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ABSTRACT

The paper describes a method for evaluation of
power flow which takes into consideration uncertainty
of node data. The essence of the method is that the
net loads are given as a set of values together with
additional information on the frequency of its accur-
acy. The described mathematical model and the pract-
ical application are discussed and an example given.

List of principal symbols

number of nodes

number of branches

number of distribution functions

of active power inputs or outputs
P - active power

T, A, Ay - transformation matrix

Zn — matrix of moduli of branch impedances
C - connection matrix

E - unit matrix
€

F

£

S

oW
o

- unit row vector

- distribution function

- density function

- balance of power in network

Subscripts

k,n - node number
i - distribution number
j - branch number

1. Introduction

The paper deals with the problem which can be
stated as follows: For networks with constant con-
figuration and line parameters and given set of pro-
bable values of node loads, the problem is to find
the set of corresponding values of branch flows.
The necessity of dealing with such a problem stems
from the uncertainty of load data. The uncertainty
can be due, for example, to

(a) measurement error or forecast inaccuracy

(b) the load is known or assumed within certain
limits

(c) unscheduled outage
For the above and other reasons the load is not

known precisely but instead a range of values is given
together with frequency of occurrence.

Orthodox methods of load flow solution require
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specific values for loads and any variation of values
will require a new solution. For operational or plan-
ning problems, e.g. the assessment of reliability of
system configuration or design of new transmssion
networks, it is necessary to assess ‘the line flows
from the range of loads. For practical problems it is
not feasible to carry out individual load flows for
every change in loads for the following reasons:

(a) prohibitive amount of calculations. For
networks with N nodes and K different load
values at each node, KN load flows is required
(if N = 10, K = 2, the number of load flows is
more than 1000)

(b) difficulty in analysing and synthesising the
results of so many load flows.

A practical way to overcome the difficulties is
by selection of a limited number of wvariations of
loads. Often this is done arbitrarily, depending on
the intuition and experience of engineers. The
results are based on partial information and therefore
they are inaccurate and they do not include measure of
probability. The answer may be under or overestimated
and lead to wrong decisions. :

The paper proposes a method based on the appli-
cation of the probability calculus to obtain more com-
prehensive results as stated in the introduction.

2. Formulation of the problem and
derivation of the simplified assumptions

We can assume that the loads are static by con-
sidering the condition over a small time interval and
therefore the loads are random variables. The branch
flows in the network are a function of loads. Since
the loads are random variables the branch flows are
also random variables.

The probability model for load flow has the following
advantages:

- all power inputs or outputs can be given as a set of
values;

~ it does not exclude the conventional load flow cal-
culations;

- degrees of importance or frequency of occurrence of
a given load data can be respected by associating a
number (corresponding probability);

- the synthesis of all possible branch flows can be
obtained in the form of distribution functions of
branch flows.

However, this model causes great difficulties which

are mainly due to:

- the nonlinear relation between the node loads and
branch flows;

- since the generation has to meet the demand plus
losses - the mathematical model of the probabilistic
load flow must take into account the control of the
balance of power;

- the mathematical control of the balance is nailinear
complicated function of the power inputs and outputs
in particular nodes;
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- the number of data processed is much greater than
in the conventional load flow; so suitable numer-
ical method is needed;

t is therefore desirable to make the simplified
assumptions.
The more précise formulation of the object of
this paper is as follows:
There are given:
- the graph of the N-nodes, B-branches, network

and the parameters of the branches; the probability
of this graph is -equal to one.

- R distribution functions of the real power inputs
and outputs; (R:N)

~ the rule or procedure of balancing the power in the
case of surplus or deficiency; the rule can be
given analytically or in the form of an algorithm.

The problem to be solved is how to find the distri-
bution functions of branch flows.

In order to solve the above problem the following
assumptions are made:

(a) branch flows are linearly related to net nodal

loads;

active and reactive power flows are independent

of each other;

(c) the balancing of power is the function of the
sum of power inputs and outputs only, and is not
dependent on the power inputs and outputs in
particular nodes.

