with the configuration considering the
outage of element i, p,, because

po=TI-w=1-Tu ®)
pi=w I1 0 —w) =~ | ©)

Using approximations 8 and 9, the space of all configu-
rations considered by formulation 1 has a probability
equal to unity which is very desirable. On the other hand,
from the statistical point of view, the approx1mate values
for p, and p; used to define F in eqn 7 can give incoherent
results under some conditions. To illustrate this point,
Table 1 shows the comparison between the exact and
approximate probability values of the basic configuraticn,
considering network elements with the same unavailabality.
Therefore, for a system with 1000 elements each having
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Table 1: Comparison between P, (exact) and p, (formulation
1)

n 10 100 1000
u 10-2 10-®* 10-2 10-* 10-2 10-3
Exact 0.904 0990 0.366 0.905 4.3 x 10-5 0.368
Formu-

lation 1 0.900 0.990 © 0.900 -9 0
nxy 0.100 0.010 1 0.100 10 1

u = 1072, the probability of occurrence of the basic con-
figuration, according to formulation 1, is equal to —9,
which is not possible. Although not discussed in Reference
11, one condition to validate the above probabilistic model
is that the product of the number of elements » and the
unavailability u must be significantly smaller than 1.

Finally, formulation 1 also assumes that the PDFs for
the power flows are normally distributed, which has been
shown to be an unreliable assumption [ 5].

3.2 Formulation 2 [12]

This formulation also uses a DC model for the power flow
equations. The contingency evaluation is carried out in a
very efficient way, similar to formulation 1, although the
efficiency is facilitated by the simplicity of the DC model.

The probabilistic contingency model has the following
characteristics: (i) all first and selected second order
outages are considered, and (ii) the exact probability value
for each configuration is used, assuming independence
between outages. Any type of distribution can be used to
model load and generation uncertainties. The final PDF S
for the components of vectors X and Z are computed
through a weighted summation of the density functions
obtained for each analysed configuration.

It should be noted that, because the exact probability
values for the configurations are used, and because a
limited number of contingencies are analysed, the subspace
§" of these configuration states summates to a probability
less than unity, if no compensatory action is taken. Table 2

Table 2: Probability of {8’} - formulation 2

L\ 10 100 1000
0.1 073610 3.2169 x10-% 1.9596 x 10-44
0.01 0.99573 0.73576 4.7924 x 10-4
0.001 0.99996 0.99536 0.73576

shows the probability of S for some pairs (u, n), assuming
the same unavailability for all lines and considering first
order outages only. Therefore, for a system with 1000 ele-
ments, each having u = 0.01, the area under the probabil-
ity density curves, obtained through formulation 2, is equal
to 4.79 x 10™* due to the truncation of network states.
Therefore, if only first and selected second order outages
are analysed, a number of possible configurations will be
neglected. This information should be included in the con-
tingency probabilistic model to allow the statistical results
obtained from this analysis to be easily interpreted. In fact,
it was suggested in Reference 12 that all second order con-
tingencies plus higher orders should be included to mini-
‘mise the truncation effects. It was also suggested that
common mode failures may have to be considered.

3.3 Proposed formulation

The proposed formulation is an extension of formulation
2, in which the DC model is substituted by an AC linear
model described by eqns. 3 and 4. Also, the probabilistic
‘model of contingencies is structured in a way which com-
pensates for the truncation effects.
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Consider S to be the space of all possible system con-
figurations c, and p, the associated probability of each con-
figuration S, . Thus

§=8,US,U---US.U---US, (10)
It is not possible for two or more configurations to exist

simultaneously; therefore the events S, to S, are mutually
exclusive:

t ) .
ps = probability{S} = Y p. =1 (11)
c=1

Eqns. 5 and 6 show how PDFs for components x and z
from vectors X and Z, respectively, are evaluated condi-
tioned by the network configuration c, ie. by the event S,.
As all events S, are mutually exclusive, then the final PDF
for each variable x or z is given by

169 = ¥ S50 (12
5= 3 B 0 (13

Eqns. 12 and 13 take the network changes into account
and show that the final solution is obtained from a
weighted sum of density curves. Appendix 8.1 shows how
the expected value and variance of x and z can be evalu-
ated.