(b)

3. Mathematical model

Pl is a random vector of power inputs and outputs
T

Pn = col (Pnl,...P Lse-sP ) (1)

ni nR

of mutually independent
are known.

Distribution functions Fpi
(assumption ¢) random variables Pri

T is transformation matrix of order NxR. The element

Tki of the matrix T is zero or one according to:
(1 when P .eP
=< 2
T | (2)
L 0 when PnigtPNk
Since Pni belongs to one node only:
!
T, . =1 i=1,2,...R (3)
k=1 ki
PN is a random vector of net nodal loads:
= n
Py =TP, (%)
Using assumption (a) and (b):
= S
PB A Pw (5)
where PB - vector of branch real powers
Pw - vector of nodal real powers
A -~ transformation matrix of order Bxi
= [ (6
4 = [a[0] )
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A_ - transformation matrix of order Bx(N-1)

o
_ .1 -1 -1

Ao = ZB C (Ct ZB c) (7)

ZB - matrix of moduli of branch impedances

C - connection matrix

The sum of nodal real powers must be equal to zero
since relation (5) is linear and therefore losses are
neglected.

ey Py = O (8)

where e is a row vector with all N-elements equal to 1.

the relation (8) in the

Random vector Py fulfils
maintained

particular case only. The condition (8) is
generally by a dispatcher.

It may be written as

Py =Py - P ()
where P; is a vector of changes of net nodal loads
made by a dispatcher. Let S denote random variable

S = ey Py = e P (10)
$ is the balance of power in the network. Consider
two possible values of the variable S:

s =¢ s =€, (11)

The first one denotes the deficiency and the second
the surplus of power. In order to maintain the balance
of power either inputs or outputs should be diminished.
If S=g; the vector Pr is the vector of the deficiency
distributed among the particular nodes and if § = €2
the vector Py is the vector of the reserve capacity
distributed among the nodes.

Generally according to the assumption (d):

P = 4(8) (12)
Substituting (12) to (9) and then to (5)

Pp= 4 (P - 6(S)) (13)
In the above equation on the right hand side all data
are known (see (10),(7), (6), (4)) and on the left
hand side is the vector of unknown branch flows. The

relation (13) provides the fundamental equation of the
load flow using probability model. Py is a random vec-
tor of net nodal loads, S is a randem balance of power
in the network, A is a function of constant configu-
ration and parameters and ¢ is a function modelling the
dispatcher's activity.

4, Solution of the problem

The solution of the model means the evaluation of

the distribution functions FBj (3 =1,2,...B) of the
branch flows P_..
Bj
From the equation (13) for branch j:
= —
PBj Gp w(SR) (14)




R N
(15)

where G, = ] ] A, T . P,
R $21 k21 jk ki 'ni
N
w(sp) = kgl Aje 9 (8) (16)

The random variables Gr and SR are dependent
(see (10)). The distribution function Fggr ©of the
two dimensional random variable (GR»SR) can be eval-

uated.  Using (15) and (10) the following can be
written
= . 17
G =G, ) * W, P, (17)
for i = 2,3, R
= 18
51 TSt Py (18)
where
]
W, = AT, (19)
i k=1 jk ki
i-1
i1 7 Z W nr (20)
r=1
i-1
= 2
S;., % L P (21)
r=1
When i =1
= 22
Gl wl nl (22)
= (23
Sl Pnl )

thus the distribution function FGSl of the variables

(Gl,Sl):

Be<—m o> (24)

FGSl(wl B,B) = Fnl(s)

Because (Gl,Sl) and Pn2 are mutually independent then
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Fagolg,8) = f_m Fapy (87W,8,5-8) dr_,(8) (25)
since

Gy =6 +W, P, (26)

S2 = Sl + Pn2 (27)
Generally using (17) and (18) and for i=2,3,...R :

+o0
FGSi(g,s) = f_m FGSi_l(g—WiB,s-B) ani(B) (28)

If the distribution function Fgsg is known then the
density function fGS of the random variables (GR,SR):

2
3 FGSR(g,S)

fGS(g,s) = 3g 3s (29)
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and the unknown distribution function F.. of ‘the
. Bj
branch flow P_,:
Bj
g e
FBj(g) = f_m f_w fGS(g-w(S),S) ds dg (30)

The equations (22) +to (30) make it possible to de-
rive the algorithm of numerical calculations.

The evaluation of Fgsr is time consuming. The cal-~
culations are much more simple if the function (s)
is linear

$(S) = Lo S (31)

where Ly known vector 5 Loy defines the share of the
node k in maintaining the balance of power S (S-scalar).

Then the equation (13) becomes

PB = H Pn (32)
where
H=4 (E - Leg) T (33)
For branch j:
)
P..= ) H, P, (34)
B3 j3; 1 ni :
Similarly to (22) and (24) for i = 1:
Prs1 T M Py (35)
FBj(HlB) = Fnl(s) (36)
and for i=2,3,...,R
s = s + H, .
PBJl PB]l_l H, Pn1 (37)
+co
Fpss (1) = f_m Fgjg-1 (Y-H;B)AF . (8) (38)

The calculation of (38) is less time consuming.

Observe that if Loy=1 (thus Lok =0 for k =>l,2,...,N—l)
then equation (32) reduces to

P =ATP (39)
n

B

The equation (39) enables the evaluation of load flow
by assumption that dispatcher's activity is confined
to one node N only. The node N is a slack node of the
network. If P, is not a random vector then (39) re-
duces to the conventional equation of d.c. load flow.

5. Computer program and numerical example

The computer program is written in Fortran. The
program is capable of solving a network consisting of
a maximum of 100 branches and 100 node loads.

The computer results contain:

- the expected values and standard deviations of



branch flows PB,

- the distribution functions Fg and the density
curves fp of branch flows in all or any number of
branches,

- the density curve of balance of power in network

(or the load in the slack node),
- the expected values and standard deviations of net

nodal loads PN.

The practical example of calculations for the
network from Fig. 1 is shown in Fig. 2. The calcul-
ation time including density curves for all branches
was 4 min on CDC 3170.

6. Applications

The method presented enables the
the expected values, standard deviations
ribution functions of branch flows when the config~
uation and parameters of the network are constant
and the power inputs and outputs are random variables.
The given data may come from statistical records op
can be a set of arbitrary values. In the first case
results of calculations will give the probability of
occurrence and the second case will give the synthe-
sis of all possible branch flows corresponding to the
given data.

evaluation of
and dis~

The described method of calculation can be used

for planning and operational purposes; the results
of calculations provide much more information about
the load condition of a network than the information
obtained from conventional load flow. The density
function, apart from the expected value and standard
deviation, gives the answer to some questions which
are important from the practical viewpoint such as:-
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- what is the probability that the branch flow will
exceed the capacity limit or will be greater or less
than a certain value,

- what percentage of all possible values of branch
load belong to the economically desirable range of
branch load values,

~ what is the practically possible range of branch
load values

- what is the most probable load value etc.

Generally, the method can be helpful in all pro-
blems in which the load conditions of a network should
be analysed by uncertainty or variety of data avail-
able. In particular it can be applied to the solution
of the following problems:-

- the proper choice of the number, capacity and the
configuration of the branch in a network,

~ the evaluation of operational cost and economical
effectiveness of a network. The systematic error in
calculation of network losses can be eliminated
using probabilistic load flow,

- the forecasting of load inputs and outputs in the
network planning and operation taking into account
forecasting error,

- the assessment of reliability of power supply in the
particular network substations.
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LOAD DATA:

(83)