The crucial point is the evaluation of the probability p,
associated with each configuration. As proposed in formu-
lation 2, p. can be calculated from the unavailability u; of
each element i of the network. This is done by enumerating
all physical network states. Therefore, for a given network
¢, the probability p. is given by

po=T10—u[ly (14)
i=1 j=1

where
n, = number of elements available
n, = number of elements unavailable

Clearly, the analysis of all possible network configurations
is impracticable for real power networks due to the huge
amount of computing involved. Therefore, some criteria
have to be used to reduce the number of analysed configu-
rations. Usually, these criteria consider simultaneously
those contingencies more likely to occur and their impact
on the system operating point [15]. Although this pro-
cedure minimises the truncation effects, the adequacy
indices obtained from this analysis have to be regarded as
optimistic values. These indices will become more realistic
by increasing a well selected list of contingencies.

As the number of networks to be considered is reduced,
the probability p,. associated with subspace S’ which con-
tains all the analysed networks will be less than unity.
Considering that §’ is an adequate approximation for
space S according to the state truncation criteria, the pre-
vious probability value p, associated with each configu-
ration ¢ can be approximated to p. as follows:

pé = pc/ps’ (15)

This ensures, for the ¢ network configurations analysed,
that

_leé =1 (16)

Finally, the contributions of the proposed formulgtion in
relation to formulations 1 and 2 are summarised as

follows:
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(i) The DC power flow model used in formulations 1
and 2 is extended to an AC linear power flow model, prop-
erly defined.

(i1) The approximation used for the probabilistic contin-
gency model in the proposed formulation is more consis-
tent from the statistical point of view than the one used in
formulation 1.

(iif) Although the probabilistic contingency model used
in the proposed formulation is as precise as that used in
formulation 2, the statistical interpretation of the results
obtained through the proposed formulation is more ade-
quate.

4 Results and discussions

The probabilistic system data used to demonstrate the pro-
posed method are shown in Appendix 8.2. Such data were
simulated keeping the original characteristics of the IEEE
14 busbar system.

Two distinct analyses were carried out and the results
are shown and discussed as follows. The probabilistic con-
figuration data shown in Appendix 8.2 are only used in
analysis 2.

4.1 Analysis 1
This is a sensitivity analysis for the random vectors X and

Z in relation to load, generation and network uncer-
tainties. The load uncertainties are increased by a multi-
plication factor p [5, 7] which takes values 0
(Y = deterministic), 1 (Appendix 8.2), 3 and 7. The unavail-
ability u is assumed to be the same for all network ele-
ments and changes from 0 (fixed network) up to 1071
Only first order contingencies are considered, and conse-

quently a correction factor is used to compensate for the
state truncation. Table 3 shows the network probability for
the basic configuration (no outage case) and for the first
order contingencies.

Table 4 shows the results (u = expected value and
o = standard deviation) for five typical variables, using dif-
ferent values of p and u.

An important ‘conclusion from this analysis is that the
configuration uncertainties are practically absorbed by the
input random uncertainties, when these are large (p = 7).
Therefore, the element outage effects of a network have to
be carefully analysed, particularly in operational planning,
because at this stage the load uncertainties are generally
small. Although this is not a general conclusion, it should
be valid for the great majority of existing power transmis-
sion networks.

4.2 Analysis 2
The network probabilistic data described in Appendix 8.2
were used. Each configuration has an associated probabil-
ity. It can be seen that most contingencies are of first
order, but some of second and third orders are also con-
sidered. A truncation factor has already been used. The
criteria used to limit the number of network configurations
to be analysed are not discussed. Although this contin-
gency list is relatively small compared with all possible
system configurations, it can be considered sufficient for
illustrating some useful results and interesting effects.
Three cases are analysed and summarised in Table 5
and in Figs. 1, 2 and 3. In the first case (AY), only the
uncertainties in the input vector are considered and- the
network is kept fixed with no outages. This is the conven-
tional algorithm of probabilistic load flow. In the second

Table 3: Probability of configuration against u

U
Configuration 0 10-4 10-3 10-2 10!
Basic 1 0.9980 0.9804 0.8320 0.3100
First order 0 1.0x10-4 9.8 x10-4 8.4x10-3 3.5x10-?
Table 4: Sensitivity p, o against v against p
Variable u U o
p=0 p=1 p=3 p=7
0 -12.83 0 0.93 2.72 6.34
10-4 -12.83 0.34 1.02 2.77 6.37
0, , degrees 10-3 -12.88 1.02 1.41 2.96 6.49
10-2 -13.28 2,94 312 417 7.44
10-1 ~14.67 5.74 5.87 6.73 9.95
0 1.01867 0 0.00078 0.00235 0.00548
104 1.01866 0.00037 0.00096 0.00241 0.00557
Vs. p.u 10-3 1.01860 0.00109 0.00141 0.00267 0.00578
10-2 1.01812 0.00312 0.00330 0.00422 0.00729
10-7 1.01641 0.00601 0.00619 0.00719 0.01091
0 160.16 0 11.61 28.31 64.27
10-4 160.15 2.05 11.82 28.48 64.38
P, o, MW 10-3 160.08 5.82 13.02 29.00 64.62
10-2 159.47 16.83 20.47 33.06 64.64
10-1 157.34 33.97 35.92 44.40 73.26
0 -19.68 0 2.69 6.56 14.89
10-4 -19.68 0.31 2.72 6.58 14.91
Q,_,. MVAR 10-3 -19.68 0.86 2.84 6.63 14.93
10-2 -19.65 2.50 3.67 7.02 15.09
10-" -19.55 5.05 5.72 8.26 15.66
0 45.76 0 0.88 2.66 6.18
102 45.76 0.58 1.05 272 6.21
Ss . MVA 10-3 45.76 1.70 1.91 3.16 6.43
10-2 45.78 4.94 5.02 5.64 8.04
10-? 45.85 10.00 10.05 10.42 12.11

S T T T T Y P T T E T e s om e vy r e o~

. A0

n



Table 5: Network outage effects in the PLF solution

Vs, p.u.

Case u o p<1.014  p<1.017 p<1.020 p<1.022
AY 1.01867 0.00078 0.0000 0.0186 0.9590 1.0000
AC 1.01797 0.00335 0.0590 0.0610 0.9970 0.9970
AYC 1.01796 0.00349 0.0573 0.0830 0.9636 0.9970
8, . degrees

Case U o p< =17 p<-15 p<-14 p<-13
AY -15.015 0.561 0.0003 0.5165 0.9699 1.0000
AC -15.477 2.611 0.0540 0.9880 0.9970 1.0000
AYC -15.478 2.690 0.0556 0.5669 0.9708 0.9992
Ps ¢, MW

Case Y% g p <42 p <43 p <45 p <47
AY 4413 0.96 0.0018 0.1143 0.8081 0.9999
AC 44.32 4.59 0.0260 0.0480 0.9480 0.9610
AYC 4432 4.69 0.0327 0.1625 0.7864 0.9621
P1 2-13~ MW

Case H o p<t4 p<16 p<18 p<20
AY 1.62 0.16 0.0439 0.4916 0.8126 0.9991
AC 1.64 0.53 0.0150 0.0370 0.9390 0.9700
AYC 1.64 0.56 0.0791 0.5073 0.7877 0.9667
Qs s, MVAR

Case u 4 p<11.0 p<11.7 p<124 p <130
AY 12.07 0.32 0.0000 0.1251 0.8525 0.9993
AC 11.74 1.61 0.0590 0.0690 0.9830 0.9920
AYC 11.75 1.66 0.0585 0.1974 0.8606 0.9898
S, 4. MVA

Case ] o p <48 p <53 p <58 p <63
AY 55.93 2.33 0.0001 0.1114 0.8195 0.9996
AC 55.55 9.43 0.0260 0.0260 0.9640 0.9690
AYC 5555 9.72 0.0261 0.1333 0.7974 0.9675
Sss. MVA