NODE-HUMBER
1 {IORMAL
1 RLIONIAL
2 HORMAL
3 HORMAL
I AHY DISCRETE
5 HORMAL
5 BIUOMIAL
5 ANY DISCRUTL
6 HORMAL
7 HORMAL
3 OHE POTNT
3 AY DISCRETL
10 NORMAL
11 NORM
11 BIHOMIA
12 NORMAL
13 HORMAL
14 3TUOMIAL
NEl Ol POLHT
15 OWbL POINT

| S

T Y 202 (176) 'ﬁ——‘t}* °

607

431
(82)

31

For every branch
expected value and
standard deviation

(in brackets) is given

756

PROBABILITY FUNCTIOH

DATA
-200.00 8.000
10 200.00 M 0.120
-500.00 M 6.000
~500.00 ¥w 5. 000

LOAD MY PROBASILITY
-560.00 .200
-600.00 .200
~580.00 . 200
-620.20 . 200
-640.00 . 200
1500,00 U 2.000

8 200,00 W 0.109

LOAD MW PROBABILITY

~2500,00 . 350
-3000.00 . 109
-2800.09 . 300
~-2600.00 .250
-2700.00 . . 200
-2600.900 . 100
~400,00 ¥ 7.000
-400.,00 10.000
250.00

LOAD M PROBARILITY

600,00 . 500
1000.00 . 200

800.00 . 300
=-300.7°0 "4 10,000
-200.00 W 5,000

12 100,00 0,100
-5006.00 M7 5,000
00.¢ 3.000
i D0.¢ 2.200
-300.00
-150.00 ¢
b,
159.(829)

Fig. 1:

9
Reference iAode

e

Lxample of probakilistic load flow
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0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0. 000
0.000
0.600
0.000
0.000
0,000
0. 000
0.000
0.002
0. 00
0.019
0,101
0,171
0,325
0.u63
C.072
0. 507
0.337
0.4970

C.95¢

JO

———— e

DYs

5,001
3,000
0.240
0.370
0. 100
0,467
C.iy2
5. 760
0,812
U.shl
0,203

2.871
0.97¢
0.937

-y o
V. 805

0.8497
G.5
0, 9:

R N e R

<

<

PRO

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.002
0.003
0.014
0.0uy2
0.070
0.157
0.1385
0.216
0,126
0.130
0.0u4%
0.016
0.002

PRO

0,001
0.060
0,150
0.131
0.058
G.0ey
0.150
0.131
0,035

0.7

3J.004
0,049
G.0L1z
0.000
0.011
0,005
0.0n2
0.001
0.001
0.000
G.O00
G.000
0.000
0.000
0,000
0,000

POHLR

5250,
5000,
4750,
4500,
4250,
1000,
3750,
3500,
3250,
3000,
2750,
2500,
2250.
2000,
1750,
1500,
1250,
1000.
750,
500,
250,
~-0.
=250,
~500.
-750.
-1000.
-1250,
~1500.
~1750.
-200n,
=2250,

POULR

=850,
=300,
-750,
~-700,
~-650.
=500,
-55Q,
=500,
=450,
~h30.
-350.
=300,
=250,
=200,
=150,
-100,

-50,

————

BALAYCL OF rowLr L.b Thn

0.10

Fig., 2
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REFLREHCE HODL (9)

0.20




Discussion

H. H. Happ, (General Electric, Schenectady, New York 12345): This
paper describes a procedure for solving a power flow with probabilistic
loads for a system whose configuration is fixed. It represents a novel
and ingenious development, and it was my pleasure to have presented
the paper for the author at the Summer Meeting (1973) in Vancouver.

The author’s formulation does not make easy reading, however,
and it would be helpful if a flowchart is presented in the closure show-
ing the key calculations and their order including generators and loads.
Perhaps the author can also describe the corresponding features of the
present program and its relative speed to the deterministic. A few
typographical errors appeared in the preprint which should be cor-
rected in the final text or in the closure, as communicated to the author
separately.

The author may wish to indicate what would be required in terms
of additional calculations to extend the present method to the A. C.
case.