Case u o p<44 p <46 p <48 p <49
AY 45.76 0.88 0.0059 0.6615 0.9968 1.0000
AC 4589 457 0.0480 0.9500 0.9700 0.9700
AYC 45.88 4.67 0.0512 0.6654 0.9614 0.9702

case (AC), only the configuration network uncertainties are
considered and the expected value of the input random
vector is used. This is an algorithm of contingency analysis
where each configuration has an associated probability.
Finally, in the third case (AYC), both input and network
uncertainties are analysed simultaneously. Note that cases
AY and AC are, in fact, particular cases for the proposed
method.

Table 5 shows seven typical state/output random vari-
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ables in terms of probabilistic parameters (u, ¢ and
probabilities). It can be seen that case AYC is extremely
relevant in assessing X and Z uncertainties compared with
the individual analysis AY or AC. For example, consider
the random variable S;_. The probability of this flow
being less or equal to 48 MVA is 0.9968 considering only
the uncertainties AY, 0.9700 considering only the uncer-
tainties AC and 0.9614 as both uncertainties AYC are con-
sidered at the same time.
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Fig. 2 MVA flow density S, _,
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The probability distribution function for variables
P,, 5 and Ss_g, and the probability density function for
variable S,_, are shown in Figs. 1, 3 and 2, respectively.

75

n
o

N
o

probability distribution function %,

44 45 47 48
S MVA
Fig. 3 MVA flow distribution S, ¢
o AY
i AC
— AYC

From these Figures, the differences between AY, AC and
AYC are better visualised. Owing to scale limitations, the
tails of some functions are not represented because they
are very long. For the probability density function S, ,,
case AYC, two impulses of 0.0265 and 0.0321 are placed at
points 48.64 MVA and 63.34 MVA, respectively, to com-
pensate for the statistical information from the tails. As the
level of uncertainties AY is not very large, the tails of the
distribution functions are influenced more significantly by
the uncertainties AC.

The average computer time using a CDC-CYBER
170/835 computer for evaluating each PDF, represented
by 128 points, was 0.21 s for case AY, 1.40 s for case AC
and 3.50 s for case AYC.

4.3 Further comments
In practice, the evaluation of state and output uncer-
tainties, in terms of only expected value and variance par-
ameters, is easily implemented in any conventional power
flow algorithm. On the other hand, such probabilistic
information is insufficient to determine which network ele-
ments (transmission lines, transformers, busbars etc.) are
likely to operate inadequately. Therefore it is always
necessary to evaluate the probability density or distribu-
tion functions to obtain system adequacy indices such as:

(a) the probability of a transmission line and trans-
former loading being greater than its thermal rating

(b) the probability of a busbar voltage going above or
below its limits

(c) the probability of a generator violating its reactive
power limits

(d) the probability of generation deficiency in a particu-
lar system.

For example, suppose that transformer 5-6 in analysis 2
has a maximum capacity of 48 MVA. It can be seen from
Table 5 that there will be a probability of
(1 —0.9614) = 0.0386 (i.e. 3.86%) that an overload occurs
with this transformer. If a risk of 1% is considered accept-
able, then some measure has to be taken in relation to this
equipment. This analysis can be extended for all network
equipments.

The above overload risk of 3.86% would not be the
same if practical operating policy criteria, including eco-
nomic dispatch, load shedding and redispatch, were con-
sidered. Also, in the previous analysis, loads were assumed
to be statistically independent. Therefore all these con-
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siderations have to be incorporated [10] into the proposed
method to provide reliable adequacy indices. _

Finally, the development of load and generation models
[8] to be used for steady-state probabilistic analysis is a
vital step to ensure that PLF algorithms will process rea-
listic data.

5 Conclusions

This paper has presented a new probabilistic load flow
method which considers the network configuration as a
discrete random variable. The network uncertainties are
modelled to account for the availability of components
such as transmission lines, transformers, switchgear etc.,
which are all subject to outages due to faults and main-
tenance.