The probabilistic treatment of loads in a load flow indeed has
many applications, particularly when implemented in an A. C. load
flow. It will not, in the opinion of this discussor, make the deterministic
treatment obsolete; but it presents a unique option for handling loads
to a planner or to an operator.

As with all new tools, the extent to which it will be used will de-
pend upon the convenience of input and output, the relative speed
and/or cost of execution, and the “feel” of the system from the output
that a user can obtain. All factors except the last will probably evolve
in programs in time. But whether or not users will get a similar feel for
the system as they get with a deterministic load treatment, only the
future will tell.

Perhaps the author can indicate how the program is or will be used
in Poland, and experiences of users with this tool there.

Manuscript received July 24, 1973.

K. Clements, (Worcester Polytechnic Institute, Mass.); R. J. Ringlee,
and A. J. Wood, (Power Technologies, Inc. Schenectady, New York
12301): The author is to be commended for developing a new and
potentially quite useful method for dealing with the complex problem
of calculating branch flow probability distributions.

There appear to be avenues opened by this method to permit the
practical assessment of bulk power supply reliability recognizing the
uncertainties of load and generation and the sensitivity of circuit out-
ages on line loadings.

It should be noted that if one merely wishes to calculate the
means and variances of the branch flows these can be obtained without
recourse to the NxR convolution integrations (Equation 38 of the
paper) that are required to obtain the branch flow probability dis-
tribution functions. If the linear balance of power function is assumed
(Equation 31 of the paper) resulting in the linear relationship between
the branch flows and P, (Equation 32 of the paper)

P =HPy,
then one can calculate
Pg = HP, 2)
and .
Cp = HCuHT )
where

Pp —
Pn — is a vector of means of Py

CB — is a BxB covariance matrix associated with Pp

Cp — is an RxR covariance matrix associated with Py, and
T — denotes matrix transpose.

The diagonal elements of CB are, of course, the variances of the
branch flows. The assumption that the power inputs and outputs Ppj
are mutually independent is not required for this calculation.

This assumption can also be removed for the calculation of the
branch flow distribution functions provided that the dependent random
variables are Gaussian. This is achieved by performing a transformation
on Pp such that the transformed variables are mutually independent. In
order to facilitate the discussion let us partition the vector Py into two

components
Pn = col(PyIPo)

is a vector of means PR

Manuscript received August 6, 1973.

where

P has dimension ny
and

P¢ has dimension n¢
such that )

ng + n¢ = R.

If the elements of Py are assumed to be mutually independent and those
of P are assumed to be correlated and Gaussian with covariance matrix
Cc then Equation 32 of the paper can be written as:

Pp = HaPa + HPe (4)
where
Ha and He are partitioned on H corresponding to those on Py,

Since Cc is a covariance matrix, it is symmetric and positive
definite and, hence, it is always possible to find a square matrix L such
that LLT equals Cc. One method of doing this is by triangular de-
composition in which case L is a lower (or upper) triangular matrix.
We define a vector of mutually independent normal random variables x
such that Pc = Lx and Cx = I the identity matrix where Cy is the co-
variance matrix of x. The equation (4) may be written as

P = HaP,+ Hclx 5
or

PB = H*P*,
where

H* = [HalHcL] (6)
and

P*p= col (Palx) (7

Equation-38 of the paper can then be used as before to compute the
branch flow by replacing Hj with H*j and using the appropriate dis-
tribution functions for Fpj(B).