The proposed solution for the state and output prob-
ability density functions is obtained from a weighted sum
of density functions evaluated for each possible network
configuration. These weights are probabilities associated
with the configurations. An AC linear power flow model is
used.

It has been shown that the probabilistic nature of the
network is extremely relevant in the probabilistic load flow
solution. Moreover, the network uncertainties have more
influence in the solution when the load uncertainty level is
not very high, which usually occurs in operational plan-
ning.

Finally, although the proposed method requires more
computing effort in relation to the conventional one, the
evaluated adequacy indices contain, undoubtedly, more
information.
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8 Appendixes

8.1 Expected value and variance evaluation

The expected value of component X; and Z, from vectors
X and Z, respectively, are evaluated, conditioned by the
network configuration ¢, i.e.

EUX) = 3. nE(X.} = 3 p X 17
E{Zk} = ;1 De E{ZCk} = Z:l P Z?k (18)

where E{.} represents the expected value operator, X,
and X are the ith components of vectors X, and X9,
respectively, Z,, and Z? are the kth components of vectors
Z, and Z?, respectively.

VAR{X} = Y. A2, VAR(Y)
j=1

VAR(Z,} = Y B, VAR{Y,
i=1

where A, and B.,, are elements of matrices A, and B,,
respectively. '

Note that, owing to the linearisation of eqns. 1 and 2,
eqns. 17-20 are only approximations for the expected
value and variance of the state and output random vari-
ables, the difference being related to the degree of uncer-
tainty or dispersion of the input quantities and the system.

8.2 Data for 14 busbar system

The system studied is based on the IEEE/AEP 14 busbar
system. The line and transformer data used in these studies
are identical to those used in Reference 4. Table 6 shows
the selected configurations and their associated probabil-
ities after correction by the truncation factor. Table 7
shows the nodal probabilistic data, where ¢ in (i) is
expressed as a percentage of the expected value U

Table 6: Configuration probabilistic data

Representing the variance operator by VAR{ . }, then Elements on Configt_;lration Elements on Cortn)figl;)gl_ration
the variance of X, and Z, can be evaluated as follows: outage probability outage probabifity
¢ none 0.900 9-14 0.009
- 02 2 1-2 0.008 10-11 0.011
VAR{X} = 3, p[VARIX,} + (X0~ E*{X}  (19) 2 oo ey 0010
. 2-3 0.009 2-4/2-5 0.002
2-4 0.011 2-4/4-5 0.005
VAR{Z\} = ) p[VAR{Z,} +(2°)*] — E¥Z,} (200 35 0.010 9-10/9-14 0.003
=1 4-9 0.003 6-11/6-12/6-13 0.002
where 5—6 ~0.003 4-7/7-8/7-9 0.002
Table 7: Nodal probabilistic data
(i) Binomial distribution
Busbar Voltage, Unit rating, FOR Number of
R — T MwW units
Number Type
2 PV 1.045 20.0 0.09 2
(i} Normal distribution, p=1
Busbar Voltage, Active power Reactive power
Number  Type  p.u. u, MW o, % u, MVAR o, %
2 PV 1.045 -21.74 9.00 )
3 PV 1.010 -94.20 10.00
4 PQ -47.80 11.00 3.90 9.70
5 PQ —-7.60 5.00 -1.60 5.00
6 . PV 1.070 -11.20 1.00
7 PQ 0.00 0.00 0.00 0.00
8 PV 1.090 0.00 0.00 0.00 0.00
9 PQ —29.50 1.00 -16.60 5.00
10 PQ -9.00 10.00 -5.80 10.00
1" PQ -3.50 9.50 -1.80 9.50
12 PQ -6.10 1.00 -1.60 8.60
13 PQ -13.50 1.00 -5.80 9.50
14 PQ —-5.00 8.60
(iii) Discrete distribution, p = 1
Busbar Voltage, Active Power Reactive power
-
Number Type p.u. Mw Probability MVAR Probability
14 PQ ‘ -18.00 0.20
-15.00 0.45
-13.00 0.35
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