J. F. Dopazo, O. A. Klitin, and A. M. Sasson, (American Electric
Power Serv. Corp., N. Y. 10004): The author deserves being con-
gratulated for producing the first paper, to our knowledge, that deals
with the propagation of the uncertainties in the input data to the re-
sults of the load flow problem. We concur with the author that this
application is a potentially valuable too! for general real time and off-
line load flow applications. We at AEP, have recognized this potential
and for some time have been working on the solution of the same

problem. Our approach has been to perform this error analysis after the -
solution of a base case conventional load flow calculation by determin-
ing the variances of the output quantities considering a linear ap-
proximation around the solution point. The method is efficient and
there is no need to simplify the model into a d.c. one. We can also
handle a combination of different probability density functions for the
input quantities, the variances of the output quantities belonging to a
normal probability density function according to the Central Limit

- Theorem. In our approach we have included constraints on the total

loads of given areas of the system corresponding to load forecasts which
are known with greater accuracy, in some cases, than the individual

loads themselves. ]
In closing, we again congratulate the author. We look forward for

future publications of her work in this important area for power system
analysis.

Manuscript received August 6, 1973.

W. O. Stadlin (Leeds & Northrup Company, North Wales, Pennsylvania
19454): The author’s probabilistic analysis provides further insight to
the relationship between network inputs (node injections) and outputs
(branch flows). For operational purposes, the A transformation matrix
provides a set of sensitivity coefficients relating generator (or load)
shifts to transmission line flow changes. This information is useful for
corrective strategies following a contingency. Equation (32) is also
useful in the following form:

Pp = A (P\-LoS) = A (E-Lep)Py

Manuscript received August 2, 1973.

758



where we could consider the injections PN as beihg independent random
variables with normal probability distributions, Under this assumption
we conclude that,

=120}
where each term of the matrix Hg is the square of the corresponding
term in A (E-LgeN) and o is a vector of standard deviations. This
relationship may be used to evaluate the performance of real time load
flows. For “state estimation” applied to the author’s linear model

(assuming one measurement per branch) the following relationship
may be derived,

Py = z,glc_(ctzgz,glcrlctz;glpB =DPy

where Pp represents the best estimate of branch flows based on the
measured set of branch flows PB. As dbove we obtain,

3%=020f

Barbara Borkowska: I afn deeply indebted to Professor H. H. Happ
who kindly agreed to present my paper for discussion at the ISEE
Meeting. Pursuing his suggestion I enclose the simplyfied flowchart of

Manuscript received October 23, 1973,

es Are there line data ?

Are distribution functions
of power flow in all’prespe-
cified lines evaluated ?

yes
)

no

Read line data

Calc'u!ape the matrix of

sensitivity coefficients A

Are there load data ?

Read load data
€s Are there line data ? no

Calculate the expected value
and variance for all power
inputs and outputs P,

Calculate the expected value
and standard deviation of
net load at all nodes Py

Calculate the standard devia-
tion and expected value of
power flow in all lines

Calculate the sum of expected
values and variances of nor-
mal density cutves

Evaluate the convolution of
all discrete and the sum of
the normal distributions

€s Are there line data ? no

Probabilistic Load Flow. The program which is now working enables
calculations for networks up to 100 branches and 70 nodes. The nodal
loads can be given by any of the following density curves: normal,
i discrete or one point deterministic, For a node more
than one density curve can be specified but not more than 100 curves
for whole network can be given. The full amount of results is given in

as: availability of power capacity,
sensitivity of load flow etc. _The time of calcqlation if all nodal.lc.)ads

random variables,

The experiences with the probabilistic load flow in Poland are not
wide yet. However the program has been accepted by Polish National
Dispatching Centre for off line data processing.

As far as a.c. load flow is concerned I see many difficulties. They
are both of theoretical nature /nonlinean’ty, the correlations between
variables and some constraints cannot be neglected / and of practical
nature / the data needed and the time of calculations/. Personally I think
that the problem of probabilistic treatment of network graph is more
important and pressing.

I would like to thank K. Clements, R. J. Ringlee, A. J. Wood and
W. O. Stadlin for their comments and for the additional insights they

there are power stations with great generation units than distributions of
many branch load flows are far from normal distribution.

Print
results

Print
results
Print
results

Print
results

Take into account
the matrix of sen-
sitivity coefficients

The flow chart of Probabilistic Load Flow
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